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Abstract

In order to alleviate data sparsity and over-
fitting problems in maximum likelihood esti-
mation (MLE) for sequence prediction tasks,
we propose the Generative Bridging Network
(GBN), in which a novel bridge module is in-
troduced to assist the training of the sequence
prediction model (the generator network). Un-
like MLE directly maximizing the conditional
likelihood, the bridge extends the point-wise
ground truth to a bridge distribution condi-
tioned on it, and the generator is optimized to
minimize their KL-divergence. Three different
GBNs, namely uniform GBN, language-model
GBN and coaching GBN, are proposed to pe-
nalize confidence, enhance language smooth-
ness and relieve learning burden. Experiments
conducted on two recognized sequence predic-
tion tasks (machine translation and abstractive
text summarization) show that our proposed
GBNs can yield significant improvements over
strong baselines. Furthermore, by analyz-
ing samples drawn from different bridges, ex-
pected influences on the generator are verified.

1 Introduction

Sequence prediction has been widely used in tasks
where the outputs are sequentially structured and
mutually dependent. Recently, massive explo-
rations in this area have been made to solve prac-
tical problems, such as machine translation (Bah-
danau et al., 2014; Ma et al., 2017; Norouzi et al.,
2016), syntactic parsing (Vinyals et al., 2015),
spelling correction (Bahdanau et al., 2014), image
captioning (Xu et al., 2015) and speech recogni-
tion (Chorowski et al., 2015). Armed with mod-
ern computation power, deep LSTM (Hochreiter
and Schmidhuber, 1997) or GRU (Chung et al.,
2014) based neural sequence prediction models
have achieved the state-of-the-art performance.

The typical training algorithm for sequence
prediction is Maximum Likelihood Estimation
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Figure 1: The overall architecture of our novel Gen-
erative Bridging Network (GBN). Two main compo-
nents, namely the generator network and the bridge
module, are connected through samples (Y 1 . . . Y K in
red) from the bridge module during training time. (We
sometimes call them generator and bridge in brief re-
spectively in the following discussion.) The generator
is implemented through an attentive encoder-decoder,
where in the figure Att represents the attention module.

(MLE), which maximizes the likelihood of the tar-
get sequences conditioned on the source ones:

✓⇤ = argmax
✓

E
(X,Y ⇤)⇠D

log p✓(Y
⇤|X) (1)

Despite the popularity of MLE or teacher forc-
ing (Doya, 1992) in neural sequence prediction
tasks, two general issues are always haunting: 1).
data sparsity and 2). tendency for overfitting, with
which can both harm model generalization.

To combat data sparsity, different strategies
have been proposed. Most of them try to take
advantage of monolingual data (Sennrich et al.,
2015; Zhang and Zong, 2016; Cheng et al., 2016).
Others try to modify the ground truth target based
on derived rules to get more similar examples for
training (Norouzi et al., 2016; Ma et al., 2017).
To alleviate overfitting, regularization techniques,
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such as confidence penalization (Pereyra et al.,
2017) and posterior regularization (Zhang et al.,
2017), are proposed recently.

As shown in Figure 1, we propose a novel learn-
ing architecture, titled Generative Bridging Net-
work (GBN), to combine both of the benefits from
synthetic data and regularization. Within the ar-
chitecture, the bridge module (bridge) first trans-
forms the point-wise ground truth into a bridge
distribution, which can be viewed as a target pro-
poser from whom more target examples are drawn
to train the generator. By introducing different
constraints, the bridge can be set or trained to pos-
sess specific property, with which the drawn sam-
ples can augment target-side data (alleviate data
sparsity) while regularizing the training (avoid
overfitting) of the generator network (generator).

In this paper, we introduce three different con-
straints to build three bridge modules. Together
with the generator network, three GBN systems
are constructed: 1). a uniform GBN, instantiating
the constraint as a uniform distribution to penal-
ize confidence; 2). a language-model GBN, in-
stantiating the constraint as a pre-trained neural
language model to increase language smoothness;
3). a coaching GBN, instantiating the constraint as
the generator’s output distribution to seek a close-
to-generator distribution, which enables the bridge
to draw easy-to-learn samples for the generator to
learn. Without any constraint, our GBN degrades
to MLE. The uniform GBN is proved to minimize
KL-divergence with a so-called payoff distribution
as in reward augmented maximum likelihood or
RAML (Norouzi et al., 2016).

Experiments are conducted on two sequence
prediction tasks, namely machine translation and
abstractive text summarization. On both of them,
our proposed GBNs can significantly improve
task performance, compared with strong base-
lines. Among them, the coaching GBN achieves
the best. Samples from these three different
bridges are demonstrated to confirm the expected
impacts they have on the training of the generator.
In summary, our contributions are:

• A novel GBN architecture is proposed for se-
quence prediction to alleviate the data spar-
sity and overfitting problems, where the
bridge module and the generator network are
integrated and jointly trained.

• Different constraints are introduced to build
GBN variants: uniform GBN, language-

model GBN and coaching GBN. Our GBN
architecture is proved to be a generalized
form of both MLE and RAML.

• All proposed GBN variants outperform the
MLE baselines on machine translation and
abstractive text summarization. Similar rela-
tive improvements are achieved compared to
recent state-of-the-art methods in the trans-
lation task. We also demonstrate the advan-
tage of our GBNs qualitatively by comparing
ground truth and samples from bridges.
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Figure 2: Conceptual interpretation of our Generative
Bridging Network (GBN). See detailed discussion in
the beginning of Sec. 2.

2 Generative Bridging Network

In this section, we first give a conceptual interpre-
tation of our novel learning architecture which is
sketched in Figure 2. Since data augmentation and
regularization are two golden solutions for tack-
ling data sparsity and overfitting issues. We are
willing to design an architecture which can inte-
grate both of their benefits. The basic idea is to use
a so-called bridge which transforms Y ⇤ to an easy-
to-sample distribution, and then use this distribu-
tion (samples) to train and meanwhile regularize
the sequence prediction model (the generator).

The bridge is viewed as a conditional distribu-
tion1 p⌘(Y |Y ⇤) to get more target Y s given Y ⇤

so as to construct more training pairs (X, Y ). In
the meantime, we could inject (empirical) prior
knowledge into the bridge through its optimiza-
tion objective which is inspired by the design of
the payoff distribution in RAML. We formulate
the optimization objective with two parts in Equa-
tion (2): a) an expected similarity score com-
puted through a similarity score function S(·, Y ⇤)
interpolated with b) a knowledge injection con-
straint2 C(p⌘(Y |Y ⇤), pc(Y )) where ↵ controls the

1⌘ should be treated as an index of the bridge distribution,
so it is not necessarily the parameters to be learned.

2Note that, in our paper, we specify C to be KL-divergence
between the bridge distribution p⌘ and certain constraint dis-
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strength of the regularization, formally, we write
the objective function LB(⌘) as follows:

LB(⌘) =

E
Y ⇠p⌘(Y |Y ⇤)

[�S(Y, Y ⇤)] + ↵C(p⌘(Y |Y ⇤), pc(Y ))

(2)

Minimizing it empowers the bridge distribution
not only to concentrate its mass around the ground
truth Y ⇤ but also to adopt certain hope property
from pc(Y ). With the constructed bridge distribu-
tion, we optimize the generator network P✓(Y |X)
to match its output distribution towards the bridge
distribution by minimizing their KL-divergence:

LG(✓) = KL(p⌘(Y |Y ⇤)||p✓(Y |X)) (3)

In practice, the KL-divergence is approximated
through sampling process detailed in Sec. 2.3.
As a matter of fact, the bridge is the crux of the
integration: it synthesizes new targets to allevi-
ate data sparsity and then uses the synthetic data
as regularization to overcome overfitting. Thus
a regularization-by-synthetic-example approach,
which is very similar to the prior-incorporation-
by-virtual-example method (Niyogi et al., 1998).

2.1 Generator Network
Our generator network is parameterized with
the commonly used encoder-decoder architec-
ture (Bahdanau et al., 2014; Cho et al., 2014). The
encoder is used to encode the input sequence X
to a sequence of hidden states, based on which
an attention mechanism is leveraged to compute
context vectors at the decoding stage. The con-
text vector together with previous decoder’s hid-
den state and previously predicted label are used,
at each time step, to compute the next hidden state
and predict an output label.

As claimed in Equation (3), the generator net-
work is not trained to maximize the likelihood of
the ground truth but tries best to match the bridge
distribution, which is a delegate of the ground
truth. We use gradient descent to optimize the KL-
divergence with respect to the generator:

rLG(✓) = E
Y ⇠p⌘(Y |Y ⇤)

logrp✓(Y |X) (4)

The optimization process can be viewed as the
generator maximizing the likelihood of samples

tribution pc, however, we believe mathematical form of C is
not restricted, which could motivate further development.

drawn from the bridge. This may alleviate data
sparsity and overfitting by posing more unseen
scenarios to the generator and may help the gen-
erator generalize better in test time.

2.2 Bridge Module3

Our bridge module is designed to transform a
single target example Y ⇤ to a bridge distribu-
tion p⌘(Y |Y ⇤). We design its optimization tar-
get in Equation (2) to consist of two terms,
namely, a concentration requirement and a con-
straint. The constraint is instantiated as KL-
divergence between the bridge and a contraint dis-
tribution pc(Y ). We transform Equation (2) as fol-
lows, which is convenient for mathematical ma-
nipulation later:

LB(⌘) =

E
Y ⇠p⌘

[�S(Y, Y ⇤)
⌧

] + KL(p⌘(Y |Y ⇤)||pc(Y ))

(5)

S(Y, Y ⇤) is a predefined score function which
measures similarity between Y and Y ⇤ and peaks
when Y = Y ⇤, while pc(Y ) reshapes the bridge
distribution. More specifically, the first term en-
sures that the bridge should concentrate around the
ground truth Y ⇤, and the second introduces willing
property which can help regularize the generator.
The hyperparameter ⌧ can be interpreted as a tem-
perature which scales the score function. In the
following bridge specifications, the score function
S(Y, Y ⇤) is instantiated according to Sec. 3.1.

1. Delta Bridge The delta bridge can be seen
as the simplest case where ↵ = 0 or no con-
straint is imposed. The bridge seeks to minimize

E
Y ⇠p⌘(Y |Y ⇤)

[�S(Y,Y ⇤)
⌧ ]. The optimal solution is

when the bridge only samples Y ⇤, thus the Dirac
delta distribution is described as follows:

p⌘(Y |Y ⇤) = �Y ⇤(Y ) (6)

This exactly corresponds to MLE, where only ex-
amples in the dataset are used to train the genera-
tor. We regard this case as our baseline.

2. Uniform Bridge The uniform bridge adopts
a uniform distribution U(Y ) as constraint. This

3Although we name it bridge module, we explicitly learn
it with the generator when a closed-form static solution ex-
ists in terms of Equation (5). Otherwise, we will adopt an
encoder-decoder to construct a dynamic bridge network.
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bridge motivates to include noise into target exam-
ple, which is similar to label smoothing (Szegedy
et al., 2016). The loss function can be written as:

LB(⌘) =

E
Y ⇠p⌘

[�S(Y, Y ⇤)
⌧

] + KL(p⌘(Y |Y ⇤)||U(Y ))

(7)

We can re-write it as follows by adding a constant
to not change the optimization result:

LB(⌘) + C = KL(p⌘(Y |Y ⇤)||exp S(Y,Y ⇤)
⌧

Z
)

(8)

This bridge is static for having a closed-form so-
lution:

p⌘(Y |Y ⇤) =
exp S(Y,Y ⇤)

⌧

Z
(9)

where Z is the partition function. Note that our
uniform bridge corresponds to the payoff distribu-
tion described in RAML (Norouzi et al., 2016).

3. Language-model (LM) Bridge The LM
bridge utilizes a pretrained neural language model
pLM (Y ) as constraint, which motivates to propose
target examples conforming to language fluency.

LB(⌘) =

E
Y ⇠p⌘(Y |Y ⇤)

[�S(Y, Y ⇤)
⌧

] + KL(p⌘(Y |Y ⇤)||pLM )

(10)

Similar to the uniform bridge case, we can re-write
the loss function to a KL-divergence:

LB(⌘) + C

=KL(p⌘(Y |Y ⇤)||pLM (Y ) · exp S(Y,Y ⇤)
⌧

Z
)

(11)

Thus, the LM bridge is also static and can be seen
as an extension of the uniform bridge, where the
exponentiated similarity score is re-weighted by a
pretrained LM score, and renormalized:

p(Y |Y ⇤) =
pLM (Y ) exp S(Y,Y ⇤)

⌧

Z
(12)

where Z is the partition function. The above equa-
tion looks just like the payoff distribution, whereas
an additional factor is considered.

4. Coaching Bridge The coaching bridge uti-
lizes the generator’s output distribution as con-
straint, which motivates to generate training sam-
ples which are easy to be understood by the
generator, so as to relieve its learning burden.
The coaching bridge follows the same spirit as
the coach proposed in Imitation-via-Coaching (He
et al., 2012), which, in reinforcement learning vo-
cabulary, advocates to guide the policy (genera-
tor) with easy-to-learn action trajectories and let
it gradually approach the oracle when the optimal
action is hard to achieve.

LB(⌘) =

E
Y ⇠p⌘

[�S(Y, Y ⇤)
⌧

] + KL(p✓(Y |X)||p⌘(Y |Y ⇤))

(13)

Since the KL constraint is a moving target when
the generator is updated, the coaching bridge
should not remain static. Therefore, we perform
iterative optimization to train the bridge and the
generator jointly. Formally, the derivatives for the
coaching bridge are written as follows:

rLB(⌘) = E
Y ⇠p⌘

[�S(Y, Y ⇤)
⌧

r log p⌘(Y |Y ⇤)]

+ E
Y ⇠p✓

r log p⌘(Y |Y ⇤)

(14)

The first term corresponds to the policy gradient
algorithm described in REINFORCE (Williams,
1992), where the coefficient �S(Y, Y ⇤)/⌧ corre-
sponds to reward function. Due to the mutual de-
pendence between bridge module and generator
network, we design an iterative training strategy,
i.e. the two networks take turns to update their
own parameters treating the other as fixed.

2.3 Training

The training of the above three variants is illus-
trated in Figure 3. Since the proposed bridges can
be divided into static ones, which only require pre-
training, and dynamic ones, which require contin-
ual training with the generator, we describe their
training process in details respectively.

2.3.1 Stratified-Sampled Training
Since closed-formed optimal distributions can be
found for uniform/LM GBNs, we only need to
draw samples from the static bridge distributions
to train our sequence generator. Unfortunately,
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Figure 3: The training processes of the three different
variants of our GBN architecture (Sec. 2.3).

due to the intractability of these bridge distribu-
tions, direct sampling is infeasible. Therefore, we
follow Norouzi et al. (2016); Ma et al. (2017) and
adopt stratified sampling to approximate the direct
sampling process. Given a sentence Y ⇤, we first
sample an edit distance m, and then randomly se-
lect m positions to replace the original tokens. The
difference between the uniform and the LM bridge
lies in that the uniform bridge replaces labels by
drawing substitutions from a uniform distribution,
while LM bridge takes the history as condition and
draws substitutions from its step-wise distribution.

2.3.2 Iterative Training

Since the KL-constraint is a moving target for the
coaching bridge, an iterative training strategy is
designed to alternately update both the generator
and the bridge (Algorithm 1). We first pre-train
both the generator and the bridge and then start to
alternately update their parameters. Figure 4 intu-
itively demonstrates the intertwined optimization
effects over the coaching bridge and the generator.
We hypothesize that iterative training with easy-
to-learn guidance could benefit gradient update,
thus result in better local minimum.

3 Experiment

We select machine translation and abstractive text
summarization as benchmarks to verify our GBN
framework.

3.1 Similarity Score Function

In our experiments, instead of directly using
BLEU or ROUGE as reward to guide the bridge
network’s policy search, we design a simple sur-

𝑷𝜼 𝑷𝜽

𝑌
2. Update learner 𝑃𝜃

𝑌
4. Update learner 𝑃𝜃

1. Update coach 𝑃𝜂
𝑌

3. Update coach 𝑃𝜂
𝑌

𝜹(𝒀)

Figure 4: Four iterative updates of the coaching bridge
and the generator. In an early stage, the pre-trained
generator P✓ may not put mass on some ground truth
target points within the output space, shown by �(Y ).
The coaching bridge is first updated with Equation (14)
to locate in between the Dirac delta distribution and
the generator’s output distribution. Then, by sampling
from the coaching bridge for approximating Equation
(4), target samples which demonstrate easy-to-learn se-
quence segments facilitate the generator to be opti-
mized to achieve closeness with the coaching bridge.
Then this process repeats until the generator converges.

rogate n-gram matching reward as follows:

S(Y, Y ⇤) = 0.4⇤N4+0.3⇤N3+0.2⇤N2+0.1⇤N1

(15)
Nn represents the n-gram matching score between
Y and Y ⇤. In order to alleviate reward sparsity at
sequence level, we further decompose the global
reward S(Y, Y ⇤) as a series of local rewards at ev-
ery time step. Formally, we write the step-wise
reward s(yt|y1:t�1, Y

⇤) as follows:

s(yt|y1:t�1, Y
⇤) =

8
>>>>><
>>>>>:

1.0; N(y1:t, yt�3:t)  N(Y ⇤, yt�3:t)

0.6; N(y1:t, yt�2:t)  N(Y ⇤, yt�2:t)

0.3; N(y1:t, yt�1:t)  N(Y ⇤, yt�1:t)

0.1; N(y1:t, yt)  N(Y ⇤, yt)

0.0; otherwise

(16)

where N(Y, Ỹ ) represents the occurrence of sub-
sequence Ỹ in whole sequence Y . Specifically, if
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Algorithm 1 Training Coaching GBN
procedure PRE-TRAINING

Initialize p✓(Y |X) and p⌘(Y |Y ⇤) with ran-
dom weights ✓ and ⌘

Pre-train p✓(Y |X) to predict Y ⇤ given X
Use pre-trained p✓(Y |X) to generate Ŷ

given X
Pre-train p⌘(Y |Y ⇤) to predict Ŷ given Y ⇤

end procedure
procedure ITERATIVE-TRAINING

while Not Converged do
Receive a random example (X, Y ⇤)
if Bridge-step then

Draw samples Y from p✓(Y |X)
Update bridge via Equation (14)

else if Generator-step then
Draw samples Y from p⌘(Y |Y ⇤)
Update generator via Equation (4)

end if
end while

end procedure

a certain sub-sequence yt�n+1:t from Y appears
less times than in the reference Y ⇤, yt receives re-
ward. Formally, we rewrite the step-level gradient
for each sampled Y as follows:

� S(Y, Y ⇤)
⌧

r log p⌘(Y |Y ⇤)

=
X

t

�s(yt|y1:t�1, Y
⇤)

⌧
· r log p⌘(yt|y1:t�1, Y

⇤)

(17)

3.2 Machine Translation
Dataset We follow Ranzato et al. (2015); Bah-
danau et al. (2016) and select German-English ma-
chine translation track of the IWSLT 2014 eval-
uation campaign. The corpus contains sentence-
wise aligned subtitles of TED and TEDx talks. We
use Moses toolkit (Koehn et al., 2007) and remove
sentences longer than 50 words as well as lower-
casing. The evaluation metric is BLEU (Papineni
et al., 2002) computed via the multi-bleu.perl.

System Setting We use a unified GRU-based
RNN (Chung et al., 2014) for both the generator
and the coaching bridge. In order to compare with
existing papers, we use a similar system setting
with 512 RNN hidden units and 256 as embed-
ding size. We use attentive encoder-decoder to
build our system (Bahdanau et al., 2014). Dur-
ing training, we apply ADADELTA (Zeiler, 2012)

Methods Baseline Model
MIXER 20.10 21.81 +1.71

BSO 24.03 26.36 +2.33

AC 27.56 28.53 +0.97

Softmax-Q 27.66 28.77 +1.11

Uniform GBN
(⌧ = 0.8)

29.10

29.80 +0.70

LM GBN
(⌧ = 0.8)

29.90 +0.80

Coaching GBN
(⌧ = 0.8)

29.98 +0.88

Coaching GBN
(⌧ = 1.2)

30.15 +1.05

Coaching GBN
(⌧ = 1.0)

30.18 +1.08

Table 1: Comparison with existing works on IWSLT-
2014 German-English Machine Translation Task.
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Figure 5: Coaching GBN’s learning curve on IWSLT
German-English Dev set.

with ✏ = 10�6 and ⇢ = 0.95 to optimize pa-
rameters of the generator and the coaching bridge.
During decoding, a beam size of 8 is used to ap-
proximate the full search space. An important
hyper-parameter for our experiments is the tem-
perature ⌧ . For the uniform/LM bridge, we fol-
low Norouzi et al. (2016) to adopt an optimal tem-
perature ⌧ = 0.8. And for the coaching bridge,
we test hyper-parameters from ⌧ 2 {0.8, 1.0, 1.2}.
Besides comparing with our fine-tuned baseline,
other systems for comparison of relative BLEU
improvement are: MIXER (Ranzato et al., 2015),
BSO (Wiseman and Rush, 2016), AC (Bahdanau
et al., 2016), Softmax-Q (Ma et al., 2017).

Results The experimental results are summa-
rized in Table 1. We can observe that our
fine-tuned MLE baseline (29.10) is already over-
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Methods RG-1 RG-2 RG-L
ABS 29.55 11.32 26.42
ABS+ 29.76 11.88 26.96
Luong-NMT 33.10 14.45 30.71
SAEASS 36.15 17.54 33.63
seq2seq+att 34.04 15.95 31.68
Uniform GBN

(⌧ = 0.8)
34.10 16.70 31.75

LM GBN
(⌧ = 0.8)

34.32 16.88 31.89

Coaching GBN
(⌧ = 0.8)

34.49 16.70 31.95

Coaching GBN
(⌧ = 1.2)

34.83 16.83 32.25

Coaching GBN
(⌧ = 1.0)

35.26 17.22 32.67

Table 2: Full length ROUGE F1 evaluation results on
the English Gigaword test set used by (Rush et al.,
2015). RG in the Table denotes ROUGE. Results
for comparison are taken from SAEASS (Zhou et al.,
2017).

competing other systems and our proposed GBN
can yield a further improvement. We also ob-
serve that LM GBN and coaching GBN have both
achieved better performance than Uniform GBN,
which confirms that better regularization effects
are achieved, and the generators become more ro-
bust and generalize better. We draw the learning
curve of both the bridge and the generator in Fig-
ure 5 to demonstrate how they cooperate during
training. We can easily observe the interaction
between them: as the generator makes progress,
the coaching bridge also improves itself to propose
harsher targets for the generator to learn.

3.3 Abstractive Text Summarization

Dataset We follow the previous works by Rush
et al. (2015); Zhou et al. (2017) and use the
same corpus from Annotated English Gigaword
dataset (Napoles et al., 2012). In order to be com-
parable, we use the same script 4 released by Rush
et al. (2015) to pre-process and extract the train-
ing and validation sets. For the test set, we use the
English Gigaword, released by Rush et al. (2015),
and evaluate our system through ROUGE (Lin,
2004). Following previous works, we employ
ROUGE-1, ROUGE-2, and ROUGE-L as the eval-
uation metrics in the reported experimental results.

4https://github.com/facebookarchive/NAMAS
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Figure 6: Coaching GBN’s learning curve on Abstrac-
tive Text Summarization Dev set.

System Setting We follow Zhou et al. (2017);
Rush et al. (2015) to set input and output vo-
cabularies to 119,504 and 68,883 respectively,
and we also set the word embedding size to
300 and all GRU hidden state size to 512.
Then we adopt dropout (Srivastava et al., 2014)
with probability p = 0.5 strategy in our out-
put layer. We use attention-based sequence-to-
sequence model (Bahdanau et al., 2014; Cho et al.,
2014) as our baseline and reproduce the results of
the baseline reported in Zhou et al. (2017). As
stated, the attentive encoder-decode architecture
can already outperform existing ABS/ABS+ sys-
tems (Rush et al., 2015). In coaching GBN, due to
the fact that the input of abstractive summarization
X contains more information than the summary
target Y ⇤, directly training the bridge p⌘(Y |Y ⇤)
to understand the generator p✓(Y |X) is infeasible.
Therefore, we re-design the coaching bridge to re-
ceive both source and target input X, Y and we
enlarge its vocabulary size to 88,883 to encom-
pass more information about the source side. In
Uniform/LM GBN experiments, we also fix the
hyper-parameter ⌧ = 0.8 as the optimal setting.

Results The experimental results are summa-
rized in Table 2. We can observe a significant
improvement via our GBN systems. Similarly,
the coaching GBN system achieves the strongest
performance among all, which again reflects our
assumption that more sophisticated regularization
can benefit generator’s training. We draw the
learning curve of the coaching GBN in Figure 6
to demonstrate how the bridge and the generator
promote each other.
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4 Analysis

By introducing different constraints into the bridge
module, the bridge distribution will propose dif-
ferent training samples for the generator to learn.
From Table 3, we can observe that most samples
still reserve their original meaning. The uniform
bridge simply performs random replacement with-
out considering any linguistic constraint. The LM
bridge strives to smooth reference sentence with
high-frequent words. And the coaching bridge
simplifies difficult expressions to relieve genera-
tor’s learning burden. From our experimental re-
sults, the more rational and aggressive diversifica-
tion from the coaching GBN clearly benefits gen-
erator the most and helps the generator generalize
to more unseen scenarios.

5 Related Literature

5.1 Data Augmentation and Self-training
In order to resolve the data sparsity problem in
Neural Machine Translation (NMT), many works
have been conducted to augment the dataset. The
most popular strategy is via self-learning, which
incorporates the self-generated data directly into
training. Zhang and Zong (2016) and Sennrich
et al. (2015) both use self-learning to leverage
massive monolingual data for NMT training. Our
bridge can take advantage of the parallel training
data only, instead of external monolingual ones to
synthesize new training data.

5.2 Reward Augmented Maximum
Likelihood

Reward augmented maximum likelihood or
RAML (Norouzi et al., 2016) proposes to in-
tegrate task-level reward into MLE training by
using an exponentiated payoff distribution. KL
divergence between the payoff distribution and the
generator’s output distribution are minimized to
achieve an optimal task-level reward. Following
this work, Ma et al. (2017) introduces softmax
Q-Distribution to interpret RAML and reveals its
relation with Bayesian decision theory. These
two works both alleviate data sparsity problem by
augmenting target examples based on the ground
truth. Our method draws inspiration from them
but seeks to propose the more general Generative
Bridging Network, which can transform the
ground truth into different bridge distributions,
from where samples are drawn will account for
different interpretable factors.

System Uniform GBN
Property Random Replacement
Reference the question is , is it worth it ?

Bridge the question lemon , was it worth it ?

System Language-model GBN
Property Word Replacement
Reference now how can this help us ?

Bridge so how can this help us ?

System Coaching GBN
Property Reordering
Reference i need to have a health care lexicon .

Bridge i need a lexicon for health care .

Property Simplification

Reference
this is the way that most of us were taught

to tie our shoes .

Bridge most of us learned to bind our shoes .

Table 3: Qualitative analysis for three different bridge
distributions.

5.3 Coaching

Our coaching GBN system is inspired by imita-
tion learning by coaching (He et al., 2012). In-
stead of directly behavior cloning the oracle, they
advocate learning hope actions as targets from a
coach which is interpolated between learner’s pol-
icy and the environment loss. As the learner makes
progress, the targets provided by the coach will
become harsher to gradually improve the learner.
Similarly, our proposed coaching GBN is moti-
vated to construct an easy-to-learn bridge distri-
bution which lies in between the ground truth and
the generator. Our experimental results confirm its
effectiveness to relieve the learning burden.

6 Conclusion

In this paper, we present the Generative Bridg-
ing Network (GBN) to overcome data sparsity and
overfitting issues with Maximum Likelihood Esti-
mation in neural sequence prediction. Our imple-
mented systems prove to significantly improve the
performance, compared with strong baselines. We
believe the concept of bridge distribution can be
applicable to a wide range of distribution matching
tasks in probabilistic learning. In the future, we in-
tend to explore more about GBN’s applications as
well as its provable computational and statistical
guarantees.
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