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Abstract

Abstract Meaning Representation (AMR) an-
notations are often assumed to closely mir-
ror dependency syntax, but AMR explicitly
does not require this, and the assumption has
never been tested. To test it, we devise an
expressive framework to align AMR graphs
to dependency graphs, which we use to anno-
tate 200 AMRs. Our annotation explains how
97% of AMR edges are evoked by words or
syntax. Previously existing AMR alignment
frameworks did not allow for mapping AMR
onto syntax, and as a consequence they ex-
plained at most 23%. While we find that there
are indeed many cases where AMR annota-
tions closely mirror syntax, there are also per-
vasive differences. We use our annotations to
test a baseline AMR-to-syntax aligner, find-
ing that this task is more difficult than AMR-
to-string alignment; and to pinpoint errors in
an AMR parser. We make our data and code
freely available for further research on AMR
parsing and generation, and the relationship of
AMR to syntax.

1 Introduction

Abstract Meaning Representation (AMR; Ba-
narescu et al., 2013) is a popular framework for an-
notating whole sentence meaning. An AMR anno-
tation is a directed, usually acyclic graph in which
nodes represent entities and events, and edges rep-
resent relations between them, as on the right in
figure 1.1

AMR annotations include no explicit mapping
between elements of an AMR and the correspond-
ing elements of the sentence that evoke them, and
this presents a challenge to developers of machine
learning systems that parse sentences to AMR or
generate sentences from AMR, since they must

1For clarity of presentation, we have constructed the sen-
tences and AMRs shown in figures—except for figure 3, which
is a simplified version of a sentence in the corpus.

lies liel

cat catc

My ii

sun suns

the

Figure 1: “My cat lies in the sun.” An alignment be-
tween the dependency parse (left) and AMR (right).
Nodes participating in lexical alignments are marked
with boxes, but the links between them are not dis-
played. Structural alignments are colour-coded and
linked by dotted lines. Sense numbers for concepts that
are PropBank frames are omitted for brevity.

first infer this mapping in the training data (e.g.
Flanigan et al., 2014; Wang et al., 2015; Artzi et al.,
2015; Flanigan et al., 2016; Pourdamghani et al.,
2016; Misra and Artzi, 2016; Damonte et al., 2017;
Peng et al., 2017, inter alia).2

This AMR alignment problem was first for-
malized by Flanigan et al. (2014), who mapped
AMR nodes or connected subgraphs to words or
sequences of words under the assumption of a one-
to-one mapping—we call this JAMR alignment.
Pourdamghani et al. (2014) then re-formalized it so
that any AMR node or edge can map to any word
without a one-to-one assumption—we call this ISI
alignment. In ISI alignments, edges often align to
syntactic function words: for example, :location
aligns to in in figure 1. So edge alignments al-
low ISI to explain more of the AMR structure than
JAMR, but in a limited way: only 23% of AMR
edges are aligned in the ISI corpus. This may be be-

2Some recent neural AMR sytems require minimal or no
explicit alignments (Konstas et al., 2017; van Noord and Bos,
2017). But they implicitly learn them in the form of soft atten-
tion, and we believe that a clearer understanding of alignment
will benefit modeling and error analysis even in these systems.
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cause edges are often evoked by syntactic structure
rather than words: for instance, the :ARG1 edge in
figure 1 is evoked by the fact that cat is the subject
of lies and not by any particular word.

Although it seems sensible to assume that all
of the nodes and edges of an AMR are evoked by
the words and syntax of a sentence, the existing
alignment schemes do not allow for expressing that
relationship. We therefore propose a framework
expressive enough to align AMR to syntax (§2) and
use it to align a corpus of 200 AMRs to dependency
parses. We analyse our corpus and show that the
addition of syntactic alignments allows us account
for 97% of the AMR content.

Syntactic-semantic mappings are often assumed
by AMR parsing models (e.g. Wang et al., 2015;
Artzi et al., 2015; Damonte et al., 2017), which
is understandable since these mappings are well-
studied in linguistic theory. But AMR explic-
itly avoids theoretical commitment to a syntax-
semantics mapping: Banarescu et al. (2013) state
that “AMR is agnostic about how we might want
to derive meanings from strings.” If we are go-
ing to build such an assumption into our models,
we should test it empirically, which we can do by
analysing our corpus. We observe some pervasive
structural differences between AMR and depen-
dency syntax (§3), despite the fact that a majority
of AMR edges map easily onto dependency edges.

Since syntactic alignment can largely explain
AMRs, we also develop a baseline rule-based
aligner for it, and show that this new task is much
more difficult than lexical alignment (§4). We also
show how our data can be used to analyze errors
made by an AMR parser (§5). We make our anno-
tated data and aligner freely available for further
research.3

2 Aligning AMR to dependency syntax

Our syntactic representation is dependency gram-
mar, which represents the sentence as a rooted,
directed graph where nodes are words and edges
are grammatical relations between them (Kruijff,
2006). We use Universal Dependencies (UD), a
cross-lingual dependency annotation scheme, as
implemented in Stanford CoreNLP (Manning et al.,
2014). Within the UD framework, we use enhanced
dependencies (Schuster and Manning, 2016), in
which dependents can have more than one head,

3https://github.com/ida-szubert/amr_ud

resulting in dependency graphs (DGs).4

Our alignment guidelines generalize ideas
present in the existing frameworks. We want to
allow many-to-many alignments, which we mo-
tivate by the observation that some phenomena
cause an AMR graph to have one structure express-
ing the same information as multiple DG struc-
tures, and vice versa. For instance, in figure 2
the AMR subgraph representing Cruella de Vil
aligns to two subgraphs in the dependency graph
because of pronominal coreference. In the other
direction, in figure 3 the capabilities node aligns to
both capable nodes in the AMR, which is a result
of the AMR treating conjoined adjectival modifiers
as a case of ellipsis. The alignments we propose
hold between subgraphs of any size. By align-
ing subgraphs we gain expressiveness needed to
point out correspondences between semantic and
syntactic structure. If AMR and DG were very
similar in how they represent information, such
correspondences would probably hold between sub-
graphs consisting of a single edge, as in figure 1

cat
nmod:possÐÐÐÐÐ→my ∼ cat

possÐÐ→I. However, AMR by de-
sign abstracts away from syntax and it should not
be assumed that all mappings will be so clean. For

example, the same figure has lies
nmod-inÐÐÐÐ→sun

caseÐÐ→in∼ lies
locationÐÐÐÐ→sun. Moreover, AMR represents

the meaning of particular words or phrases with
elaborate structures, the result of which might
be that the same information is expressed by a
single word and a complex AMR subgraph, as
in figure 3 where AMR represents general as
person

ARG0-ofÐÐÐÐ→have-org-role
ARG2ÐÐ→general.

2.1 Overview
An alignment is a link between subgraphs in an
AMR and a DG which represent equivalent infor-
mation. Given a sentence’s DG and AMR we de-
fine an alignment as a mapping between an AMR
subgraph and a DG subgraph. Lexical alignments
(§2.2) hold between pairs of nodes, and nodes from
either graph may participate in multiple lexical
alignments. Structural alignments (§2.3) hold
between pairs of connected subgraphs where at
least one of the subgraphs contains an edge.

4We chose UD because it emphasises shallow and seman-
tically motivated annotation, by the virtue of which it can be
expected to align relatively straightforwardly to a semantic an-
notation such as AMR. Aligning AMR with different versions
of dependency grammar (e.g. Prague) or different syntactic
frameworks (e.g. CCG, TAG) would be an interesting exten-
sion of our work.
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Figure 2: “In the story, evildoer Cruella de Vil makes no attempt to conceal her glee and greed.” For legibility in
this and following figures only a subset of the structural alignments are shown.

In the following two sections we discuss the
types of alignments that our framework allows.
More detailed guidelines regarding how to align
particular linguistic constructions can be found in
appendix A.

2.2 Lexical alignments

A lexical alignment should hold between a word
and an AMR concept if the latter is judged to ex-
press the lexical meaning of the former. Node
labels usually reflect their lexically aligned word
or its lemma, including derivational morphology
(e.g. thirsty ∼ thirst-01). Thus, string similarity
is a useful heuristic for lexical alignment.5

Most AMR nodes align lexically to a single
word. Cases of one-to-many alignments include
coreference, when an entity is mentioned multiple
times in the sentence, and multiword expressions
such as a verb-particle constructions (pay off ∼
pay-off-02) and fixed grammatical expressions
(instead of ∼ instead-of-91). Occasionally an
AMR node does not lexically align to any DG node.
This is true for constants indicating sentence mood
such as imperative, implicit uses of and to group
list items, inferred concept nodes such as entity

5Exceptions include: pronouns with noun antecedents in
the sentence; the - indicating negative polarity, which lexically
aligns to no, not, and negative prefixes; modal auxiliaries,
e.g., can ∼ possible; normalized dates and values such as
February ∼ 2 in a date-entity; and amr-unknown, which
aligns to wh-words.

types, name in named entities, and -91 frames like
have-org-role-91.

Most words are lexically aligned to a single
AMR node, if they are aligned at all. A word may
align to multiple AMR nodes if it is duplicated
in the AMR due to ellipsis or distributive coordi-
nation (capabilities aligns to c2 / capable and
c3 / capable in figure 3), or if it is morpholog-
ically decomposed in the AMR (evildoer aligns
to evil and do-02 in figure 2). Many words are
not lexically aligned to any AMR node, including
punctuation tokens, articles, copulas, nonmodal
auxiliaries, expletive subjects, infinitival to, com-
plementizer that, and relative pronouns.

2.3 Structural alignments

Structural alignments primarily reflect composi-
tional grammatical constructions, be they syn-
tactic or morphological. Note that the structural
alignments build upon the lexical ones. Structural
alignments hold between two subgraphs, at least
one of which is larger than a single node. If a sub-
graph includes any edges, it automatically includes
nodes adjacent to those edges. Structural align-
ments need not be disjoint: an edge can appear in
two or more distinct alignments. Nodes and edges
in both AMR and DG may be unaligned.

2.3.1 Constraints on structural alignments
The ability to align subgraphs to subgraphs gives
considerable flexibility in how the annotation task
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Figure 3: “The general is confident in the nation’s defense and security capabilities.”

can be interpreted. We establish the following prin-
ciples to guide the specification of alignment:
Connectedness Principle. In an alignment d ∼ a,
d must be a connected subgraph of the DG, and a
must be a connected subgraph of the AMR.
Minimality Principle. If two alignments, d ∼ a
and d′ ∼ a′, have no dependency or AMR edges
in common, then their union d ∪d′ ∼ a∪a′ is re-
dundant, even if it is valid. Individual alignments
should be as small as possible; we believe compo-
sitionality is best captured by keeping structures
minimal. Therefore, in figure 1 there is no align-
ment between subgraphs spanning My, cat, lies and
i, cat, lie. Such subgraphs do express equivalent
information, but the alignment between them de-
composes neatly into smaller alignments and we
record only those.
Subsumption Principle. This principle ex-
presses the fact that our alignments are hierarchical.
Structural alignments need to be consistent with
lexical alignments: for subgraph a to be aligned to
subgraph d, all nodes lexically aligned to nodes in
a must be included in d, and vice versa. Moreover,
structural alignments need to be consistent with
other structural alignments. A structural alignment
d ∼ a is valid only if, for every connected AMR
subgraph a< ⊂ a which is aligned to a DG subgraph,
d′ ∼ a<, we also have that d′ is a subgraph of
d—and vice versa for every d< ⊂ d.

Further, if a contains a node n which is not
lexically aligned but which is part of a struc-
turally aligned subgraph a′ such that d′ ∼ a′,
it needs to be the case that a′ ⊂ a ∧ d′ ⊂ d or

a′ ⊃ a ∧ d′ ⊃ d. (And vice versa for nodes in

d.) For example, conceal
nsubj-xsubjÐÐÐÐÐ→Cruella ∼

conceal
ARG0ÐÐ→person

nameÐÐ→name
op1Ð→Cruella is not a

valid alignment, because the AMR side contains
nodes person and name, which are not lexically
aligned but which are both parts of a structural
alignment marked in blue.

Coordination Principle. If an alignment con-
tains a dependency edge between two conjuncts, or
between a conjunct and a coordinating conjunction,
then it must also include all conjuncts and the con-
junction. This preserves the integrity of coordinate
structures in alignments. For example, in figure 2

there is no alignment glee
ccÐ→and ∼ and

op1Ð→glee;
only the larger structure which includes the greed

nodes is aligned.

Named Entity Principle. Any structural
alignment containing an AMR name node
or any of the strings under it must contain
the full subgraph rooted in the name plus the
node above it specifying the entity type. This
means that for example, in figure 2 there

is no alignment conceal
nsubj-xsubjÐÐÐÐÐ→Cruella ∼

conceal
ARG0ÐÐ→person

nameÐÐ→name
op1Ð→"Cruella".

Such an alignment would also be stopped by the
Subsumption Principle provided that the blue
alignment of the whole name was present. The
Named Entity Principle is superfluous, but is
provided to explicitly describe the treatment of
such constructions.
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2.3.2 Typology of structural alignments

The smallest structure which can participate in a
structural alignment is a single node, provided that
it is aligned to a subgraph containing at least one
edge. A DG node may align to an AMR subgraph
if the word is morphologically decomposed or oth-
erwise analyzed in the AMR (e.g. in figure 2, evil-
doer ∼ person

ARG0-ofÐÐÐÐ→do-02
ARG1ÐÐ→thing

modÐ→evil).
Examples of DG structures whose meaning is
expressed in a single AMR node include light
verb constructions, phrasal verbs, and various
other multiword expressions (e.g. in figure 2,

makes
dobjÐÐ→attempt ∼ attempt-01).

Conceptually the simplest case of structural
alignment is one edge to one edge, as in the blue
and green alignments in figure 1. For such an align-
ment to be possible, two requirements must be
satisfied: nodes which are endpoints of those edges
need to be aligned one-to-one; and the AMR rela-
tion and the syntactic dependency must map cleanly
in terms of the relationship they express.

A one edge to multiple edges alignment arises
when either of those requirements is not met. To
see what happens in absence of one-to-one end-
point alignments let’s look at the relation between
confident and general in figure 3. The DG gen-
eral node is aligned to an AMR subgraph: general∼ person

ARG0-ofÐÐÐÐ→have-org-role
ARG2ÐÐ→general. All

alignments which involve the general node on the
DG side need to include its aligned subgraph on
the AMR side. It necessarily follows that the AMR
subgraphs in those alignments will contain more
edges that the DG ones; in this case the yellow sub-
graph in DG has 1 edge, and in AMR 3 edges. As
for the second requirement, it is possible for one
graph to use multiple edges to express a relation-
ship when the other graph needs only one. This is

the case for lie
nmod-inÐÐÐÐ→sun

caseÐÐ→in ∼ lie
locationÐÐÐÐ→sun

in figure 1. An example which combines both the
node- and edge-related issues is marked in red in
figure 2.

Finally, we also allow for many edges to many
edges alignments. This may seem counterintu-
itive considering the assumption that we want to
capture mappings between relations expressed in
DG and AMR, and that we want to align mini-
mal subgraphs. There are cases where an align-
ment is actually capturing a single relation, but
we need to treat a subgraph as an endpoint of the
edge both in DG and AMR. For instance, con-

sider in figure 2 the relationship that holds between
Cruella de Vil and concealing, expressed syntac-
tically as an nsubj-xsubj edge and semantically
as an ARG0 edge. One of the entities involved in
that relationship, Cruella, is represented by a 2-
edge DG subgraph and a 4-edge AMR subgraph.
Consequently, the alignment covering the DG and
AMR edges that relate Cruella to concealing must
link subgraphs consisting respectively of 3 and 5
edges. A more difficult case of many edges to
many edges alignment arises when relationships
between nodes are expressed so differently in the
DG and AMR that given an edge in one graph it is
not possible to find in the other graph a subgraph
that would convey the same information without
also including some other information. Coordina-
tion has this property: e.g. in figure 2 the conj-and
dependency between glee and greed has no counter-
part in the AMR. There is no edge between AMR
nodes aligned to those words, and the smallest
AMR subgraph which contains them also contains
and, which is itself lexically aligned. We cannot

align glee
conj-andÐÐÐÐ→greed ∼ glee

op1←Ðand
op2Ð→greed

because of the rule that all lexically aligned nodes
in one subgraph must be aligned to nodes in the
other subgraph. Therefore we need to extend the

DG side to and
cc←Ðglee

conj-andÐÐÐÐ→greed.

3 Manually aligned corpus

We annotated a corpus of 200 AMR-sentence pairs
(3813 aligned structures) using the guidelines of §2
and appendix A.6

Data selection. To create the corpus we drew a
total of 200 AMR-sentence pairs: 135 from the
training split of the AMR Annotation Release 1.0
(Knight et al., 2014), 55 from the training split of
The Little Prince Corpus v1.6,7 and 10 sentences
from the Adam part of the CHILDES Brown corpus
(Brown, 1973), for which AMRs were produced
by an experienced annotator. Seventy items were
selected to illustrate particular linguistic phenom-
ena.8 The remaining 130 were selected at random.

6We followed the precedent of previous AMR-to-sentence
alignment corpora (see §4.2) in including 200 sentences in our
gold standard, though ours was a different sample.

7https://amr.isi.edu/download/
amr-bank-struct-v1.6.txt

8Namely: relative clauses, reflexive and non-reflexive
pronominal anaphora, subject and object control, raising,
exceptional case marking, coordination, wh-questions, do-
support questions, ellipsis, expletives, modal verbs, light verbs,
comparison constructions, and quantification.
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Preprocessing. Dependency parses were ob-
tained using Stanford CoreNLP neural network
parser9 (Chen and Manning, 2014) and manually
corrected. The final parses conform to the en-
hanced UD guidelines,10 except they lack enhance-
ments for ellipsis.

Inter-annotator agreement. The corpus was cre-
ated by one annotator. To assess inter-annotator
agreement, a second annotator deeply familiar with
UD and AMR annotated a random sample of sen-
tences accounting for 10% of alignments in the
corpus. The overall inter-annotator F1-score was
88%, with 96% agreement on lexical alignments
and 80% on structural alignments. We take this
as an indication that our richly structured align-
ment framework as laid out in §2 is reasonably
well-defined for annotators.

3.1 Coverage

To assess our attempt to explain as much of the
AMR as possible, we computed the proportion of
AMR nodes and edges that participate in at least
one alignment. Overall, 99.3% of nodes and 97.2%
of edges in AMRs are aligned. We found that
81.5% of AMR graphs have full coverage, 18.5%
have at least one unaligned edge, and 7.5% have
one unaligned node (none had more than one; all
unaligned nodes express mood or discourse-related
information: interrogative, and, and say). We
conclude that nearly all information in an AMR is
evoked by lexical items or syntactic structure.

We expected coverage of DG to be lower be-
cause punctuation and many function words are
unaligned in our guidelines (§2.2). Indeed, only
71.4% of words and 65.2% of dependency edges
are aligned.

3.2 Syntactic-semantic similarity

The similarity of AMR to syntax in examples like
figure 1 invites the assumption of a close map-
ping, which often seems to be made in AMR
parsers (Wang et al., 2015; Artzi et al., 2015; Misra
and Artzi, 2016; Damonte et al., 2017) and align-
ers (Chu and Kurohashi, 2016; Chen and Palmer,

9The corpus is annotated with UD v1; a release of the
dataset converted to UD v2 is planned for the future. We
used the pretrained dependency parsing model provided in
CoreNLP with depparse.extradependencies set to MAXIMAL,
and used collapsed CCprocessed dependencies.

10http://universaldependencies.org/u/overview/
enhanced-syntax.html

simple configurations complex configurations

max # avg. max # avg.
config. sents words config. sents words

1:1 18 8.7 2:2 21 12.9
1:2 16 13.1 2:3 14 16.0
3:1 12 13.4 3:2 13 16.8
2:0 6 5.8 3:4 12 20.3
1:3 5 13.2 3:3 10 19.1

other 9 15.2 other 64 20.9

total: 66 11.6 134 18.0

Table 1: Number of sentences whose highest alignment
configurations is max config.

2017).11 Such an attitude reflects decades of work
in the syntax-semantics interface (Partee, 2014) and
the utility of dependency syntax for other forms of
semantics (e.g., Oepen et al., 2014; Reddy et al.,
2016; Stanovsky et al., 2016; White et al., 2016;
Zhang et al., 2017; Hershcovich et al., 2017). How-
ever, this assumption has not been empirically
tested, and as Bender et al. (2015) observe, it is
an assumption not guaranteed by the AMR anno-
tation style. Having aligned a corpus of AMR-DG
pairs, we are in a position to provide empirical
evidence.

Are AMRs and dependency graphs structurally
similar? We approach the question by analyzing
the sizes of subgraphs used to align the two repre-
sentations of the sentence.

We define the size of a subgraph as the number
of edges it contains. If a structure consists of a sin-
gle node, we say its size is 0. The configuration of
an alignment is then the pair of sizes for its AMR
and DG sides; for example, an alignment with 1
AMR edge and 2 DG edges has configuration 1:2.
We call an alignment configuration simple if at least
one of the subgraphs is a single edge, indicating
that there is a single relation which the alignment
captures. Complex configurations cover multiple
relations. By principle of minimality we infer that
some structural difference between the graphs pre-
vented those relations from aligning individually.

One measure of similarity between AMR and
DG graphs is the configuration of the most com-
plex subgraph alignment between them. Configura-
tion a:b is higher than c:d if a+b > c+d. However,
all configurations involving 0 are lower than those
which do not. A maximum of 1:1 means the graphs
have only node-to-node, node-to-edge, and edge-to-
edge alignments, rendering the graphs isomorphic
(ignoring edge directions and unaligned nodes). In

11In particular, Chen and Palmer (2017) align dependency
paths to AMR edges. However, their evaluation only consid-
ers node-to-node alignment, and their code and data are not
available for comparison at the time of this writing.
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named semantic quantities
entities coordination decomposition & dates other overall

2:0 112 2:2 30 1:0 32 2:1 15 0:0 1946 0:0 1946
3:1 44 3:4 14 2:0 14 3:0 5 1:1 1002 1:1 1046
4:2 7 3:3 13 2:1 11 1:0 4 1:2 220 1:2 244
1:1 6 4:3 5 4:1 6 3:2 3 1:0 42 2:0 127
5:2 4 3:2 5 3:1 6 8:2 1 2:2 42 2:2 83

other 20 other 50 other 15 other 0 other 13 other 361

total: 193 117 84 28 3385 3807

Table 2: Frequency of alignment configurations for named entities, coordination, semantically decomposed words,
quantities and dates, and other phenomena.

general, if the maximum alignment configuration is
a simple one, the graphs could be made isomorphic
by collapsing the larger side of the alignment (e.g.,
in figure 2, the AMR side of the alignment evil-
doer ∼ person

ARG0-ofÐÐÐÐ→do
ARG1ÐÐ→thing

modÐ→evil could
be collapsed into a node).

In contrast, complex configurations imply seri-
ous structural dissimilarity, as in figure 3, where
the cyan alignment has configuration 4:4.

The numbers in table 1 show that ≈33% of the
sentences are simple.

Table 2 provides a detailed breakdown of align-
ment configurations in the corpus. Phenom-
ena which often trigger complex configurations
include coordination, named entities, semanti-
cally decomposed words, attachment of negation,
and preposition-based concepts encoding location,
time, and quantity.12

We observe, comparing tables 1 and 2, that while
simple configurations are most frequent in the cor-
pus, the majority of sentences have at least one
alignment which is complex. It should not be as-
sumed that AMR and DG representations of a sen-
tence are, or could trivially be made to be, isomor-
phic. It is worth noting that our analysis suggests
that DG and AMR could be made more similar
by applying simple transformations targeting prob-
lematic constructions like coordination and named
entities.

4 Evaluation of automatic aligners

We use our annotations to measure the accuracy
of AMR aligners on specific phenomena that were
inexpressible in previous annotation schemes. Our
experiments evaluate the JAMR heuristic aligner
(Flanigan et al., 2014), the ISI statistical aligner
(Pourdamghani et al., 2014), and a heuristic rule-
based aligner that we developed specifically for

12An AMR concept evoked by a preposition usually domi-

nates the structure (after
op1ÐÐ→date-entity

decadeÐÐÐ→nineties),
which is at odds with UD’s prepositions-as-case-markers pol-
icy (nineties

caseÐÐ→after).

structural alignment.

4.1 Rule-based aligner

Our aligner operates in two passes: one for lexical
alignment and one for structural alignment.

Lexical alignment algorithm. AMR concepts
are cognate with English words, so we align them
by lexical similarity. This algorithm does not make
use of the DG. Before alignment, we remove sense
identifiers on AMR node labels, and lemmatize DG
node labels. Then for every pair of nodes a from
the AMR and d from the DG we align them if any
of the following conditions holds:

1. The Levenshtein distance of a and d is 15%
or less of the length of the longer word.13

2. The label of a is the morphological negation
of d (e.g. prudent ∼ imprudent).14

3. The label of a is – (AMR’s annotation of
negation) and the parent of a aligns to d via rule 2.

4. The label of a is – and d is one of no, none,
not, or never.

5. The label of a consists of multiple words, and
the label of d matches any one of them under rule 1.
(e.g. sit ∼ sit-down, war-torn ∼ war).15

6. Labels of a and d likely have the same mor-
phological root. We determine this by segmenting
each word with Morfessor (Grönroos et al., 2014)
trained on Wiki data and applying rule 1 to the first
morpheme of each word.

Note that if a word type is repeated in a sentence,
each repetition is aligned to the same AMR nodes
under the above rules.

Structural alignment algorithm. We align sub-
graphs using the procedure below, first from AMR
to DG, then from DG to AMR. For clarity, the
explanation refers to the first case.

13Threshold was determined empirically on a 10% sample
from the dataset.

14We use a list of morphologically negated words provided
by Ulf Hermjakob.

15This rule misaligns some AMR-specific node types, such
as government ∼ government-organization.
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dataset

aligner our ISI JAMR

our 89 85 87 88 77 82 55 81 65
ISI 71 68 70 96 85 90 47 67 55

JAMR 86 63 72 95 66 78 92 85 88

Table 3: Lexical alignment (precision, recall, F1-score).
Our lexical alignment algorithm does not use syntax.

Local phase. For every AMR edge ea whose
endpoints are lexically aligned nodes a1 (aligned
to d1) and a2 (aligned to d2), we attempt to align
minimal and connected AMR and dependency sub-
graphs, a′ and d′:

1. If there is a DG edge ed whose endpoints are
d1 and d2, then a′← ea and d′← ed .

2. Otherwise, let πd be the shortest undirected
path between d1 and d2. If all lexically aligned
nodes in πd are aligned to a1 or a2, then a′ ← ea

and d′← πd .
3. Otherwise, let a′′ be the smallest subgraph

covering all AMR nodes that are lexically aligned
to nodes in πd . If all the nodes in a′′ are aligned
only to nodes in πd , then a′← a′′ and d′← πd .

4. Otherwise, the attempt is abandoned.
5. Finally, if the top node of a′ has a parent node

labeled with an entity type concept, extend a′ to
include the parent. (This step is performed only in
the AMR-to-DG step.)

Global phase. The local phase might produce
alignments that violate the Subsumption Principle
(§2.3.1), so we filter them out heuristically. For
every pair of structural alignments, πd ∼ πa and
π ′d ∼ π ′a where πa overlaps with π ′a, or πd with
π ′d , if the region of overlap is not itself an aligned
subgraph, we prune both alignments.16

4.2 Experiments

We evaluate JAMR, ISI, and our aligner on two
distinct tasks.
Lexical alignment. Lexical alignment involves
aligning AMR nodes to words, a task all three
systems can perform. We evaluate against three
datasets: our own, the JAMR dataset (Flanigan
et al., 2014), and the ISI dataset (Pourdamghani
et al., 2014).17 Results (table 3) suggest that this
task is already well-addressed, but also that there
exist marked differences between how lexical align-
ment is defined in each dataset and that aligners are

16This could be order-dependent since the removal of one
alignment could trigger the removal of others, but our aligner
does not account for this.

17We remove span alignments in the JAMR dataset and
edge alignments in the ISI dataset.

prec., rec., F1 prec., rec., F1
lexical alignments using gold DGs using automatic DGs

gold 79 73 76 70 63 66
our aligner 68 56 61 63 48 55

ISI 65 50 57 58 44 50
JAMR 71 41 52 61 34 44

Table 4: Structural alignment (§4.1) scores, with dif-
ferent sources of input lexical alignments. Scores are
shown for gold standard and automatic UD trees.

fine-tuned to their dataset.
For our aligner, errors are due to faulty morpho-

logical analysis, duplicated words, and both acci-
dental string similarity between AMR concepts and
words and occasional lack of similarity between
concepts and words that should be aligned.
Structural alignment. An important goal of our
experiments is to establish baselines for the struc-
tural alignment task. While we cannot evaluate the
JAMR and ISI aligners directly on this task, we can
use the lexical alignments they output in place of
the first pass of our aligner. The only dataset for
this task is our own. The results (table 4) evaluate
accuracy of structural alignments only and do not
count lexical alignments.

The automatic alignments have lower coverage
of AMRs than the gold alignments do: our best
aligner leaves 13.3% of AMR nodes and 30.0%
of AMR edges unaligned, compared to 0.07% and
2.8% in the gold standard. The aligner also leaves
39.2% of DG nodes and 47.7% of DG edges un-
aligned, compared to 28.6% and 34.8% in the gold
standard. The relatively low F-score for the gold
standard lexical alignments and DGs condition sug-
gests that substantial improvements to our struc-
tural alignment algorithm are possible. The two
most common reasons for low recall were miss-
ing one of the conjuncts in a coordinate structure
and aligning structures that violate the principle of
minimality.

Our corpus gives alignments between AMRs and
gold standard dependency parses. To see how much
performance degrades when such parses are not
available we also evaluate on automatic parses.18

Both precision and recall are substantially worse
when the aligner relies on automatic syntax.

5 Improving error analysis for AMR
parsers

Our corpus of manually aligned AMRs can be used
to identify linguistic constructions which cause

18We use the CoreNLP dependency parser with settings as
described in §3.
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UD structure missed mislabeled

nsubj 103 (40%) 14 (6%)
nmod + case 74 (44%) 26 (16%)
compound 55 (41%) 7 (5%)

amod 40 (26%) 9 (6%)
dobj 40 (33%) 6 (5%)

advmod 30 (39%) 7 (9%)
cc + conj 29 (57%) 4 (8%)

nmod 21 (60%) 1 (3%)

Table 5: Error analysis of the AMR parser of Da-
monte et al. (2017). Frequency of dependency struc-
tures aligned to AMR edges which the automatic AMR
parser missed altogether or mislabeled; absolute count
(% of all such aligned structures in the corpus).

problems for an AMR parser. We parsed the sen-
tences from our corpus with the parser of Damonte
et al. (2017).19 We map the nodes of the result-
ing automatic AMRs to the gold AMRs using the
smatch evaluation tool (Cai and Knight, 2013), and
on the basis of this mapping identify those nodes
and edges of the gold AMRs which are missing or
mislabeled in the automatic AMRs.

We then measured the number and rate of erro-
neous AMR fragments associated with each UD
relation or construction (table 5). The largest pro-
portion of recall errors were for fragments associ-
ated with the subject relation, prepositional phrases,
and nominal compounds. Focusing on the subject
relation, we can further say that 69% of the miss-
ing or mislabeled edges have the gold label ARG0,
19% ARG1, and the rest are distributed amongst
domain, ARG2, purpose and mod. Inspecting the
errors we see that phenomena underlying them in-
clude pronominal coreference, sharing arguments
between conjoined predicates, auxiliary verb con-
structions, and control and raising.20

Our corpus facilitates fine-grained error analysis
of AMR parsers with respect to individual syntactic
constructions. We release the code for the above an-
alysis in order to encourage syntactically-informed
comparison and improvement of systems.

6 Conclusion

We have presented a new framework and corpus
for aligning AMRs to dependency syntax. Our
data and analysis show that the vast majority of
the semantics in AMR graphs can be mapped to
the lexical and syntactic structure of a sentence,
though current alignment systems do not fully cap-
ture this correspondence. The syntax–semantics

19The overall smatch score of the parser on this dataset was
0.65.

20The missing edge counts include gold edges for which
the parser failed to produce one or both endpoints.

correspondences are often structurally divergent
(non-isomorphic). Simple algorithms for lexical
and structural alignment establish baselines for the
new alignment task; we expect statistical models
will be brought to bear on this task in future work.
Our framework also facilitates syntactically-based
analysis of AMR parsers. We release our data and
code for the benefit of the research community.
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A Details of alignment guidelines

A.1 Lexical alignments
Names. In proper names, individual strings denot-
ing words in the name are lexically aligned, but the
entity as a whole is structurally aligned.
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Entity types. If the entity type is based on a com-
mon noun which occurs in the sentence, it is lex-
ically aligned: e.g., Jon, a clumsy man, has a cat
would involve the alignment man ∼ man. Most
often, however, an entity type is not explicitly men-
tioned in the sentence and is taken from AMR’s
ontology of entity types (http://www.isi.edu/
~ulf/amr/lib/ne-types.html), in which case it
will not be lexically aligned.

Case marking and prepositions. The possessive
marker ’s and many prepositions participate in
structural but not lexical alignments because they
are inherently relational. However, we align a
preposition if it carries sufficient lexical content
to be included as an AMR node (e.g., the AMR
for The cat is under the table would include
under

op1Ð→table).

Wh-questions. The special concept amr-unknown
aligns lexically to the wh-word whose referent is
questioned. For multiword wh-expressions like
how much, the expression is aligned structurally
(not lexically) to amr-unknown.

Sentence mood. In AMR, non-wh questions are
indicated by

modeÐÐ→interrogative, imperatives by
modeÐÐ→imperative, and exclamations/interjections
by

modeÐÐ→expressive. UD parses do not encode
sentence mood, which can be conveyed by non-
canonical word order (subject-auxiliary inversion
for questions) or argument omission (subject omis-
sion for imperatives), rather than the presence of
certain relations or words. Sometimes the sentence
includes an appropriate alignment point, e.g. com-
plementizers whether and if for interrogative,
allowing for a lexical alignment. More often the
parse has no obvious alignment point, and the con-
stant interrogative, imperative, or expressive
is left unaligned.21

A.2 Structural alignments

Copulas. In UD, copulas are treated as modifiers
of a predicate nominal or adjective, which is linked
directly to the subject of the sentence via an nsubj
dependency. We do not align copulas or the cop
edge. Thus, in figure 3, there is a structural align-

ment between general
nsubj←ÐÐconfident and the AMR

subgraph connecting the lexically aligned nodes.

21Among the UD community there has been discussion of
possibly adding sentence-level marking of mood (https://
github.com/UniversalDependencies/docs/issues/458),
which could provide a convenient alignment point.

Control. The subject of the control verb and the
controlled predicate are connected by the nsubj-
xsubj edge, which can be structurally aligned with
the corresponding AMR argument relation, as in
e.g. figure 2.

Relative clauses. In enhanced UD the noun gov-
erning a relative clause and the embedded predicate
are linked by edges in both directions: a “surface
syntax” acl-relcl edge headed by the noun, and a
“deep syntax” edge such as nsubj, dobj, iobj, or
nmod headed by the embedded predicate. Each
participates in a structural alignment with the cor-
responding AMR subgraph. The relative pronoun
is left unaligned.

Coordination. Coordination does not naturally
lend itself to analysis with dependencies, and dif-
ferent dependency grammar traditions offer differ-
ent approaches (Nivre, 2005; Mareček et al., 2013).
UD follows the Stanford style, where the first con-
junct serves as the head of the remaining conjuncts,
and the conjunction is a dependent of one of the
conjuncts.22 In AMR the conjunction heads all
the conjuncts (Prague style). In light of this mis-
match, we use a subgraph alignment to group the
conjunction with its conjuncts on each side. A
simple example is illustrated in figure 2. A quirk
of UD’s approach to coordination is that it does
not distinguish modifiers of the first conjunct from
modifiers of the coordinate structure as a whole.
The basic UD parse of her glee and greed is there-
fore ambiguous. We rely on an extra edge in the
enhanced parse between her and greed to establish
an alignment for the AMR edge greed

ARG0ÐÐ→person.
The coordination in figure 3 is more complex:

the coordinated modifier defense and security dis-
tributes over capabilities (i.e., there are two kinds
of capabilities). In the enhanced parse, defense
and security are both attached as modifiers of ca-
pabilities. This is expressed semantically via du-
plicate AMR nodes labeled capable, each receiv-
ing different modifiers corresponding to different
conjuncts. Independent of coordination, the two
capable nodes also share a common argument,
nation. The three syntactic modifiers give rise to
three subgraph alignments, and the subgraph align-
ment covering the coordinate structure (cyan in the
figure) envelops two of these. Ellipsis construc-

22In UD version 1, and therefore the examples in this pa-
per, the conjunction attaches to the first conjunct, whereas in
version 2 it attaches to the next successive conjunct (http:
//universaldependencies.org/v2/summary.html).

1179



tions can also trigger node duplication in AMR,
requiring similar structural alignments.
Named entities. AMR annotates each named en-
tity with a node representing the name, linked to
the strings of the name and headed by an entity
type. This full structure is aligned to the full name
in the dependency parse.
Coreferent mentions. Coreference often causes
an AMR structure to align to multiple DG sub-
graphs. For example, in figure 2, both the pronoun
her and the name align to the AMR subgraph rep-
resenting the entity. This mechanism suffices to
represent coreference between mentions in the sen-
tence.
Light verbs. Light verbs have no lexical align-
ment, but a subgraph alignment covers the light

verb construction as a unit (e.g. makes
dobjÐÐ→attempt∼ attempt-01 in figure 2). All subgraph align-

ments which involve the light verb or its comple-
ment have to involve to whole unit, as shown in the
alignment highlighted in red in figure 2.
Multiword expressions. In verb-particle con-
structions and fixed grammatical expressions the
AMR node lexically aligns to all words in the ex-
pression, and additionally to the DG subgraph span-
ning the whole expression. (e.g. pay ∼ pay-off-02,

off ∼ pay-off-02, and pay
compound-prtÐÐÐÐÐÐÐ→off ∼

pay-off-02).
Prepositional phrases. PP modifiers typically in-
volve an extra dependency edge for the preposi-

tion attachment, as with lies
nmod-inÐÐÐÐ→sun

caseÐÐ→in ∼
lie-07

locationÐÐÐÐ→sun.
Semantically decomposed words. When one
word has multiple lexical alignments because
of morphological decomposition, there also
exists a structural alignment between that
word and an AMR subgraph representing
the decomposition: e.g., in figure 2, evildoer∼ person

ARG0-ofÐÐÐÐ→do-02
ARG1ÐÐ→thing

modÐ→evil,
and in figure 3, general ∼
person

ARG0-ofÐÐÐÐ→have-org-role-91
ARG2ÐÐ→general.

AMR decomposes certain words by convention
which must always be structurally aligned, such

as ago ∼ before
op1Ð→now and government ∼

government-organization
ARG0-ofÐÐÐÐ→govern-01.

Date, time, and value expressions. These ex-
pressions are aligned similarly to named entities,
even though the normalized constants may not ex-
actly match the words in the sentence. For example,

the DG structure 9:00
nummod←ÐÐÐÐpm would be repre-

sented in the AMR as date-entity
timeÐÐ→21:00; to-

kens 9:00 and pm are treated as a multiword expres-
sion: each is lexically aligned to "21:00". More-

over, we also align 9:00
nummod←ÐÐÐÐpm ∼ 21:00 and

9:00
nummod←ÐÐÐÐpm ∼ date-entity

timeÐÐ→21:00.
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