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Abstract

We present a new dataset for machine
comprehension in the medical domain.
Our dataset uses clinical case reports with
around 100,000 gap-filling queries about
these cases. We apply several baselines and
state-of-the-art neural readers to the dataset,
and observe a considerable gap in perfor-
mance (20% F1) between the best human
and machine readers. We analyze the skills
required for successful answering and show
how reader performance varies depending
on the applicable skills. We find that infer-
ences using domain knowledge and object
tracking are the most frequently required
skills, and that recognizing omitted infor-
mation and spatio-temporal reasoning are
the most difficult for the machines.

1 Introduction

Machine comprehension is a task in which a sys-
tem reads a text passage and then answers questions
about it. The progress in machine comprehension
heavily depends on the introduction of new datasets
(Burges, 2013), which encourages the development
of new algorithms and deepens our understanding
of the (linguistic) challenges that can or can not
be tackled well by these algorithms. Recently, a
number of reading comprehension datasets have
been proposed (§ 2), differing in various aspects
such as mode of construction, answer-query for-
mulation and required understanding skills. Most
are open-domain datasets built from news, fiction
and Wikipedia texts. For specialized domains,
however, large machine comprehension datasets
are extremely scarce (Welbl et al., 2017a), and
m the information about accessing the dataset,

as well as the code for the experiments, at http://github.
com/clips/clicr.

passage:

[...] A gradual improvement in clinical and laboratory
status was achieved within 20 days of antituberculous treat-
ment . The patient was then subjected to a thoracic CT
scan that also showed significant radiological improvement
. Thereafter , tapering of corticosteroids was initiated with
no clinical relapse . The patient was discharged after be-
ing treated for a total of 30 days and continued receiving
antituberculous therapy with no reported problems for a
total of 6 months under the supervision of his hometown
physicians . [...]

query:

If steroids are used , great caution should be exercised on
their gradual tapering to avoid

answer:

relapse (sem_type=problem, cui=C0035020)

Figure 1: An example from the dataset, with the pas-
sage sentence relevant for answering italicized. The
passage has been shortened for clarity.

the required comprehension skills poorly under-
stood. With our work we hope to narrow this gap
by proposing a new resource for reading compre-
hension in the clinical domain, and by analyzing
the different types of comprehension skills that are
triggered while answering (Sugawara et al., 2017;
Lai et al., 2017).

Machine comprehension for healthcare and
medicine has received little attention so far, al-
though it offers great potential for practical use.
A typical application would be clinical decision
support, where given a massive amount of text, a
clinician asks questions about either external, med-
ical knowledge (reading literature) or about par-
ticular patients (reading electronic health records).
Currently, patient-specific questions are tackled
by manually browsing or searching those records.
This task can be facilitated by summarization and
QA systems (Demner-Fushman and Lin, 2007;
Demner-Fushman et al., 2009), and we believe, by
fine-grained machine reading. Reading comprehen-
sion systems that perform on a finer level could play
an important role especially when combined with
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document retrieval to perform machine reading at
scale, such as in the models of Chen et al. (2017)
and Watanabe et al. (2017) for the general domain.

For our dataset, we construct queries, answers
and supporting passages from BMJ Case Reports,
the largest online repository of such documents. A
case report is a detailed description of a clinical
case that focuses on rare diseases, unusual presen-
tation of common conditions and novel treatment
methods. Each report contains a Learning points
section, summarizing the key pieces of information
from that report. The learning points are typically
paraphrased portions of passage text and do not
match passage sentences exactly. We use these
learning points to create queries by blanking out a
medical entity. To counteract potential errors and
inconsistencies due to automated dataset creation,
we perform several checks to improve the quality
of the dataset (§ 3). Our dataset contains around
100,000 queries on 12,000 case reports, has long
support passages (around 1,500 tokens on average)
and includes answers which are single- or multi-
word medical entities. We show an example from
the dataset in Figure 1.

We examine the performance on the dataset in
two ways. First, we report machine performance
for several baselines and neural readers. To en-
able a more flexible answer evaluation, we expand
the answers with their respective synonyms from a
medical knowledge base, and additionally supple-
ment the standard evaluation metrics with BLEU
and embedding-based methods. We investigate dif-
ferent ways of representing medical entities in the
text and how this affects the neural readers. We ob-
tain the best results with a recurrent neural network
(RNN) with gated attention (Dhingra et al., 2017a),
but a simple approach based on embedding similar-
ity proves to be a strong baseline as well. Second,
we look at how well humans perform on this task,
by asking both a medical expert and a novice to
answer a portion of the validation set. When catego-
rizing the skills necessary to find the right answer,
we observe that a large number of comprehension
skills get activated and that prior knowledge in the
form of the ability to perform lexico-grammatical
inferences matters the most. This suggests that
for our dataset and possibly for domain-specific
datasets more generally, more background knowl-
edge should be incorporated in machine compre-
hension models. The current gap between the best
machine and the best human performance is nearly

Dataset Question origin Domain Size
CliCR Learning Medical 105K
(this work) points

Quasar-S Definitions Software 37K
(Dhingra et al., 2017b)

SciQ Crowdsourced Science 14K
(Welbl et al., 2017a)

MedHop KB Drugs 2.5K
(Welbl et al., 2017b)

Biology Domain Biology 585
(Berant et al., 2014) expert

Algebra Crowdsourced Algebra 514
(Kushman et al., 2014)

QA4MRE Annotator Various 240

(Sutcliffe et al., 2013)

Table 1: Survey of closed-domain reading comprehen-
sion datasets. Size: number of questions. We did not
include remotely related datasets which concern a dif-
ferent task (e.g. information retrieval) (Roberts et al.,
2015; Voorhees and Tice, 2000).

20% F1, which leaves ample space for further study
of machine readers on our dataset. In brief, the con-
tributions of our paper are:

e We propose a large dataset for reading
comprehension in the medical domain, using
clinical case descriptions.

e We carry out an empirical analysis of
a) system and human performance on reading
comprehension, and ») comprehension skills
that are required for answering the queries cor-
rectly and that allow us to position the dataset
according to its difficulty on each of the skills.

2 Related datasets

Numerous general-domain datasets have been re-
cently created to allow machine comprehension
using data-intensive methods. These datasets were
collected from Wikipedia (Hewlett et al., 2016;
Joshi et al., 2017; Rajpurkar et al., 2016), web
search queries (Nguyen et al., 2016), news articles
(Hermann et al., 2015; Onishi et al., 2016; Trischler
et al., 2017), books (Bajgar et al., 2016; Hill et al.,
2016; Paperno et al., 2016) and English exams (Lai
et al., 2017). In Table 1, we compare our dataset
to several domain-specific datasets for machine
comprehension. In Quasar-S, the queries are con-
structed from definitions of software entity tags in
a community QA website, while in our case the
queries are more varied and explicitly relate to the
supporting passages. SciQ is a dataset of science
exam questions, in which question-answer pairs are
used to retrieve the text passages. For each ques-
tion, four candidate answers are available. In our
dataset, the number of candidate answer is much
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higher as the candidate answers come from the rel-
atively long passages. Other datasets mentioned in
the table are smaller, so they could not be used as
training sets for statistical NLP models.

Cloze datasets require the reader to fill in gaps
by relying on accompanying text. Representa-
tive datasets are Children’s Book Test (Hill et al.,
2016) and Book Test (Bajgar et al., 2016), in which
queries are created by removing a word or a named
entity from the running text in a book; and Her-
mann et al. (2015), who similarly to us blank out
entities in abstractive CNN and Daily Mail sum-
maries, but who are only concerned with short
proper nouns and short passages. Who-did-what
(Onishi et al., 2016) requires the reader to select the
person name from a short candidate list that best
answers the query about a news event. They do not
use summaries for query formation but remove a
named entity from the initial sentence in a news
article, and then perform information retrieval to
find independent passages relevant to the query.
Another cloze dataset for language understanding
is ROCStories (Mostafazadeh et al., 2016), but it is
targeted more towards script knowledge evaluation,
and only contains five-sentence stories. Another
related task is predicting rare entities only, with a
focus on improving a reading comprehension sys-
tem with external knowledge sources (Long et al.,
2017).

Another popular way of creating datasets for
reading comprehension is crowdsourcing (Ra-
jpurkar et al., 2016; Richardson et al., 2013;
Nguyen et al., 2016; Trischler et al., 2017). These
datasets exist primarily for the general domain;
for specialized domains where background knowl-
edge is crucial, crowdsourcing is intuitively less
suitable (Welbl et al., 2017b), although some pos-
itive precedent exists for example in crowdsourc-
ing annotations of radiology reports (Cocos et al.,
2015). Compared to automated dataset construc-
tion, crowdsourcing is more likely to provide high-
quality queries and answers. On the other hand,
human question generation may also lead to less
varied datasets as questions would tend to be of
wh- type; for cloze datasets, the questions may be
more varied and might require readers to possess a
different set of skills.!

!Support for this is given in Sugawara et al. (2017), who
show that Who-did-what dataset, for example, requires on
average a larger number of reading skills than SQuAD (Ra-
jpurkar et al., 2016) and MCTest (Richardson et al., 2013).

3 Dataset design

We collected the articles from BMJ Case Reports?.
The data span the years 2005-2016 and amount
to almost 12 thousand reports. We removed the
HTML boilerplate from the crawled reports us-
ing jusText’, segmented and tokenized the texts
with cTakes (Savova et al., 2010), and annotated
the medical entities using Clamp (Soysal et al.,
2017). We apply two simple heuristics to refine the
recognized entities and to decrease their sparsity.
Namely, we move the function words (determin-
ers and pronouns) from the beginning of the entity
outside of it, and we adjust the entity boundary so
that it does not include a parenthetical at the end
of the entity. Clamp assigns entities following the
12b2-2010 shared task specifications (Uzuner et al.,
2011). For each entity, a concept unique identi-
fier (CUI) is also available, which links it to the
UMLS® Metathesaurus® (Lindberg et al., 1993).
To check the quality of the recognized entities, we
carried out a small manual analysis on 250 enti-
ties. We found that in 89% of cases, the boundaries
were correct and defined a true entity. Wrongly rec-
ognized cases occurred mostly when two entities
were coordinated and recognized as one; when a
verb was wrongly included in the entity; or when a
pre-modifier was left out.

3.1 Query construction

We create a query by replacing a medical entity in
one learning point with a blank. For example, in
a report describing comorbid disorders of ADHD,
we could obtain the following query:

(1) “Patients with ADHD have higher inci-
denceof

The missing entity “enuresis” is taken as the correct
answer. Even though one query corresponds to at
most one learning point, there can be more than one
query built from a learning point. Occasionally, a
learning point contains an exact repetition from the
passage. These instances would be trivial to answer,
so we remove them. We count as an exact match
every instance whose longer side to left/right of the
query blank coincides with a part in the passage
text. This curation step reduces the dataset size
by 5%. More commonly, the learning points are
paraphrases of crucial parts of the passage. Some-
times, the entity answering the query is expressed

http://casereports.bmj.com/
Shttps://pypi.python.org/pypi/jusText
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differently in the passage. For example, in place of
“enuresis”, the passage might include its synonym
“bedwetting”. We manage these cases in two ways,
by extending the set of answers for a certain query
(§ 3.2), and adding a semantic relatedness metric
to the standard evaluation (§ 6).

3.2 Answer set

We account for lexical variation of the ground-truth
answers (compared to mentions in the passages) by
extending each original ground-truth answer a to a
set of ground-truth answers A using a knowledge
base. Since our entity recognizer already provides
the CUI labels, we can use them to obtain the list
of alternative word and phrase forms (synonyms,
abbreviations and acronyms) from UMLS®.
Similarly to previous work (Choi et al., 2016;
Hewlett et al., 2016), for certain queries none of
the answers in A occurs verbatim in the passage.
We have found upon manual inspection that this is
mostly due to lexical variation that is not captured
by answer extension, and to a lesser degree, due to
the introduction of entirely new information in the
learning point and the entity recognition errors. In
the empirical part, we use for training only the in-
stances for which at least one answer occurs in the
passage, but we evaluate on all instances in the val-
idation and test sets, including those for which A N
E = (), where FE is the set of all entities in the pas-
sage. This mimics a likely real-life scenario where
the set of ground-truth answers is a priori unknown.

3.3 Task formulation

The reading comprehension problem in our case
can be represented as a tuple (¢, p, A), where ¢ is
the query, built from a learning point; the passage
p is the entire report excluding the Learning points
section; and A is the set of ground-truth entities
answering ¢. In defining the task, it is important to
consider how to take into account entity annotation
and how to define the answer output space. We
look at these more closely in the rest of this section.

Whenever the entities are marked in the passage,
the system can learn to exploit this cue to find the
answers more easily (Wang et al., 2017). Although
this simplifies the task, it also makes it less realistic
as the entities may not be recognized at test time.
Realizing that the presence of entities makes
the task easier for the machines, Hermann et al.
(2015) anonymize the entities, also with a goal
of discouraging language model solutions to the

N of cases 11,846
N of queries in train/dev/test 91,344/6,391/7,184
N of tokens in passages 16,544,217
N of word types in passages 112,673
N of entity types in passages 591,960
N of distinct answers 56,093
N of distinct answers (incl. extended) 288,211
% answers verbatim in passage 59

Table 2: Data statistics based on the lowercased dataset.
For N of tokens in passages, we count each passage ex-
actly once, although several queries are normally asso-
ciated with a passage.
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Figure 2: Distribution of (a) passage and (b) answer
length. Curve (a) is bimodal due to shorter lengths of
articles published prior to 2008.

queries. In our case, it is not clear how relevant the
anonymization is since we deal with medical en-
tities, which have different properties than proper
name entities (Kim et al., 2003; Niu et al., 2003).
We explore different entity-annotation choices in
the empirical part, where we refer to them as Ent
(entities marked) and Anonym (entities marked
but anonymized). We further examine a more
challenging setup in which the reader can not rely
on entity markers as they are not present in the
passage (NoEnt). In all cases, the reader chooses
an answer among the candidates E collected from
all entities in the passage.* Multi-word entities,
which are common in our dataset, are treated as
a single token by Ent and Anonym.

“The candidate answers could in principle be obtained also
in some other way, so we do not list them in our dataset.
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Type % Example

tuberculosis, abdominal pain,
acute myocardial infarction
chemotherapy, surgical inter-
vention, vitamin D suppl.
MRI, histopathological exam.

problem 67
treatment 22

test 11
Table 3: Answer type statistics.

surgery-

neurology -

diagnostics-
cardiovascular medicine-
infectious diseases-

> gastroenterology -
T oncology -
'S radiology (diagnostics)-
Q. paediatrics-
a endocrinology -

video reports-

respiratory medicine-
emergency medicine-
gastrointestinal surgery- -
radiology- -
1 2 3 4
Percentage

Figure 3: The 15 most common medical specialties rep-
resented in the dataset.

4 Dataset analysis

We now describe the dataset in more detail, starting
with the general statistics summarized in Table 2.
It is worth pointing out that the support passages
are rather long, which stems from the data origin
(journal articles). We show the passage length dis-
tribution in Figure 2a, which has the average length
of 1,466 tokens. Furthermore, passages are rich
with medical entities. There is little repetition of
answers—the total of around 100,000 queries are
answered by 50,000 distinct entities. Upon extend-
ing the answer set with UMLS® we introduce on
average four alternative answers for each original
one. In 59% of instances, the answer entity is found
verbatim in the relevant passage. The answers can
belong to any of the problem, treatment or test
categories (Table 3), and usually consist of multi-
ple words (Figure 2b). The diversity of medical
specialties represented in the articles is shown in
Figure 3.

4.1 Analysis of comprehension skills

We estimate the types of skills required in answer-
ing by following the categorization of Sugawara
et al. (2017). We include the skill definitions with
examples from our dataset in Appendix B. We an-
notated 100 instances in the validation set (with
ground-truth answers provided), which yielded on
average 2.85 skills per query. The distribution of
the required skills is shown in Figure 4. In com-
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spatiotemporal- A CliCR
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math- <
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Percentage

Figure 4: Percentage of times a skill is required in a
given dataset. The percentages for the datasets other
than ours are from Sugawara et al. (2017).

parison to the general-domain datasets (SQuAD,
Who-did-what), our dataset and QA4MRE (which
is also a domain-specific dataset, but with human-
generated questions) require more bridging infer-
ences (inferences using background knowledge
about the domain), spatio-temporal reasoning and
coreference resolution. In our dataset, meta knowl-
edge and object tracking are required more often
than in any other dataset. This can be explained by
the data origin and the nature of queries. In the case
reports, a prominent topic can be discussed which
the author refers to in the query, but the query itself
is never answered in the passage (meta knowledge).
Furthermore, the authors often enumerate medical
entities in the query, which leads to the frequent
use of object tracking. The queries which were
unanswerable are marked as “none”. The fraction
of these cases was around 16%.

In our experience, the annotation of skills proved
quite challenging due to certain confusables. For
example, object tracking and coreference both need
to maintain the link between objects; object track-
ing, which includes establishing set relations and
membership, may be overlaid with the schematic
clause relation skill (subordination); and bridging
inference can overlap with coreference resolution.
Nevertheless, we adhered to this classification of
skills to increase comparability to other datasets
included in Figure 4.

5 Methods

5.1 Baselines

Our simplest baselines that we apply on the test
set include choosing a random entity (rand-entity)
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and selecting the most frequent passage entity
(maxfreq-entity) as the answer. We also include a
distance-based method that uses word embeddings
(sim-entity). Here, we vectorize the passage and
the query, and then choose that entity from the pas-
sage whose representation has the highest cosine
similarity to the query representation:

sim-entity = argmax cos( Z cj, Z qk.), (D)
i€k JECi  keQ

where ¢,q € R? The multiset C; contains the
words {Z;_n, ..., Ti—1,Tit1, ..., Titn} surround-
ing the passage entity ¢ € E. We define (), the
context words of the query, likewise. To find out
how well the queries can be answered without read-
ing the passage, we also predict the most likely
continuation with a language model (lang-model).
We trained a 4-gram Kneser-Ney model on CliCR
training data (with multi-word entities represented
as a single token) using SRILM (Stolcke, 2002).

5.2 Neural readers

We apply two types of bidirectional RNNs to our
data. Following Wang et al. (2017), we distinguish
between aggregation readers and explicit reference
readers, which differ in their formulation of the
attention mechanism and how it is being used for
answer prediction.

Stanford Attentive (SA) Reader The model
proposed by Chen et al. (2016) is an aggregation
reader based on the Attentive Reader (Hermann
et al., 2015). It predicts the answer using:

a = argmax e, (i) o, ()
i€ER

where e, (i) is the answer’s output embedding and
o is the passage representation obtained by weight-
ing every token representation in the passage with
attention: 0 = ) _, oihy. The attention mechanism
is used here to measure the compatibility between
token (h;) and query (q) representations with a bi-
linear form, oy = softmaxthtTWaq. At prediction
time, attention should highlight that position ¢ in
the passage where the answer occurs. Note that the
prediction relies on the aggregate representation o,
hence the name of the reader category. As we see in
(2), the prediction score does not allow accounting
for multi-word entities, unless they are treated as
a single token. Returning to our different set-ups
based on entity annotation (§ 3.3), this means that

we can apply SA reader with Ent and Anonym set-
ups, but not with NoEnt, where multi-word answers
should be allowed.

Gated-Attention (GA) Reader Dhingra et al.
(2017a) investigate neural readers with a fine-
grained attention mechanism that learns token rep-
resentations for the passage that are also condi-
tional on the query, but are in addition refined
through multiple hops of the network. The model
predicts the answer using attention weights with ex-
plicit reference to answer positions in the passage:

d:argmax Z g, 3)

where R is the set of indices in passage p at which a
token from the candidate ¢ occurs. This operation is
also called the pointer sum attention (Kadlec et al.,
2016). Since the model marks the references for
each token in the answer separately, it allows us to
investigate also the NoEnt set-up.’

We train each reader with the best hyper-
parameters found on the validation set using ran-
dom search (Bergstra and Bengio, 2012), and eval-
uate it on the test part of the dataset. We provide
more details about parameter optimization in Ap-
pendix A. The models use word embeddings pre-
trained on biomedical texts.

5.3 Embedding data and pre-training

We induce the word embeddings on a combination
of the CliCR training corpus and PubMed abstracts
with open-access PMC articles available until 2015
(segmented and tokenized), amounting to over 9
billion tokens (Hakala et al., 2016). Considering
the large effect of hyper-parameter selection on the
quality of word embeddings (Levy et al., 2015),
we optimize the embedding hyper-parameters also
using random search.

6 Evaluation

A model f takes as input a passage—query pair and
outputs an answer @.° We carry out the evaluation

SWe assume the candidate entities are known in advance.

®In our case, the answer is a word or a word phrase rep-
resenting a medical entity. Alternatively, one could also take
the UMLS® CUI identifier as the answering unit. However,
in that case, it would mean that sometimes the original word
phrase is lost. This is because entity linking with CUIs can
be noisy, and only a part of a word phrase may be linked to
the ontology. In the current setup, we are able to keep both
the original word phrase as well as the extended answers. The
CUI information is still an integral part of the answer field in
our dataset, so it can be used by other researchers if preferred.
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with different metrics described below. The final
score m for a metric v is obtained by averaging
over the test set:

mv(f) - ‘Diest’ Z

(p7Q7A)EDlesl

maxv(f(p,q), a)-

acA

4)
Since there are multiple correct answers A, we take
the highest scoring answer a at each instance, as
done in Rajpurkar et al. (2016). Note that in the
dataset we do not supply the candidate answers; in
the experiments, we constrain the candidates to the
set of entities in the passage.

The two standardly used metrics for machine
comprehension evaluation are the exact match
(EM) and the F1 score. For EM, the predicted and
the ground truth answers must match precisely, safe
for articles, punctuation and case distinction (same
for other metrics). F1 metric is applied per instance
and measures the overlap between the prediction a
and the ground truth a, which are treated as bags of
words.” While these two metrics are arguably suffi-
cient in news-style machine comprehension where
the entities are proper nouns which allow for little
variation and synonymy, in our case the medical
entities are often mostly common nouns modified
by specifiers and qualifiers. To take into account
potentially large lexical and word-order variation,
we use two additional metrics. First, we measure
BLEU (Papineni et al., 2002) for n-grams of length
2 (shortly, B2) and 4 (B4) using the package by
Chen et al. (2015), with which we aim to capture
contiguity of tokens in longer answers. Second,
it may occur that answers contain no word over-
lap yet still be good candidates because of their
semantical relatedness, as in “renal failure”—‘kid-
ney breakdown”. We take this into account by
using an embedding metric (Emb), in which we
construct mean vectors for both ground-truth and
system answer sequences, and then compare them
with the cosine similarity. This and other embed-
ding metrics for evaluation were previously studied
in dialog-system research (Liu et al., 2016).

7 Results and analysis

We show the results in Table 4. We see that answer
prediction based on contextual representation of
queries and passages (sim-entity) achieves a strong
base performance that is only outperformed by GA

"In precision, the number of correct words is divided by

the number of all predicted words. In recall, the former is
divided by the number of words in the ground-truth answer.

Method EM Fl B2 B4 Emb
rand-entity 14 51 .03 .01 .23
maxfreqg-ent. 85 126 .10 .05 .31

sim-entity 20.8 294 22 15 45
lang-model 21 35 .00 .00 .30

SA-Anonym  19.6 272 22 .16 .43
SA-Ent 6.1 114 .07 .05 31
GA-Anonym 245 332 28 .20 .48
GA-Ent 222 302 25 .18 46
GA-NoEnt 149 339 21 .11 51

53.7 46 .23 .67
45.1 43 .24 .62

human-expert 35
human-novice 31

Table 4: Answering results on the test set. EM and F1
scores are percentages. The human scores (in italics)
are based on the validation set.

reader. The language model performs poorly on
EM and F1, but the embedding-metric score is
higher, likely reflecting the fact that the predicted
answers—though mostly incorrect—are related to
the ground-truth answers. The poor performance
means that based on queries alone (without reading
the passage), it is difficult to provide accurate an-
swers. The GA reader performs well across all en-
tity set-ups, even when the entities are not marked
in the passage. Interestingly, the exact match and
BLEU scores in this case are much lower compared
to other entity set-ups. Upon inspecting the pre-
dicted answers more closely, we have observed that
GA-NoEnt tends to predict longer answers than
GA-Ent/Anonym. For example, the average pre-
dicted answer length for GA-NoEnt was as high as
3.7 tokens, whereas for the other two set-ups and
the ground-truth answers the numbers range be-
tween 2.3 and 2.5. A plausible explanation for this
lies in how GA reaches its prediction (3), which is
by accumulating the attention weights without nor-
malizing. This would then drive the model to prefer
longer answers. For example, for the ground-truth
entity “chest CT”, GA-NoEnt predicts “interval CT
scans of the chest”. Although all neural models use
pre-trained word embeddings, for Ent and Anonym
the multi-word entities do not have pre-trained em-
beddings since our embeddings are induced on the
word level. This may partly explain the competitive
performance of NoEnt compared to Ent. We leave
the integration of entity embeddings for the future
work.

The results for SA reader are far below the per-
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formance of GA reader. We also see that it per-
forms much better on anonymized entities than on
non-anonymized ones. This is in line with Wang
et al. (2017) who find that SA reader suffers a
drop of 19 points in exact match on Who-did-what
dataset when anonymization is not done. A possi-
ble explanation is that anonymization reduces the
output space to only several hundred entity candi-
dates for which the output embedding needs to be
trained. When we do not use anonymization, the
set of output entities increases to the set of all entity
types found in all passages, which is several orders
of magnitude more. While this effect also occurs
for GA reader, it is less pronounced because GA
reader scores words in the passage and does not
need to learn separate answer word embeddings.

7.1 Human performance

To measure the accuracy of human answering, we
have used the same sample of data instances as
used for the analysis of skills.® The queries were
answered separately by a novice reader (linguistics
background, little-to-none medical knowledge) and
by an expert reader (both linguistics and medical
background). The annotators needed around 15
minutes on average to read the passage and answer
the query. The results are shown at the bottom of
Table 4. The expert scores higher across all evalua-
tion metrics, with as much as a 7-point advantage
in % F1. This advantage is largely coming from the
better performance on those instances where bridg-
ing inferences are required (the average F1 score
was 10 points higher on these queries), which sug-
gests that domain knowledge is beneficial in the
comprehension task. For a novice in a specialized
domain, it is harder to build a good situation model
that would lead to successful comprehension since
it requires more effort—active, strategic processing
and establishing ontological relationships in that
specific domain. For an expert reader this process
is more automatized (Kintsch and Rawson, 2008).

We can see from the table that the best human
performance is well below its theoretical upper
bound of 100% F1. An important part of explana-
tion for this lies in the automated dataset construc-
tion, which leaves certain queries unanswerable,
especially when the authors do not refer to a part
in the article but introduce completely new infor-
mation. Another reason is the problem of “answer
openness”: Typically more than one correct an-

$Human answers were collected before the skill analysis.

schematic- . o
meta- . o
causality- . °
tracking- . o
logical- . o
punctuation- . o
coreference- . o
bridging- °
elaboration- e o
spatiotemporal- . o
ellipsis-
none- e
analogy-- .
0 10 20 30 40 50 60 70 80
% F1

Skill

90 100

SkillFreq e 20 @ 40 @ 60 Answers - Human - Machine

Figure 5: Performance per required skill for the human
expert and GA-NoEnt reader.

swer is possible and the answers can be correct to
various degrees, which we aimed to capture with
the use of the embedding metric in the evaluation.
Nevertheless, the gap between the best human and
machine F1 score is large (around 20 points), leav-
ing considerable space for future applications of
machine readers on our dataset.’

7.2 Breakdown of results by skill

To see how the answering performance relates to
the skill requirements, we have analyzed the part
of the validation set annotated with the skills by
averaging F1 values for all instances with a partic-
ular skill. In this way, we are able to break down
both human and machine performance skill-wise,
as shown in Figure 5. Because of the small sample
size, the results should only be taken as a general
indication. The most difficult cases for the GA
reader are those annotated with “none” (unanswer-
able) and “ellipsis” (recognizing implicit and omit-
ted information), ignoring “analogy” for which we
only have a single annotated case. Furthermore,
spatio-temporal reasoning, elaboration (inferences
using general knowledge) and bridging—which is
also the most commonly required skill—are the
next most difficult ones. The human scores are
mostly much higher, which is especially apparent
for spatio-temporal reasoning, logical skills and
the skill involving punctuation. Our findings align
with those of Chu et al. (2017) on the Lambada
dataset (Paperno et al., 2016): Although they used
a different categorization of comprehension skills,
they also find that GA reader has most difficulties
with elaboration (which they refer to as “external

°For comparison, the gap for SQUAD was 12.2 and for
NewsQA 19.8 (Trischler et al., 2017).
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knowledge”), followed by coreference resolution.

8 Conclusion and future work

We have introduced a new dataset for domain-
specific reading comprehension in which we have
constructed around 100,000 cloze queries from clin-
ical case reports. We analyzed the dataset in terms
of the skills required for successful comprehension,
and applied various baseline methods and state-
of-the-art neural readers. We showed that a large
gap still exists between the best machine reader
and the expert human reader. One direction for
future research is improving the reading models on
the queries that are currently the most challenging,
i.e. those requiring world and background domain
knowledge. Better representing background knowl-
edge by inducing embeddings for entities or oth-
erwise integrating ontological knowledge is in our
opinion a promising avenue for future research.
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A Training details and hyper-parameter
optimization

We train the word embeddings using word2vec
(Mikolov et al., 2013), and optimize the window
size, the model type (CBOW, skip-gram), the di-
mensionality and the number of negative samples
using random search. For the embedding base-
line sim-entity, the evaluation was carried out 20
times on the validation part of our dataset, and we
chose the parameter configuration that led to the
highest-performing embedding model as measured
by F1. We find that higher embedding dimensional-
ity works better, that CBOW obtains somewhat bet-
ter scores than Skipgram, and that medium-sized
word windows work best. The best configuration:
win_size’: 5, 'min_freq’: 200, 'model’: ’cbow’,
"dimension’: 750, ‘neg_samples’: 5. The difference
between the lowest and the highest scoring model
was 3.4 F1. At prediction time (equation (1)) we
set the window size to 3, which worked best on the
validation set.

For inclusion in the neural readers, it would be
impractical to use the high embedding dimension-
ality found in the hyper-parameter search from the
previous paragraph, so we fix the input embedding
dimensionality to 200, as done in Chen et al. (2016)
to keep the training time practical. We optimize
the remaining embedding hyper-parameters just
like above. The best parameters were: *win_size’:
4, ’min_freq’: 200, *'model’: cbow’, ’dimension’:
200, ’neg_samples’: 9.

For SA reader, we optimized the hidden state
size and the dropout rate using 20 different random
configurations. The best values were 70 and 0.57,
respectively. We explore the same parameters for
the GA reader, but add to the search space the
feature that indicates the presence of a passage
token in the query, which was found useful in the
NoEnt set-up. The best hidden state number and
dropout rate were 64 and 0.5, respectively. We
used the default values for all the remaining hyper-
parameters.

B List of skills with selected examples

In annotating the skills, we followed the categoriza-
tion by Sugawara et al. (2017):

1. Object tracking: tracking or grasping multiple
objects; it is a version of list/enumeration skill
used in previous skill classifications

2. Mathematical reasoning: whenever a mathe-
matical operation is involved in finding the
answer

3. Coreference resolution: direct reference to
an object, includes anaphoras. These include
inferential processes based on background
knowledge or context.

4. Logical reasoning: conditionals, quantifiers,
negation, transitivity

5. Analogy: metaphors, metonymy

6. Causal relation: explicit expression such as

”why”, “’the reason of”

7. Spatio-temporal relations

8. Ellipsis: recognizing implicit or omitted infor-
mation

9. Bridging: inference through grammatical and
lexical knowledge (synonymy, idioms etc).
This link however is not automatic or stereo-
typical, as in the category of elaboration.

10. Elaboration: inference through commonsense
reasoning. Note that unlike in the previous
category, there is no direct way in which
grammatical, lexical or ontological knowl-
edge could help.

11. Meta-knowledge: knowing about the text
genre and the main topic being discussed as-
sists in comprehending. In our dataset, know-
ing the way the queries are constructed (Learn-
ing points) is sometimes beneficial.

12. Schematic clause relation: complex sentences
that include coordination or subordination

13. Punctuation:  understanding parentheses,
dashes, quotations, colons etc.

In the following examples, we mark the medical
entities in blue, and italicize the parts in the pas-
sage that are crucial for answering. Whenever we
shorten a part of the passage, we use [...].

B.1 Bridging inference

passage

We report a case of a 72 - year - old Caucasian
woman with pl-7 positive antisynthetase syndrome
. Clinical presentation included interstitial lung dis-
ease , myositis , mechanic ’s hands and dysphagia
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. As lung injury was the main concern , treatment
consisted of prednisolone and cyclophosphamide
. Complete remission with reversal of pulmonary
damage was achieved , as reported by CT scan ,
pulmonary function tests and functional status . [...]
query

Therefore , in severe cases an aggressive treatment
, combining and glucocorticoids as
used in systemic vasculitis , is suggested .

answer

cyclophoshamide

explanation The reader needs to have the back-
ground knowledge that prednisolone is a glucocor-
ticoid, then it becomes obvious that the answer is
cyclophoshamide.

B.2 Object tracking

passage
[...] The patient was managed with supportive mea-
sures and the National Poisons Information Service
was contacted . A toxicology consultant was in-
volved in view of the unusual mode of administra-
tion . Although there was no precedent on how to
treat a significant rectal overdose of amitriptyline
, it was advised that the patient be administered
a phosphate enema and if failed to adequately re-
move the tablets then the patient should be given
whole bowel irrigation with 2 litre of Klean - Prep
via a nasogastric tube . It was also advised that
we admit the patient to a high dependency unit and
manage him according to the usual protocol for
a tricyclic overdose if complications arose . [...]
query
It seems reasonable to attempt careful removal of
the drug from the rectum and if that fails to con-
sider and whole bowel irrigation .
answer
phosphate enemas
explanation The query mentions removal (A), then
(B) and whole bowel irrigation (C).
In the passage, one needs to track those elements
and choose the right one. This skill should be con-
sidered whenever the gap is part of an enumeration
or is mentioned as a part of another entity.

B.3 Meta knowledge

query

bedaquiline , a new agent with bactericidal and
sterilising activity against mycobacterium tubercu-
losis , is effective against when given
together with a background regimen , and is well
tolerated and safe if there is awareness of drug inter-

actions and precautions are taken to avoid potential
qt prolongation .

answer

tuberculosis

explanation The right answer can be inferred from
several parts in the passage (not shown), or even
from the title or the query. The query, though, is
nowhere in the document explicitly answered.
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