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Abstract

Recently, neural machine translation has
achieved remarkable progress by intro-
ducing well-designed deep neural net-
works into its encoder-decoder frame-
work. From the optimization perspective,
residual connections are adopted to im-
prove learning performance for both en-
coder and decoder in most of these deep
architectures, and advanced attention con-
nections are applied as well. Inspired
by the success of the DenseNet model
in computer vision problems, in this pa-
per, we propose a densely connected NMT
architecture (DenseNMT) that is able to
train more efficiently for NMT. The pro-
posed DenseNMT not only allows dense
connection in creating new features for
both encoder and decoder, but also uses
the dense attention structure to improve at-
tention quality. Our experiments on mul-
tiple datasets show that DenseNMT struc-
ture is more competitive and efficient.

1 Introduction

Neural machine translation (NMT) is a challeng-
ing task that attracts lots of attention in recent
years. Starting from the encoder-decoder frame-
work (Cho et al., 2014), NMT starts to show
promising results in many language pairs. The
evolving structures of NMT models in recent
years have made them achieve higher scores and
become more favorable. The attention mecha-
nism (Bahdanau et al., 2015) added on top of
encoder-decoder framework is shown to be very
useful to automatically find alignment structure,
and single-layer RNN-based structure has evolved
into deeper models with more efficient transfor-
mation functions (Gehring et al., 2017; Kaiser

et al., 2017; Vaswani et al., 2017).

One major challenge of NMT is that its models
are hard to train in general due to the complex-
ity of both the deep models and languages. From
the optimization perspective, deeper models are
hard to efficiently back-propagate the gradients,
and this phenomenon as well as its solution is bet-
ter explored in the computer vision society. Resid-
ual networks (ResNet) (He et al., 2016) achieve
great performance in a wide range of tasks, in-
cluding image classification and image segmen-
tation. Residual connections allow features from
previous layers to be accumulated to the next layer
easily, and make the optimization of the model ef-
ficiently focus on refining upper layer features.

NMT is considered as a challenging problem
due to its sequence-to-sequence generation frame-
work, and the goal of comprehension and reor-
ganizing from one language to the other. Apart
from the encoder block that works as a feature
generator, the decoder network combining with
the attention mechanism bring new challenges to
the optimization of the models. While nowadays
best-performing NMT systems use residual con-
nections, we question whether this is the most ef-
ficient way to propagate information through deep
models. In this paper, inspired by the idea of us-
ing dense connections for training computer vi-
sion tasks (Huang et al., 2016), we propose a
densely connected NMT framework (DenseNMT)
that efficiently propagates information from the
encoder to the decoder through the attention com-
ponent. Taking the CNN-based deep architec-
ture as an example, we verify the efficiency of
DenseNMT. Our contributions in this work in-
clude: (i) by comparing the loss curve, we show
that DenseNMT allows the model to pass informa-
tion more efficiently, and speeds up training; (ii)
we show through ablation study that dense con-
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nections in all three blocks altogether help im-
prove the performance, while not increasing the
number of parameters; (iii) DenseNMT allows
the models to achieve similar performance with
much smaller embedding size; (iv) DenseNMT on
IWSLT14 German-English and Turkish-English
translation tasks achieves new benchmark BLEU
scores, and the result on WMT14 English-German
task is more competitive than the residual connec-
tions based baseline model.

2 Related Work

ResNet and DenseNet. ResNet (He et al., 2016)
proposes residual connections, which directly add
representation from the previous layer to the next
layer. Originally proposed for image classification
tasks, the residual structure have proved its effi-
ciency in model training across a wide range of
tasks, and are widely adopted in recent advanced
NMT models (Wu et al., 2016; Vaswani et al.,
2017; Gehring et al., 2017). Following the idea
of ResNet, DenseNet (Huang et al., 2016) fur-
ther improves the structure and achieves state-of-
the-art results. It allows the transformations (e.g.,
CNN) to be directly calculated over all previous
layers. The benefit of DenseNet is to encourage
upper layers to create new representations instead
of refining the previous ones. On other tasks such
as segmentation, dense connections also achieve
high performance (Jégou et al., 2017). Very re-
cently, (Godin et al., 2017) shows that dense con-
nections help improve language modeling as well.
Our work is the first to explore dense connections
for NMT tasks.

Attention mechanisms in NMT. The attention
block is proven to help improve inference quality
due to existence of alignment information (Bah-
danau et al., 2015). Traditional sequence-to-
sequence architectures (Kalchbrenner and Blun-
som, 2013; Cho et al., 2014) pass the last hid-
den state from the encoder to the decoder; hence
source sentences of different length are encoded
into a fixed-size vector (i.e., the last hidden state),
and the decoder should catch all the information
from the vector. Later, early attention-based NMT
architectures, including (Bahdanau et al., 2015),
pass all the hidden states (instead of the last state)
of the last encoder layer to the decoder. The de-
coder then uses an attention mechanism to selec-
tively focus on those hidden states while generat-
ing each word in the target sentence. Latest ar-

chitecture (Gehring et al., 2017) uses multi-step
attention, which allows each decoder layer to ac-
quire separate attention representations, in order
to maintain different levels of semantic meaning.
They also enhance the performance by using em-
beddings of input sentences. In this work, we fur-
ther allow every encoder layer to directly pass the
information to the decoder side.

Encoder/decoder networks. RNNs such as
long short term memory (LSTM) are widely used
in NMT due to their ability of modeling long-
term dependencies. Recently, other more efficient
structures have been proposed in substitution for
RNN-based structures, which includes convolu-
tion (Gehring et al., 2017; Kaiser et al., 2017)
and self-attention (Vaswani et al., 2017). More
specifically, ConvS2S (Gehring et al., 2017) uses
convolution filter with a gated linear unit, Trans-
former (Vaswani et al., 2017) uses self-attention
function before a two-layer position-wise feed-
forward networks, and SliceNet (Kaiser et al.,
2017) uses a combination of ReLU, depthwise
separable convolution, and layer normalization.
The advantage of these non-sequential transfor-
mations is the significant parallel speedup as well
as more advanced performances, which is the rea-
son we select CNN-based models for our experi-
ments.

3 DenseNMT

In this section, we introduce our DenseNMT ar-
chitecture. In general, compared with residual
connected NMT models, DenseNMT allows each
layer to provide its information to all subsequent
layers directly. Figure 1-3 show the design of our
model structure by parts.

We start with the formulation of a regular
NMT model. Given a set of sentence pairs S =
{(xi, yi)|i=1,· · · ,N}, an NMT model learns pa-
rameter θ by maximizing the log-likelihood func-
tion:

N∑

i=1

logP(yi|xi; θ). (1)

For every sentence pair (x, y) ∈ S, P(y|x; θ) is
calculated based on the decomposition:

P(y|x; θ) =
m∏

j=1

P(yj |y<j , x; θ), (2)

where m is the length of sentence y. Typically,
NMT models use the encoder-attention-decoder
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Figure 1: Comparison of dense-connected encoder and
residual-connected encoder. Left: regular residual-connected
encoder. Right: dense-connected encoder. Information is di-
rectly passed from blue blocks to the green block.

framework (Bahdanau et al., 2015), and poten-
tially use multi-layer structure for both encoder
and decoder. Given a source sentence x with
length n, the encoder calculates hidden represen-
tations by layer. We denote the representation in
the l-th layer as hl, with dimension n× dl, where
dl is the dimension of features in layer l. The hid-
den representation at each position hlj is either cal-
culated by:

hlj = Hrec(hl−1
j , hlj−1) (3)

for recurrent transformation Hrec(·) such as
LSTM and GRU, or by:

hlj = Hpar(hl−1) (4)

for parallel transformation Hpar(·). On the other
hand, the decoder layers {zl} follow similar struc-
ture, while getting extra representations from the
encoder side. These extra representations are also
called attention, and are especially useful for cap-
turing alignment information.

In our experiments, we use convolution based
transformation for Hpar(·) due to both its effi-
ciency and high performance, more formally,

hlj = GLU([hl−1
j−r, · · · , hl−1

j+r]W
l + bl) , H(hl−1).

(5)
GLU is the gated linear unit proposed in (Dauphin
et al., 2017) and the kernel size is 2r + 1.
DenseNMT is agnostic to the transformation func-
tion, and we expect it to also work well combining
with other transformations, such as LSTM, self-
attention and depthwise separable convolution.

3.1 Dense encoder and decoder
Different from residual connections, later layers
in the dense encoder are able to use features from
all previous layers by concatenating them:

hl+1 = H([hl, hl−1, · · · , h0]). (6)
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Figure 2: Comparison of dense-connected decoder and
residual-connected decoder. Left: regular residual-connected
decoder. Right: dense-connected decoder. Ellipsoid stands
for attention block. Information is directly passed from blue
blocks to the green block.

Here,H(·) is defined in Eq. (5), [·] represents con-
catenation operation. Although this brings extra
connections to the network, with smaller number
of features per layer, the architecture encourages
feature reuse, and can be more compact and ex-
pressive. As shown in Figure 1, when designing
the model, the hidden size in each layer is much
smaller than the hidden size of the corresponding
layer in the residual-connected model.

While each encoder layer perceives informa-
tion from its previous layers, each decoder layer
zl+1 has two information sources: previous layers
zi, i ≤ l, and attention values ai, i ≤ l. There-
fore, in order to allow dense information flow, we
redefine the generation of (l+1)-th layer as a non-
linear function over all its previous decoder layers
and previous attentions. This can be written as:

zl+1 = H([zl, al, zl−1, al−1, · · · , z1, a1, z0]),
(7)

where ai is the attention value using i-th decoder
layer and information from encoder side, which
will be specified later. Figure 2 shows the com-
parison of a dense decoder with a regular residual
decoder. The dimensions of both attention values
and hidden layers are chosen with smaller values,
yet the perceived information for each layer con-
sists of a higher dimension vector with more rep-
resentation power. The output of the decoder is
a linear transformation of the concatenation of all
layers by default. To compromise to the increment
of dimensions, we use summary layers, which will
be introduced in Section 3.3. With summary lay-
ers, the output of the decoder is only a linear trans-
formation of the concatenation of the upper few
layers.
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Figure 3: Illustration of DenseAtt mechanisms. For clarity, We only plot the attention block for a single decoder layer. (a):
multi-step attention (Gehring et al., 2017), (b): DenseAtt-1, (c): DenseAtt-2. L(·) is the linear projection function. The
ellipsoid stands for the core attention operation as shown in Eq. (8).

3.2 Dense attention
Prior works show a trend of designing more ex-
pressive attention mechanisms (as discussed in
Section 2). However, most of them only use the
last encoder layer. In order to pass more abundant
information from the encoder side to the decoder
side, the attention block needs to be more expres-
sive. Following the recent development of design-
ing attention architectures, we propose DenseAtt
as the dense attention block, which serves for the
dense connection between the encoder and the de-
coder side. More specifically, two options are
proposed accordingly. For each decoding step in
the corresponding decoder layer, the two options
both calculate attention using multiple encoder
layers. The first option is more compressed, while
the second option is more expressive and flexi-
ble. We name them as DenseAtt-1 and DenseAtt-
2 respectively. Figure 3 shows the architecture of
(a) multi-step attention (Gehring et al., 2017), (b)
DenseAtt-1, and (c) DenseAtt-2 in order. In gen-
eral, a popular multiplicative attention module can
be written as:

F (Q,K, V ) = Softmax (Q×K)× V, (8)

whereQ,K, V represent query, key, value respec-
tively. We will use this functionF in the following
descriptions.

DenseAtt-1 In the decoding phase, we use a
layer-wise attention mechanism, such that each
decoder layer absorbs different attention informa-
tion to adjust its output. Instead of treating the last
hidden layer as the encoder’s output, we treat the
concatenation of all hidden layers from encoder
side as the output. The decoder layer multiplies
with the encoder output to obtain the attention
weights, which is then multiplied by a linear com-
bination of the encoder output and the sentence
embedding. The attention output of each layer al

can be formally written as:

al = F
(
L(zl),L

(
[{hi}]

)
,L
(
[{hi}]

)
+L(h0)

)
,

(9)
where F(·, ·, ·) is the multiplicative attention
function, [·] is a concatenation operation that com-
bines all features, and L(·) is a linear transforma-
tion function that maps each variable to a fixed di-
mension in order to calculate the attention value.
Notice that we explicitly write the L(h0) term in
(9) to keep consistent with the multi-step attention
mechanism, as pictorially shown in Figure 3(a).

DenseAtt-2 Notice that the transformation
L([{hi}]) in DenseAtt-1 forces the encoder layers
to be mixed before doing attention. Since we
use multiple hidden layers from the encoder side
to get an attention value, we can alternatively
calculate multiple attention values before con-
catenating them. In another word, the decoder
layer can get different attention values from
different encoder layers. This can be formally
expressed as:

al =

L∑

i=1

F
(
L(zl),L(hi),L([hi, h0])

)
, (10)

where the only difference from Eq. (9) is that the
concatenation operation is substituted by a sum-
mation operation, and is put after the attention
function F . This method further increases the
representation power in the attention block, while
maintaining the same number of parameters in the
model.

3.3 Summary layers
Since the number of features fed into nonlinear
operation is accumulated along the path, the pa-
rameter size increases accordingly. For example,
for the L-th encoder layer, the input dimension of
features is (L − 1)d + d0 , where d is the feature
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dimension in previous layers, d0 is the embedding
size. In order to avoid the calculation bottleneck
for later layers due to large L, we introduce the
summary layer for deeper models. It summarizes
the features for all previous layers and projects
back to the embedding size, so that later layers
of both the encoder and the decoder side do not
need to look back further. The summary layers
can be considered as contextualized word vectors
in a given sentence (McCann et al., 2017). We add
one summary layer after every (sumlen− 1) lay-
ers, where sumlen is the hyperparameter we in-
troduce. Accordingly, the input dimension of fea-
tures is at most (sumlen− 1) · d+ d0 for the last
layer of the encoder. Moreover, combined with
the summary layer setting, our DenseAtt mech-
anism allows each decoder layer to calculate the
attention value focusing on the last few encoder
layers, which consists of the last contextual em-
bedding layer and several dense connected layers
with low dimension. In practice, we set sumlen
as 5 or 6.

3.4 Analysis of information flow

Figure 1 and Figure 2 show the difference of infor-
mation flow compared with a residual-based en-
coder/decoder. For residual-based models, each
layer can absorb a single high-dimensional vec-
tor from its previous layer as the only informa-
tion, while for DenseNMT, each layer can utilize
several low-dimensional vectors from its previous
layers and a high-dimensional vector from the first
layer (embedding layer) as its information. In
DenseNMT, each layer directly provides informa-
tion to its later layers. Therefore, the structure
allows feature reuse, and encourages upper lay-
ers to focus on creating new features. Further-
more, the attention block allows the embedding
vectors (as well as other hidden layers) to guide
the decoder’s generation more directly; therefore,
during back-propagation, the gradient information
can be passed directly to all encoder layers simul-
taneously.

4 Experimental Setup

4.1 Datasets

We use three datasets for our experiments:
IWSLT14 German-English, Turkish-English, and
WMT14 English-German.

We preprocess the IWSLT14 German-English
dataset following byte-pair-encoding (BPE)

method (Sennrich et al., 2015b)1. We learn 25k
BPE codes using the joint corpus of source and
target languages. We randomly select 7k from
IWSLT14 German-English as the development
set , and the test set is a concatenation of dev2010,
tst2010, tst2011 and tst2012, which is widely used
in prior works (Ranzato et al., 2015; Bahdanau
et al., 2017; Huang et al., 2017).

For the Turkish-English translation task, we use
the data provided by IWSLT14 (Cettolo et al.,
2014) and the SETimes corpus (Cettolo et al.,
2014) following (Sennrich et al., 2015a). After
removing sentence pairs with length ratio over 9,
we obtain 360k sentence pairs. Since there is little
commonality between the two languages, we learn
30k size BPE codes separately for Turkish and En-
glish. In addition to this, we give another prepro-
cessing for Turkish sentences and use word-level
English corpus. For Turkish sentences, follow-
ing (Gulcehre et al., 2015; Sennrich et al., 2015a),
we use the morphology tool Zemberek with dis-
ambiguation by the morphological analysis (Sak
et al., 2007) and removal of non-surface tokens2.
Following (Sennrich et al., 2015a), we concate-
nate tst2011, tst2012, tst2013, tst2014 as our test
set. We concatenate dev2010 and tst2010 as the
development set.

We preprocess the WMT14 English-German3

dataset using a BPE code size of 40k. We use the
concatenation of newstest2013 and newstest2012
as the development set.

4.2 Model and architect design
As the baseline model (BASE-4L) for IWSLT14
German-English and Turkish-English, we use
a 4-layer encoder, 4-layer decoder, residual-
connected model4, with embedding and hidden
size set as 256 by default. As a comparison,
we design a densely connected model with same
number of layers, but the hidden size is set as
128 in order to keep the model size consistent.
The models adopting DenseAtt-1, DenseAtt-2 are
named as DenseNMT-4L-1 and DenseNMT-4L-2
respectively. In order to check the effect of dense
connections on deeper models, we also construct a
series of 8-layer models. We set the hidden num-
ber to be 192, such that both 4-layer models and 8-
layer models have similar number of parameters.

1https://github.com/rsennrich/subword-nmt
2github.com/orhanf/zemberekMorphTR
3https://nlp.stanford.edu/projects/nmt/
4https://github.com/facebookresearch/fairseq
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Figure 4: Training curve (T) and validation curve (V) com-
parison. Left: IWSLT14 German-English (De-En). Middle:
Turkish-English, BPE encoding (Tr-En). Right: Turkish-
English, morphology encoding (Tr-En-morph).

For dense structured models, we set the dimension
of hidden states to be 96.

Since NMT model usually allocates a large
proportion of its parameters to the source/target
sentence embedding and softmax matrix, we ex-
plore in our experiments to what extent decreas-
ing the dimensions of the three parts would harm
the BLEU score. We change the dimensions
of the source embedding, the target embedding
as well as the softmax matrix simultaneously to
smaller values, and then project each word back to
the original embedding dimension through a lin-
ear transformation. This significantly reduces the
number of total parameters, while not influencing
the upper layer structure of the model.

We also introduce three additional models we
use for ablation study, all using 4-layer structure.
Based on the residual connected BASE-4L model,
(1) DenseENC-4L only makes encoder side dense,
(2) DenseDEC-4L only makes decoder side dense,
and (3) DenseAtt-4L only makes the attention
dense using DenseAtt-2. There is no summary
layer in the models, and both DenseENC-4L and
DenseDEC-4L use hidden size 128. Again, by re-
ducing the hidden size, we ensure that different
4-layer models have similar model sizes.

Our design for the WMT14 English-German
model follows the best performance model pro-
vided in (Gehring et al., 2017). The construc-
tion of our model is straightforward: our 15-layer
model DenseNMT-En-De-15 uses dense connec-
tion with DenseAtt-2, sumlen = 6. The hidden
number in each layer is 1/4 that of the original
model, while the kernel size maintains the same.

Figure 5: Training curve and test curve comparison on
WMT14 English-German translation task.

4.3 Training setting
We use Nesterov Accelerated Gradient
(NAG) (Nesterov, 1983) as our optimizer, and the
initial learning rate is set to 0.25. For German-
English and Turkish-English experiments, the
learning rate will shrink by 10 every time the
validation loss increases. For the English-German
dataset, in consistent with (Gehring et al., 2017),
the learning rate will shrink by 10 every epoch
since the first increment of validation loss. The
system stops training until the learning rate is
less than 10−4. All models are trained end-to-end
without any warmstart techniques. We set our
batch size for the WMT14 English-German
dataset to be 48, and additionally tune the length
penalty parameter, in consistent with (Gehring
et al., 2017). For other datasets, we set batch size
to be 32. During inference, we use a beam size of
5.

5 Results

5.1 Training curve
We first show that DenseNMT helps information
flow more efficiently by presenting the training
loss curve. All hyperparameters are fixed in each
plot, only the models are different. In Figure 4,
the loss curves for both training and dev sets (be-
fore entering the finetuning period) are provided
for De-En, Tr-En and Tr-En-morph. For clarity,
we compare DenseNMT-4L-2 with BASE-4L. We
observe that DenseNMT models are consistently
better than residual-connected models, since their
loss curves are always below those of the base-
line models. The effect is more obvious on the
WMT14 English-German dataset. We rerun the
best model provided by (Gehring et al., 2017)
and compare with our model. In Figure 5, where
train/test loss curve are provided, DenseNMT-En-
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De-En Tr-En Tr-En-morph

Embed size 64 128 256 64 128 256 64 128 256
Model size (M) 8± 1 11± 1 17± 1 11± 1 17± 1 28± 1 13± 1 21± 1 36± 1

4L
BASE-4L 28.97 29.99 30.43 19.80 20.26 20.99 18.90 18.81 20.08
DenseNMT-4L-1 30.11 30.80 31.26 19.21 20.08 21.36 18.83 20.16 21.43
DenseNMT-4L-2 29.77 30.01 31.40 19.59 20.86 21.48 19.04 20.19 21.57

8L
BASE-8L 30.15 30.91 31.51 20.40 21.60 21.92 20.21 20.76 22.62
DenseNMT-8L-1 30.91 31.54 32.08 21.82 22.20 23.20 21.20 21.73 22.60
DenseNMT-8L-2 30.70 31.17 32.26 21.93 21.98 23.25 21.73 22.44 23.45

Table 1: BLEU score on IWSLT German-English and Turkish-English translation tasks. We compare models using different
embedding sizes, and keep the model size consistent within each column.

De-15 reaches the same level of loss and starts
finetuning (validation loss starts to increase) at
epoch 13, which is 35% faster than the baseline.

Adding dense connections changes the archi-
tecture, and would slightly influence training
speed. For the WMT14 En-De experiments,
the computing time for both DenseNMT and
the baseline (with similar number of parame-
ters and same batch size) tested on single M40
GPU card are 1571 and 1710 word/s, respec-
tively. While adding dense connections influ-
ences the per-iteration training slightly (8.1% re-
duction of speed), it uses many fewer epochs, and
achieves a better BLEU score. In terms of train-
ing time, DenseNMT uses 29.3%(before finetun-
ing)/22.9%(total) less time than the baseline.

5.2 DenseNMT improves accuracy with
similar architectures and model sizes

De-En Tr-En Tr-En-morph

BASE 30.43 20.99 20.08
DenseENC-4L 30.72 21.32 21.24
DenseDEC-4L 31.23 21.04 21.06
DenseAtt-4L 31.05 21.35 21.08
DenseNMT-4L-1 31.26 21.36 21.43
DenseNMT-4L-2 31.40 21.48 21.57

Table 2: Ablation study for encoder block, decoder block,
and attention block in DenseNMT.

Table 1 shows the results for De-En, Tr-En, Tr-
En-morph datasets, where the best accuracy for
models with the same depth and of similar sizes
are marked in boldface. In almost all genres,
DenseNMT models are significantly better than
the baselines. With embedding size 256, where all
models achieve their best scores, DenseNMT out-
performs baselines by 0.7-1.0 BLEU on De-En,
0.5-1.3 BLEU on Tr-En, 0.8-1.5 BLEU on Tr-En-
morph. We observe significant gain using other
embedding sizes as well.

Furthermore, in Table 2, we investigate
DenseNMT models through ablation study. In
order to make the comparison fair, six models
listed have roughly the same number of param-
eters. On De-En, Tr-En and Tr-En-morph, we
see improvement by making the encoder dense,
making the decoder dense, and making the at-
tention dense. Fully dense-connected model
DenseNMT-4L-1 further improves the translation
accuracy. By allowing more flexibility in dense
attention, DenseNMT-4L-2 provides the highest
BLEU scores for all three experiments.

From the experiments, we have seen that en-
larging the information flow in the attention
block benefits the models. The dense attention
block provides multi-layer information transmis-
sion from the encoder to the decoder, and to the
output as well. Meanwhile, as shown by the
ablation study, the dense-connected encoder and
decoder both give more powerful representations
than the residual-connected counterparts. As a re-
sult, the integration of the three parts improve the
accuracy significantly.

5.3 DenseNMT with smaller embedding size

From Table 1, we also observe that DenseNMT
performs better with small embedding sizes com-
pared to residual-connected models with regular
embedding size. For example, on Tr-En model,
the 8-layer DenseNMT-8L-2 model with embed-
ding size 64 matches the BLEU score of the
8-layer BASE model with embedding size 256,
while the number of parameter of the former one
is only 40% of the later one. In all genres,
DenseNMT model with embedding size 128 is
comparable or even better than the baseline model
with embedding size 256.

While overlarge embedding sizes hurt accuracy
because of overfitting issues, smaller sizes are not
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Test Set
tst2011 tst2012 tst2013 tst2014 total

RNN (Gulcehre et al., 2015) 18.40 18.77 19.86 18.64 /

BASE 21.66 22.45 23.76 22.59 22.62
DenseNMT-8L-2 22.52 23.81 23.91 23.68 23.45
DenseNMT-8L-2(embed 256, hid 128) 23.33 24.65 24.92 24.54 24.36

Table 3: Accuracy on Turkish-English translation task in terms of BLEU score.

preferable because of insufficient representation
power. However, our dense models show that with
better model design, the embedding information
can be well concentrated on fewer dimensions,
e.g., 64. This is extremely helpful when build-
ing models on mobile and small devices where
the model size is critical. While there are other
works that stress the efficiency issue by using
techniques such as separable convolution (Kaiser
et al., 2017), and shared embedding (Vaswani
et al., 2017), our DenseNMT framework is orthog-
onal to those approaches. We believe that other
techniques would produce more efficient models
through combining with our DenseNMT frame-
work.

Greedy Beam

MIXER (Ranzato et al., 2015) 20.73 21.83
AC (Bahdanau et al., 2017) 27.49 28.53
NPMT (Huang et al., 2017) 27.83 28.96
NPMT+LM (Huang et al., 2017) / 29.16

DenseNMT-8L-2 (word) 29.11 30.33
DenseNMT-8L-1 (BPE) 30.50 32.08
DenseNMT-8L-2 (BPE) 30.80 32.26

Table 4: Accuracy on IWSLT14 German-English translation
task in terms of BLEU score.

5.4 DenseNMT compares with
state-of-the-art results

For the IWSLT14 German-English dataset, we
compare with the best results reported from lit-
eratures. To be consistent with prior works, we
also provide results using our model directly on
the dataset without BPE preprocessing. As shown
in Table 4, DenseNMT outperforms the phrase-
structure based network NPMT (Huang et al.,
2017) (with beam size 10) by 1.2 BLEU, using
a smaller beam size, and outperforms the actor-
critic method based algorithm (Bahdanau et al.,
2017) by 2.8 BLEU. For reference, our model
trained on the BPE preprocessed dataset achieves
32.26 BLEU, which is 1.93 BLEU higher than
our word-based model. For Turkish-English task,

we compare with (Gulcehre et al., 2015) which
uses the same morphology preprocessing as our
Tr-En-morph. As shown in Table 3, our baseline
is higher than the previous result, and we further
achieve new benchmark result with 24.36 BLEU
average score. For WMT14 English-German,
from Table 5, we can see that DenseNMT outper-
forms ConvS2S model by 0.36 BLEU score using
35% fewer training iterations and 20% fewer pa-
rameters. We also compare with another convo-
lution based NMT model: SliceNet (Kaiser et al.,
2017), which explores depthwise separable con-
volution architectures. SliceNet-Full matches our
result, and SliceNet-Super outperforms by 0.58
BLEU score. However, both models have 2.2x
more parameters than our model. We expect
DenseNMT structure could help improve their
performance as well.

BLEU score

GNMT (Wu et al., 2016) 24.61
ConvS2S (Gehring et al., 2017) 25.16
SliceNet-Full (Kaiser et al., 2017) 25.5
SliceNet-Super (Kaiser et al., 2017) 26.1

DenseNMT-En-De-15 25.52

Table 5: Accuracy on WMT14 English-German translation
task in terms of BLEU score.

6 Conclusion

In this work, we have proposed DenseNMT as a
dense-connection framework for translation tasks,
which uses the information from embeddings
more efficiently, and passes abundant information
from the encoder side to the decoder side. Our ex-
periments have shown that DenseNMT is able to
speed up the information flow and improve trans-
lation accuracy. For the future work, we will com-
bine dense connections with other deep architec-
tures, such as RNNs (Wu et al., 2016) and self-
attention networks (Vaswani et al., 2017).
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