
Proceedings of NAACL-HLT 2018, pages 1206–1215
New Orleans, Louisiana, June 1 - 6, 2018. c©2018 Association for Computational Linguistics

Diverse Few-Shot Text Classification with Multiple Metrics

Mo Yu⇤ Xiaoxiao Guo⇤ Jinfeng Yi⇤ Shiyu Chang
Saloni Potdar Yu Cheng Gerald Tesauro Haoyu Wang Bowen Zhou

AI Foundations – Learning, IBM Research
IBM T. J. Watson Research Center, Yorktown Heights, NY 10598

Abstract

We study few-shot learning in natural lan-
guage domains. Compared to many ex-
isting works that apply either metric-based
or optimization-based meta-learning to image
domain with low inter-task variance, we con-
sider a more realistic setting, where tasks are
diverse. However, it imposes tremendous diffi-
culties to existing state-of-the-art metric-based
algorithms since a single metric is insufficient
to capture complex task variations in natu-
ral language domain. To alleviate the prob-
lem, we propose an adaptive metric learn-
ing approach that automatically determines the
best weighted combination from a set of met-
rics obtained from meta-training tasks for a
newly seen few-shot task. Extensive quantita-
tive evaluations on real-world sentiment anal-
ysis and dialog intent classification datasets
demonstrate that the proposed method per-
forms favorably against state-of-the-art few
shot learning algorithms in terms of predictive
accuracy. We make our code and data avail-
able for further study.1

1 Introduction

Few-shot learning (FSL) (Miller et al., 2000; Li
et al., 2006; Lake et al., 2015) aims to learn
classifiers from few examples per class. Re-
cently, deep learning has been successfully ex-
ploited for FSL via learning meta-models from
a large number of meta-training tasks. These
meta-models can be then used for rapid-adaptation
for the target/meta-testing tasks that only have
few training examples. Examples of such meta-
models include: (1) metric-/similarity-based mod-
els, which learn contextual, and task-specific sim-
ilarity measures (Koch, 2015; Vinyals et al., 2016;

⇤Equal contributions from the corresponding authors:
yum@us.ibm.com, xiaoxiao.guo@ibm.com,
jinfengy@us.ibm.com.

1
https://github.com/Gorov/DiverseFewShot_Amazon

Snell et al., 2017); and (2) optimization-based
models, which receive the input of gradients from
a FSL task and predict either model parameters
or parameter updates (Ravi and Larochelle, 2017;
Munkhdalai and Yu, 2017; Finn et al., 2017; Wang
et al., 2017).

In the past, FSL has mainly considered im-
age domains, where all tasks are often sampled
from one huge collection of data, such as Om-
niglot (Lake et al., 2011) and ImageNet (Vinyals
et al., 2016), making tasks come from a single do-
main thus related. Due to such a simplified set-
ting, almost all previous works employ a com-
mon meta-model (metric-/optimization-based) for
all few-shot tasks. However, this setting is far
from the realistic scenarios in many real-world ap-
plications of few-shot text classification. For ex-
ample, on an enterprise AI cloud service, many
clients submit various tasks to train text classifica-
tion models for business-specific purposes. The
tasks could be classifying customers’ comments
or opinions on different products/services, moni-
toring public reactions to different policy changes,
or determining users’ intents in different types of
personal assistant services. As most of the clients
cannot collect enough data, their submitted tasks
form a few-shot setting. Also, these tasks are sig-
nificantly diverse, thus a common metric is insuf-
ficient to handle all these tasks.

We consider a more realistic FSL setting in this
paper, where tasks are diverse. In such a sce-
nario, the optimal meta-model may vary across
tasks. Our solution is based on the metric-learning
approach (Snell et al., 2017) and the key idea is
to maintain multiple metrics for FSL. The meta-
learner selects and combines multiple metrics for
learning the target task using task clustering on
the meta-training tasks. During the meta-training,
we propose to first partition the meta-training tasks
into clusters, making the tasks in each cluster

1206

likely to be related. Then within each cluster, we
train a deep embedding function as the metric.
This ensures the common metric is only shared
across tasks within the same cluster. Further, dur-
ing meta-testing, each target FSL task is assigned
to a task-specific metric, which is a linear combi-
nation of the metrics defined by different clusters.
In this way, the diverse few-shot tasks can derive
different metrics from the previous learning expe-
rience.

The key of the proposed FSL framework is the
task clustering algorithm. Previous works (Kumar
and Daume III, 2012; Kang et al., 2011; Cram-
mer and Mansour, 2012; Barzilai and Crammer,
2015) mainly focused on convex objectives, and
assumed the number of classes is the same across
different tasks (e.g. binary classification is often
considered). To make task clustering (i) compat-
ible with deep networks and (ii) able to handle
tasks with a various number of labels, we propose
a matrix-completion based task clustering algo-
rithm. The algorithm utilizes task similarity mea-
sured by cross-task transfer performance, denoted
by matrix S. The (i, j)-entry of S is the estimated
accuracy by adapting the learned representations
on the i-th (source) task to the j-th (target) task.
We rely on matrix completion to deal with miss-
ing and unreliable entries in S and finally apply
spectral clustering to generate the task partitions.

To the best of our knowledge, our work is the
first one addressing the diverse few-shot learning
problem and reporting results on real-world few-
shot text classification problems. The experimen-
tal results show that the proposed algorithm pro-
vides significant gains on few-shot sentiment clas-
sification and dialog intent classification tasks. It
provides positive feedback on the idea of using
multiple meta-models (metrics) to handle diverse
FSL tasks, as well as the proposed task clustering
algorithm on automatically detecting related tasks.

2 Problem Definition

Few-Shot Learning Since we focus on diverse
metric-based FSL, the problem can be formu-
lated in two stages: (1) meta-training, where a
set of metrics M = {⇤1, · · · ,⇤K} is learned on
the meta-training tasks T . Each ⇤i maps two
input (x1, x2) to a scalar of similarity score. Here
T = {T1, T2, · · · , TN} is a collection of N tasks.
Here K is a pre-defined number (usually K ⌧
N). Each task Ti consists of training, validation,

and testing set denoted as
�
Dtrain

i , Dvalid
i , Dtest

i

,

respectively. Note that the definition of T is a
generalized version of D(meta�train) in (Ravi and
Larochelle, 2017), since each task Ti can be ei-
ther few-shot (where Dvalid

i is empty) or regu-
lar2. (2) meta-testing: the trained metrics in
M is applied to meta-testing tasks denoted as
T 0 = {T0

1, · · · , T0
N 0}, where each T0

i is a few-
shot learning task consisting of both training and
testing data as

�
D0train

i , D0test
i

. D0train

i is a small
labeled set for generating the prediction model M0

i

for each T0
i. Specifically, M0

is are kNN-based pre-
dictors built upon the metrics in M. We will de-
tail the construction of M0

i in Section 3, Eq. (6).
It is worth mentioning that the definition of T 0 is
the same as D(meta�test) in (Ravi and Larochelle,
2017). The performance of few-shot learning is
the macro-average of M0

i’s accuracy on all the test-
ing set D0test

i s.

Our definitions can be easily generalized
to other meta-learning approaches (Ravi and
Larochelle, 2017; Finn et al., 2017; Mishra et al.,
2017). The motivation of employing multiple met-
rics is that when the tasks are diverse, one metric
model may not be sufficient. Note that previous
metric-based FSL methods can be viewed as a spe-
cial case of our definition where M only contains
a single ⇤, as shown in the two base model exam-
ples below.

Base Model: Matching Networks In this paper
we use the metric-based model Matching Network
(MNet) (Vinyals et al., 2016) as the base metric
model. The model (Figure 1b) consists of a neural
network as the embedding function (encoder) and
an augmented memory. The encoder, f(·), maps
an input x to a d-length vector. The learned met-
ric ⇤ is thus the similarity between the encoded
vectors, ⇤(x1, x2) = f(x1)

T f(x2), i.e. the metric
⇤ is modeled by the encoder f . The augmented
memory stores a support set S = {(xi, yi)}|S|

i=1,
where xi is the supporting instance and yi is its
corresponding label in a one-hot format. The
MNet explicitly defines a classifier M conditioned
on the supporting set S. For any new data x̂, M
predicts its label via a similarity function ↵(., .)

2For example, the methods in (Triantafillou et al., 2017)
can be viewed as training meta-models from any sampled
batches from one single meta-training dataset.

1207

Sentence
Embedding

…

…

Convolution

Word Emb

<PAD> what fast food … nearby <PAD>

Encoder part
M(enc)

Classifier part
M(cls)

labels

(a) (b)

…

…

max-poolingmax-pooling

<PAD> what fast food … nearby <PAD>

Encoder
M(enc)=!(#)

%&= %&=

'(:Fast-food

'*:Italian-food

'+:Sushi-bars

!(%&)M(enc)(%&)

%(%* %+
Support

Set

!(#)
!(%() !(%*) !(%+)

Figure 1: The Convolutional Neural Networks (CNN) used in this work: (a) A CNN classifier. The encoder com-
ponent takes the sentence as input and outputs a fixed-length sentence embedding vector; the classifier component
predicts class labels with the sentence embedding. (b) A Matching Network, which only contains an encoder like
in (a), and makes prediction via a k-Nearest-Neighbor classifier with the similarity defined by the encoder.

between the test instance x̂ and the support set S:

y = P (.|x̂, S) =

|S|X

i=1

↵(x̂, xi; ✓)yi, (1)

where we defined ↵(., .) to be a softmax
distribution given ⇤(x̂, xi), where xi is
a supporting instance, i.e., ↵(x̂, xi; ✓) =
exp(f(x̂)T f(xi))/

P|S|
j=1 exp(f(x̂)T f(xj)), where ✓

are the parameters of the encoder f . Thus, y is a
valid distribution over the supporting set’s labels
{yi}|S|

i=1. To adapt the MNet to text classification,
we choose encoder f to be a convolutional neural
network (CNN) following (Kim, 2014; Johnson
and Zhang, 2016). Figure 1 shows the MNet
with the CNN architecture. Following (Collobert
et al., 2011; Kim, 2014), the model consists of
a convolution layer and a max-pooling operation
over the entire sentence.

To train the MNets, we first sample the training
dataset D for task T from all tasks T , with no-
tation simplified as D ⇠ T . For each class in the
sampled dataset D, we sample k random instances
in that class to construct a support set S, and sam-
ple a batch of training instances B as training ex-
amples, i.e., B, S ⇠ D. The training objective
is to minimize the prediction error of the training
samples given the supporting set (with regard to
the encoder parameters ✓) as follows:

E
D⇠T

h
E

B,S⇠D

⇥ X

(x,y)2B

log(P (y|x, S; ✓))
⇤i

. (2)

Base Model: Prototypical Networks Prototyp-
ical Network (ProtoNet) (Snell et al., 2017) is a
variation of Matching Network, which also de-
pends on metric learning but builds the classifier

M different from Eq. (1):

y = P (.|x̂, S) =
LX

i=1

↵(x̂, Si; ✓)yi. (3)

L is the number of classes and Si={x|(x, y) 2 S^
y=yi} is the support set of class yi. ↵(x̂, Si; ✓) =
exp

⇣
f(x̂)T

P
x2Si

f(x)
⌘
/
PL

j=1 exp
⇣
f(x̂)T

P
x02Sj

f(x0)
⌘
.

3 Methodology

We propose a task-clustering framework to ad-
dress the diverse few-shot learning problem stated
in Section 2. We have the FSL algorithm summa-
rized in Algorithm 1. Figure 2 gives an overview
of our idea. The initial step of the algorithm is
a novel task clustering algorithm based on matrix
completion, which is described in Section 3.1. The
few-shot learning method based on task clustering
is then introduced in Section 3.2.

3.1 Robust Task Clustering by Matrix
Completion

Our task clustering algorithm is shown in Algo-
rithm 2. The algorithm first evaluates the transfer
performance by applying a single-task model i to
another task j (Section 3.1.1), which will result
in a (partially observed) cross-task transfer perfor-
mance matrix S. The matrix S is then cleaned and
completed, giving a symmetry task similarity ma-
trix Y for spectral clustering (Ng et al., 2002).

3.1.1 Estimation of Cross-Task Transfer
Performance

Using single-task models, we can compute perfor-
mance scores sij by adapting each Mi to each task

1208

Task1

Task2

Task3

Task4

Task5

Task6

…

Taskn

Task1 Task2 Task3 Task4 Task5 Task6 … Taskn
Cluster-encoder

training

Cross-task transferperformance matrix

Matrix completion
for unobserved pairs

(a) (c)

MNet encoder training on task cluster

(b)

Partially-observed matrix Y for completion and clustering

unreliable
pair

pair pair

pairpair

Task cluster C1

Training data from !"|!" ∈ %&

Figure 2: Overview of the idea of our multi-metric learning approach for few-shot learning. (a) an illustration of
the sparse cross-tasks transfer-performance matrix with unobserved entries (white blocks) and unreliable values
(top-right and bottom-left corners), where red colors indicate positive transfer and blue colors indicate negative
transfer; (b) the constructed binary partially-observed matrix with low-rank constraint for matrix completion and
clustering (see Section 3.1 for the details); (c) an encoder trained with the matching network objective Eq. (2) on
a task cluster (tasks 1, 2 and 3 in the example).

Tj(j 6= i). This forms an n ⇥ n pair-wise classi-
fication performance matrix S, called the transfer-
performance matrix. Note that S is asymmetric
since usually Sij 6= Sji.

Algorithm 1: ROBUSTTC-FSL: Task Cluster-
ing for Few-Shot Learning

Input : N meta-training tasks T ={T1, T2, · · · , Tn};
number of clusters K; N 0 target few-shot
meta-testing tasks T 0

Output: Meta-model M = {C1:K (K task clusters),
F = {f1, f2, · · · , fK} (K task encoders)} .
One classifier M0

i for each target task T0.

1 Robust Task Clustering: C1:K = ROBUSTTC(T ,K)
(Algorithm 2)

2 Cluster-Model Training: Train one encoder (multi-task
MNet) fi on each task cluster Ci (Section 3.2.1)

3 Few-Shot Learning on Cluster-models: Train a model
Mtrg on task Ttrg with the method in Section 3.2.2.

Ideally, the transfer performance could be esti-
mated by training a MNet on task i and directly
evaluating it on task j. However, the limited train-
ing data usually lead to generally low transfer per-
formance of single-task MNet. As a result we
adopt the following approach to estimate S:

We train a CNN classifier (Figure 1(a)) on task
i, then take only the encoder Menc

i from Mi and
freeze it to train a classifier on task j. This gives
us a new task j model, and we test this model
on Dvalid

j to get the accuracy as the transfer-
performance Sij . The score shows how the repre-
sentations learned on task i can be adapted to task
j, thus indicating the similarity between tasks.

Algorithm 2: ROBUSTTC: Robust Task Clus-
tering based on Matrix Completion

Input : A set of n tasks T = {T1, T2, · · · , Tn},
number of task clusters K

Output: K task clusters C1:K

1 Learning of Single-Task Models: train single-task
models Mi for each task Ti

2 Evaluation of Transfer-Performance Matrix: get
performance matrix S (Section 3.1.1)

3 Score Filtering: Filter the uncertain scores in S and
construct the symmetric matrix Y using Eq. (4)

4 Matrix Completion: Complete the similar matrix X
from Y using Eq. (5)

5 Task Clustering: C1:K=SpectralClustering(X, K)

Remark: Out-of-Vocabulary Problem In text
classification tasks, transferring an encoder with
fine-tuned word embeddings from one task to an-
other is difficult as there can be a significant differ-
ence between the two vocabularies. Hence, while
learning the single-task CNN classifiers, we al-
ways make the word embeddings fixed.

3.1.2 Task Clustering Method
Directly using the transfer performance for task
clustering may suffer from both efficiency and ac-
curacy issues. First, evaluation of all entries in
the matrix S involves conducting the source-target
transfer learning O(n2) times, where n is the num-
ber of meta-training tasks. For a large number
of diverse tasks where the n can be larger than
1,000, evaluation of the full matrix is unaccept-
able (over 1M entries to evaluate). Second, the
estimated cross-task performance (i.e. some Sij

or Sji scores) is often unreliable due to small data

1209

size or label noise. When the number of the un-
certain values is large, they can collectively mis-
lead the clustering algorithm to output an incor-
rect task-partition. To address the aforementioned
challenges, we propose a novel task clustering al-
gorithm based on the theory of matrix comple-
tion (Candès and Tao, 2010). Specifically, we deal
with the huge number of entries by randomly sam-
ple task pairs to evaluate the Sij and Sji scores.
Besides, we deal with the unreliable entries and
asymmetry issue by keeping only task pairs (i, j)
with consistent Sij and Sji scores. as will be intro-
duced in Eq. (4). Below, we describe our method
in detail.

Score Filtering First, we use only reliable task
pairs to generate a partially-observed similarity
matrix Y. Specifically, if Sij and Sji are high
enough, then it is likely that tasks {i, j} belong to
a same cluster and share significant information.
Conversely, if Sij and Sji are low enough, then
they tend to belong to different clusters. To this
end, we need to design a mechanism to determine
if a performance is high or low enough. Since dif-
ferent tasks may vary in difficulty, a fixed thresh-
old is not suitable. Hence, we define a dynamic
threshold using the mean and standard deviation of
the target task performance, i.e., µj = mean(S:j)
and �j = std(S:j), where S:j is the j-th column
of S. We then introduce two positive parameters
p1 and p2, and define high and low performance as
Sij greater than µj +p1�j or lower than µj�p2�j ,
respectively. When both Sij and Sji are high and
low enough, we set their pairwise similarity as 1
and 0, respectively. Other task pairs are treated as
uncertain task pairs and are marked as unobserved,
and don’t influence our clustering method. This
leads to a partially-observed symmetric matrix Y,
i.e.,

Yij=Yji=

8
><
>:

1 if Sij > µj + p1�j

and Sji > µi + p1�i

0 if Sij < µj � p2�j

and Sji < µi � p2�i

unobserved otherwise

(4)

Matrix Completion Given the partially ob-
served matrix Y, we then reconstruct the full sim-
ilarity matrix X 2 Rn⇥n. We first note that the
similarity matrix X should be of low-rank (proof
deferred to appendix). Additionally, since the ob-
served entries of Y are generated based on high
and low enough performance, it is safe to assume
that most observed entries are correct and only a

few may be incorrect. Therefore, we introduce a
sparse matrix E to capture the observed incorrect
entries in Y. Combining the two observations, Y
can be decomposed into the sum of two matrices X
and E, where X is a low rank matrix storing simi-
larities between task pairs, and E is a sparse matrix
that captures the errors in Y. The matrix comple-
tion problem can be cast as the following convex
optimization problem:

min
X, E

kXk⇤ + �kEk1 (5)

s.t. P⌦(X + E) = P⌦(Y),

where k � k⇤ denotes the matrix nuclear norm, the
convex surrogate of rank function. ⌦ is the set of
observed entries in Y, and P⌦ : Rn⇥n 7! Rn⇥n is
a matrix projection operator defined as

[P⌦(A)]ij =

⇢
Aij if (i, j) 2 ⌦
0 otherwise

Finally, we apply spectral clustering on the ma-
trix X to get the task clusters.

Remark: Sample Efficiency In the Appendix
A, we show a Theorem 7.1 as well as its proof,
implying that under mild conditions, the problem
(5) can perfectly recover the underlying similarity
matrix X⇤ if the number of observed correct en-
tries is at least O(n log2 n). This theoretical guar-
antee implies that for a large number n of training
tasks, only a tiny fraction of all task pairs is needed
to reliably infer similarities over all task pairs.

3.2 Few-Shot Learning with Task Clusters

3.2.1 Training Cluster Encoders
For each cluster Ck, we train a multi-task MNet
model (Figure 1(b)) with all tasks in that cluster to
encourage parameter sharing. The result, denoted
as fk is called the cluster-encoder of cluster Ck.
The k-th metric of the cluster is thus ⇤(x1, x2) =
fk(x1)

|fk(x2).

3.2.2 Adapting Multiple Metrics for
Few-Shot Learning

To build a predictor M with access to only a lim-
ited number of training samples, we make the pre-
diction probability by linearly combining predic-
tion from learned cluster-encoders:

p(y|x) =
X

k

↵kP (y|x; fk). (6)

1210

where fk is the learned (and frozen) encoder of
the k-th cluster, {↵k}K

k=1 are adaptable parameters
trained with few-shot training examples. And the
predictor P (y|x; fk) from each cluster is

P (y = yl|x; fk) =
exp {fk(xl)

|fk(x)}P
i exp {fk(xi)|fk(x)} (7)

xl is the corresponding training sample of label yl.

Remark: Joint Method versus Pipeline Method
End-to-end joint optimization on training data be-
comes a popular methodology for deep learning
systems, but it is not directly applicable to di-
verse FSL. One main reason is that deep networks
could easily fit any task partitions if we optimize
on training loss only, making the learned metrics
not generalize, as discussed in Section 6. As a
result, this work adopts a pipeline training ap-
proach and employing validation sets for task clus-
tering. Combining reinforcement learning with
meta-learning could be a potential solution to en-
able an end-to-end training for future work.

4 Tasks and Data Sets

We test our methods by conducting experiments
on two text classification data sets. We used NLTK
toolkit3 for tokenization. The task are divided into
meta-training tasks and meta-testing tasks (target
tasks), where the meta-training tasks are used for
clustering and cluster-encoder training. The meta-
testing tasks are few-shot tasks, which are used for
evaluating the method in Eq. (6).

4.1 Amazon Review Sentiment Classification
First, following Barzilai and Crammer (2015), we
construct multiple tasks with the multi-domain
sentiment classification (Blitzer et al., 2007) data
set. The dataset consists of Amazon product re-
views for 23 types of products (see Appendix D
for the details). For each product domain, we con-
struct three binary classification tasks with differ-
ent thresholds on the ratings: the tasks consider a
review as positive if it belongs to one of the fol-
lowing buckets = 5 stars, >= 4 stars or >= 2
stars.4 These buckets then form the basis of the
task-setup, giving us 23 ⇥ 3=69 tasks in total. For
each domain we distribute the reviews uniformly

3http://www.nltk.org/
4Data downloaded from http://www.cs.jhu.edu/

˜mdredze/datasets/sentiment/, in which the 3-
star samples were unavailable due to their ambiguous nature
(Blitzer et al., 2007).

to the 3 tasks. For evaluation, we select 12 (4⇥3)
tasks from 4 domains (Books, DVD, Electronics,
Kitchen) as the meta-testing (target) tasks out of
all 23 domains. For the target tasks, we create 5-
shot learning problems.

4.2 Real-World Tasks: User Intent
Classification for Dialog System

The second dataset is from an online service which
trains and serves intent classification models to
various clients. The dataset comprises recorded
conversations between human users and dialog
systems in various domains, ranging from per-
sonal assistant to complex service-ordering or
customer-service request scenarios. During clas-
sification, intent-labels5 are assigned to user utter-
ances (sentences). We use a total of 175 tasks from
different clients, and randomly sample 10 tasks
from them as our target tasks. For each meta-
training task, we randomly sample 64% data into a
training set, 16% into a validation set, and use the
rest as the test set. The number of labels for these
tasks varies a lot (from 2 to 100, see Appendix
D for details), making regular k-shot settings not
essentially limited-resource problems (e.g., 5-shot
on 100 classes will give a good amount of 500
training instances). Hence, to adapt this to a FSL
scenario, for target tasks we keep one example for
each label (one-shot), plus 20 randomly picked la-
beled examples to create the training data. We be-
lieve this is a fairly realistic estimate of labeled
examples one client could provide easily.

Remark: Evaluation of the Robustness of Al-
gorithm 2 Our matrix-completion method could
handle a large number of tasks via task-pair sam-
pling. However, the sizes of tasks in the above
two few-shot learning datasets are not too huge,
so evaluation of the whole task-similarity matrix is
still tractable. In our experiments, the incomplete
matrices mainly come from the score-filtering step
(see Eq. 4). Thus there is limited randomness in-
volved in the generation of task clusters.

To strengthen the conclusion, we evaluate our
algorithm on an additional dataset with a much
larger number of tasks. The results are reported in
the multi-task learning setting instead of the few-
shot learning setting focused in this paper. There-
fore we put the results to a non-archive version of

5In conversational dialog systems, intent-labels are used
to guide the dialog-flow.

1211

this paper6 for further reference.

5 Experiments

5.1 Experiment Setup

Baselines We compare our method to the fol-
lowing baselines: (1) Single-task CNN: train-
ing a CNN model for each task individually;
(2) Single-task FastText: training one FastText
model (Joulin et al., 2016) with fixed embeddings
for each individual task; (3) Fine-tuned the holis-
tic MTL-CNN: a standard transfer-learning ap-
proach, which trains one MTL-CNN model on all
the training tasks offline, then fine-tunes the clas-
sifier layer (i.e. M(cls) Figure 1(a)) on each target
task; (4) Matching Network: a metric-learning
based few-shot learning model trained on all train-
ing tasks; (5) Prototypical Network: a varia-
tion of matching network with different predic-
tion function as Eq. 3; (6) Convex combining
all single-task models: training one CNN clas-
sifier on each meta-training task individually and
taking the encoder, then for each target task train-
ing a linear combination of all the above single-
task encoders with Eq. (6). This baseline can
be viewed as a variation of our method without
task clustering. We initialize all models with pre-
trained 100-dim Glove embeddings (trained on 6B
corpus) (Pennington et al., 2014).

Hyper-Parameter Tuning In all experiments,
we set both p1 and p2 parameters in (4) to 0.5. This
strikes a balance between obtaining enough ob-
served entries in Y, and ensuring that most of the
retained similarities are consistent with the clus-
ter membership. The window/hidden-layer sizes
of CNN and the initialization of embeddings (ran-
dom or pre-trained) are tuned during the cluster-
encoder training phase, with the validation sets of
meta-training tasks. We have the CNN with win-
dow size of 5 and 200 hidden units. The single-
metric FSL baselines have 400 hidden units in
the CNN encoders. On sentiment classification,
all cluster-encoders use random initialized word
embeddings for sentiment classification, and use
Glove embeddings as initialization for intent clas-
sification, which is likely because the training sets
of the intent tasks are usually small.

Since all the sentiment classification tasks are
binary classification based on our dataset con-
struction. A CNN classifier with binary output

6https://arxiv.org/pdf/1708.07918.pdf

layer can be also trained as the cluster-encoder for
each task cluster. Therefore we compared CNN
classifier, matching network, and prototypical net-
work on Amazon review, and found that CNN
classifier performs similarly well as prototypical
network. Since some of the Amazon review data
is quite large which involves further difficulty on
the computation of supporting sets, we finally use
binary CNN classifiers as cluster-encoders in all
the sentiment classification experiments.

Selection of the learning rate and number of
training epochs for FSL settings, i.e., fitting ↵s in
Eq. (6), is more difficult since there is no valida-
tion data in few-shot problems. Thus we pre-select
a subset of meta-training tasks as meta-validation
tasks and tune the two hyper-parameters on the
meta-validation tasks.

5.2 Experimental Results

Table 1 shows the main results on (i) the 12
few-shot product sentiment classification tasks by
leveraging the learned knowledge from the 57 pre-
viously observed tasks from other product do-
mains; and (ii) the 10 few-shot dialog intent clas-
sification tasks by leveraging the 165 previously
observed tasks from other clients’ data.

Due to the limited training resources, all the
supervised-learning baselines perform poorly. The
two state-of-the-art metric-based FSL approaches,
matching network (4) and prototypical network
(5), do not perform better compared to the other
baselines, since the single metric is not sufficient
for all the diverse tasks. On intent classification
where tasks are further diverse, all the single-
metric or single-model methods (3-5) perform
worse compared to the single-task CNN baseline
(1). The convex combination of all the single
training task models is the best performing base-
line overall. However, on intent classification it
only performs on par with the single-task CNN
(1), which does not use any meta-learning or trans-
fer learning techniques, mainly for two reasons:
(i) with the growth of the number of meta-training
tasks, the model parameters grow linearly, mak-
ing the number of parameters (165 in this case) in
Eq.(6) too large for the few-shot tasks to fit; (ii) the
meta-training tasks in intent classification usually
contain less training data, making the single-task
encoders not generalize well.

In contrast, our ROBUSTTC-FSL gives consis-
tently better results compared to all the baselines.

1212

Model Avg Acc
Sentiment Intent

(1) Single-task CNN w/pre-trained emb 65.92 34.46
(2) Single-task FastText w/pre-trained emb 63.05 23.87
(3) Fine-tuned holistic MTL-CNN 76.56 30.36
(4) Matching Network (Vinyals et al., 2016) 65.73 30.42
(5) Prototypical Network (Snell et al., 2017) 68.15 31.51
(6) Convex combination of all single-task models 78.85 34.43
ROBUSTTC-FSL 83.12 37.59
Adaptive ROBUSTTC-FSL - 42.97

Table 1: Accuracy of FSL on sentiment classification (Sentiment) and dialog intent classification (Intent) tasks. The
target tasks of sentiment classification are 5-shot ones; and each intent target task contains one training example
per class and 20 random labeled examples.

It outperforms the baselines in previous work (1-
5) by a large margin of more than 6% on the senti-
ment classification tasks, and more than 3% on the
intent classification tasks. It is also significantly
better than our proposed baseline (6), showing the
advantages of the usage of task clustering.

Adaptive ROBUSTTC-FSL Although the RO-
BUSTTC-FSL improves over baselines on intent
classification, the margin is smaller compared to
that on sentiment classification, because the in-
tent classification tasks are more diverse in na-
ture. This is also demonstrated by the training
accuracy on the target tasks, where several tasks
fail to find any cluster that could provide a met-
ric that suits their training examples. To deal with
this problem, we propose an improved algorithm
to automatically discover whether a target task be-
longs to none of the task-clusters. If the task
doesn’t belong to any of the clusters, it cannot ben-
efit from any previous knowledge thus falls back
to single-task CNN. The target task is treated as
“out-of-clusters” when none of the clusters could
achieve higher than 20% accuracy (selected on
meta-validation tasks) on its training data. We call
this method Adaptive ROBUSTTC-FSL, which
gives more than 5% performance boost over the
best ROBUSTTC-FSL result on intent classifica-
tion. Note that the adaptive approach makes no
difference on the sentiment tasks, because they are
more closely related so re-using cluster-encoders
always achieves better results compared to single-
task CNNs.

5.3 Analysis
Effect of the number of clusters Figure 3
shows the effect of cluster numbers on the two
tasks. ROBUSTTC achieves best performance

Figure 3: Effect of clusters. ROBUSTTC-SA and RO-
BUSTTC-Intent: the performance of our ROBUSTTC
clusters on the sentiment and intent classification tasks.
ASAP-MT-LR-SA: the state-of-the-art ASAP-MT-LR
clusters on the sentiment-analysis tasks (the method is
not applicable to the intent-classification tasks).

with 5 clusters on sentiment analysis (SA) and 20
clusters on intent classification (Intent). All clus-
tering results significantly outperform the single-
metric baselines (#cluster=1 in the figure).

Effect of the clustering algorithms Compared
to previous task clustering algorithms, our RO-
BUSTTC is the only one that can cluster tasks with
varying numbers of class labels (e.g. in intent clas-
sification tasks). Moreover, we show that even
in the setting of all binary classifications tasks
(e.g. the sentiment-analysis tasks) that previous
task clustering research work on, our ROBUSTTC
is still slightly better for the diverse FSL problems.
Figure 3 compares with a state-of-the-art logistic
regression based task clustering method (ASAP-
MT-LR) (Barzilai and Crammer, 2015). Our RO-
BUSTTC clusters give slightly better FSL perfor-
mance (e.g. 83.12 vs. 82.65 when #cluster=5).

1213

Clus0 Clus1 Clus2 Clus3 Clus4 Clus5 Clus6 Clus7 Clus8 Clus9
automotive.t2 apparel.t2 baby.t5 automotive.t5 apparel.t5 beauty.t4 camera.t4 gourmet.t5 cell.t4 apparel.t4

camera.t2 automotive.t4 magazines.t5 baby.t4 camera.t5 beauty.t5 software.t2 magazines.t4 software.t5 toys.t2
health.t2 baby.t2 sports.t5 health.t4 grocery.t5 cell.t5 software.t4 music.t4 toys.t4

magazines.t2 cell.t2 toys.t5 health.t5 jewelry.t5 gourmet.t2 music.t5
office.t2 computer.t2 video.t5 gourmet.t4 video.t4

outdoor.t2 computer.t4 grocery.t2
sports.t2 computer.t5 grocery.t4
sports.t4 jewelry.t4 office.t4

music.t2 outdoor.t4
video.t2

dvd-t4 0.4844 0.4416 0.4625 0.7843 0.7970 0.7196 0.8952 0.3763 0.7155 0.6315
dvd-t5 0.0411 -0.2493 0.5037 0.3567 0.1686 -0.0355 0.4150 -0.2603 -0.0867 0.0547

kitchen-t4 0.6823 0.7268 0.7929 1.2660 1.1119 0.7255 1.2196 0.7065 0.6625 1.0945

Table 2: Visualization of clusters on the Amazon review domain. The top shows the training tasks assigned to the
10 clusters. Here the number N2 {2, 4, 5} refers to the threshold of stars for positive reviews. At the bottom we
show three tasks with largest improvement from ROBUSTTC-FSL. The top-3 most relevant task clusters (i.e. with
highest weights ↵s in Eq.6) are highlighted with blue bold font.

Visualization of Task Clusters The top rows of
Table 2 shows the ten clusters used to generate the
sentiment classification results in Figure 3. From
the results, we can see that tasks with same thresh-
olds are usually grouped together; and tasks in
similar domains also tend to appear in the same
clusters, even the thresholds are slightly different
(e.g. t2 vs t4 and t4 vs t5).

The bottom of the table shows the weights ↵s
in Eq.(6) for the target tasks with the largest im-
provement. It confirms that our ROBUSTTC-FSL
algorithm accurately adapts multiple metrics for
the target tasks.

6 Related Work

Few Shot Learning FSL (Li et al., 2006; Miller
et al., 2000) aims to learn classifiers for new
classes with only a few training examples per
class. Bayesian Program Induction (Lake et al.,
2015) represents concepts as simple programs that
best explain observed examples under a Bayesian
criterion. Siamese neural networks rank similar-
ity between inputs (Koch, 2015). Matching Net-
works (Vinyals et al., 2016) map a small labeled
support set and an unlabeled example to its la-
bel, obviating the need for fine-tuning to adapt
to new class types. These approaches essentially
learn one metric for all tasks, which is sub-optimal
when the tasks are diverse. An LSTM-based meta-
learner (Ravi and Larochelle, 2017) learns the ex-
act optimization algorithm used to train another
learner neural-network classifier for the few-shot
setting.

Previous FSL research usually adopts the k-
shot, N -way setting, where all the few-shot tasks
have the same number of N class labels, and each
label has k training instances. Moreover, these
few-shot tasks are usually constructed by sam-
pling from one huge dataset, thus all the tasks are

guaranteed to be related to each other. However,
in real-world applications, the few-shot learning
tasks could be diverse: there are different tasks
with varying number of class labels and they are
not guaranteed to be related to each other. As a re-
sult, a single meta-model or metric-model is usu-
ally not sufficient to handle all the few-shot tasks.
Task Clustering Previous task clustering meth-
ods measure the task relationships in terms of sim-
ilarities among single-task model parameters (Ku-
mar and Daume III, 2012; Kang et al., 2011); or
jointly assign task clusters and train model pa-
rameters for each cluster to minimize the overall
training loss (Crammer and Mansour, 2012; Barzi-
lai and Crammer, 2015; Murugesan et al., 2017).
These methods usually work on convex models but
do not fit the deep networks, mainly because of
(i) the parameters of deep networks are very high-
dimensional and their similarities are not neces-
sarily related to the functional similarities; and (ii)
deep networks have flexible representation power
so they may overfit to arbitrary cluster assignment
if we consider training loss alone. Moreover, these
methods require identical class label sets across
different tasks, which does not hold in most of the
realistic settings.

7 Conclusion

We propose a few-shot learning approach for di-
verse tasks based on task clustering. The pro-
posed method can use multiple metrics, and per-
forms significantly better compared to previous
single-metric based methods when the few-shot
tasks come from diverse domains. Future work in-
cludes generalizing our method to non-NLP prob-
lems, as well as applying the task-clustering idea
to other few-shot learning frameworks (Ravi and
Larochelle, 2017; Finn et al., 2017; Mishra et al.,
2017; Cheng et al., 2017).

1214

References
Aviad Barzilai and Koby Crammer. 2015. Convex

multi-task learning by clustering. In AISTATS.

John Blitzer, Mark Dredze, and Fernando Pereira.
2007. Biographies, bollywood, boom-boxes and
blenders: Domain adaptation for sentiment classi-
fication. In ACL, volume 7, pages 440–447.

Emmanuel J Candès and Terence Tao. 2010. The
power of convex relaxation: Near-optimal matrix
completion. IEEE Transactions on Information The-
ory, 56(5):2053–2080.

Venkat Chandrasekaran, Sujay Sanghavi, Pablo A Par-
rilo, and Alan S Willsky. 2011. Rank-sparsity inco-
herence for matrix decomposition. SIAM Journal on
Optimization, 21(2):572–596.

Yu Cheng, Mo Yu, Xiaoxiao Guo, and Bowen Zhou.
2017. Few-shot learning with meta metric learners.
In NIPS 2017 Workshop on Meta-Learning.

Ronan Collobert, Jason Weston, Léon Bottou, Michael
Karlen, Koray Kavukcuoglu, and Pavel Kuksa.
2011. Natural language processing (almost) from
scratch. Journal of Machine Learning Research,
12(Aug):2493–2537.

Koby Crammer and Yishay Mansour. 2012. Learn-
ing multiple tasks using shared hypotheses. In Ad-
vances in Neural Information Processing Systems,
pages 1475–1483.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. 2017.
Model-agnostic meta-learning for fast adaptation of
deep networks. arXiv preprint arXiv:1703.03400.

Rie Johnson and Tong Zhang. 2016. Supervised and
semi-supervised text categorization using one-hot
lstm for region embeddings. stat, 1050:7.

Armand Joulin, Edouard Grave, Piotr Bojanowski, and
Tomas Mikolov. 2016. Bag of tricks for efficient text
classification. arXiv preprint arXiv:1607.01759.

Zhuoliang Kang, Kristen Grauman, and Fei Sha. 2011.
Learning with whom to share in multi-task feature
learning. In Proceedings of the 28th International
Conference on Machine Learning (ICML-11), pages
521–528.

Yoon Kim. 2014. Convolutional neural networks for
sentence classification. In EMNLP, pages 1746–
1751, Doha, Qatar. Association for Computational
Linguistics.

Gregory Koch. 2015. Siamese neural networks for one-
shot image recognition. Ph.D. thesis, University of
Toronto.

Abhishek Kumar and Hal Daume III. 2012. Learning
task grouping and overlap in multi-task learning. In
Proceedings of the 29th International Conference on
Machine Learning (ICML-12).

Brenden M Lake, Ruslan Salakhutdinov, Jason Gross,
and Joshua B Tenenbaum. 2011. One shot learning
of simple visual concepts. In CogSci, volume 172,
page 2.

Brenden M Lake, Ruslan Salakhutdinov, and Joshua B
Tenenbaum. 2015. Human-level concept learning
through probabilistic program induction. Science,
350(6266):1332–1338.

Fei-Fei Li, Rob Fergus, and Pietro Perona. 2006. One-
shot learning of object categories. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence,
28(4):594–611.

Erik G Miller, Nicholas E Matsakis, and Paul A Viola.
2000. Learning from one example through shared
densities on transforms. In Computer Vision and
Pattern Recognition, 2000. Proceedings. IEEE Con-
ference on, volume 1, pages 464–471. IEEE.

Nikhil Mishra, Mostafa Rohaninejad, Xi Chen, and
Pieter Abbeel. 2017. A simple neural attentive meta-
learner. In NIPS 2017 Workshop on Meta-Learning.

Tsendsuren Munkhdalai and Hong Yu. 2017. Meta net-
works. arXiv preprint arXiv:1703.00837.

Keerthiram Murugesan, Jaime Carbonell, and Yiming
Yang. 2017. Co-clustering for multitask learning.
arXiv preprint arXiv:1703.00994.

Andrew Y Ng, Michael I Jordan, and Yair Weiss. 2002.
On spectral clustering: Analysis and an algorithm.
In Advances in neural information processing sys-
tems, pages 849–856.

Jeffrey Pennington, Richard Socher, and Christopher D
Manning. 2014. Glove: Global vectors for word
representation. In EMNLP, volume 14, pages 1532–
1543.

Sachin Ravi and Hugo Larochelle. 2017. Optimization
as a model for few-shot learning. In International
Conference on Learning Representations, volume 1,
page 6.

Jake Snell, Kevin Swersky, and Richard S Zemel. 2017.
Prototypical networks for few-shot learning. arXiv
preprint arXiv:1703.05175.

Eleni Triantafillou, Richard Zemel, and Raquel Urta-
sun. 2017. Few-shot learning through an informa-
tion retrieval lens. In Advances in Neural Informa-
tion Processing Systems, pages 2252–2262.

Oriol Vinyals, Charles Blundell, Tim Lillicrap, Daan
Wierstra, et al. 2016. Matching networks for one
shot learning. In Advances in Neural Information
Processing Systems, pages 3630–3638.

Yu-Xiong Wang, Deva Ramanan, and Martial Hebert.
2017. Learning to model the tail. In Advances in
Neural Information Processing Systems 30, pages
7032–7042.

1215

