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Abstract

Word embedding is a key component in many
downstream applications in processing natu-
ral languages. Existing approaches often as-
sume the existence of a large collection of
text for learning effective word embedding.
However, such a corpus may not be avail-
able for some low-resource languages. In
this paper, we study how to effectively learn
a word embedding model on a corpus with
only a few million tokens. In such a situa-
tion, the co-occurrence matrix is sparse as the
co-occurrences of many word pairs are unob-
served. In contrast to existing approaches of-
ten only sample a few unobserved word pairs
as negative samples, we argue that the zero
entries in the co-occurrence matrix also pro-
vide valuable information. We then design
a Positive-Unlabeled Learning (PU-Learning)
approach to factorize the co-occurrence matrix
and validate the proposed approaches in four
different languages.

1 Introduction

Learning word representations has become a
fundamental problem in processing natural lan-
guages. These semantic representations, which
map a word into a point in a linear space, have
been widely applied in downstream applications,
including named entity recognition (Guo et al.,
2014), document ranking (Nalisnick et al., 2016),
sentiment analysis (Irsoy and Cardie, 2014), ques-
tion answering (Antol et al., 2015), and image cap-
tioning (Karpathy and Fei-Fei, 2015).

Over the past few years, various approaches
have been proposed to learn word vectors (e.g.,
(Pennington et al., 2014; Mikolov et al., 2013a;
Levy and Goldberg, 2014b; Ji et al., 2015)) based
on co-occurrence information between words ob-
served on the training corpus. The intuition behind
this is to represent words with similar vectors if

they have similar contexts. To learn a good word
embedding, most approaches assume a large col-
lection of text is freely available, such that the es-
timation of word co-occurrences is accurate. For
example, the Google Word2Vec model (Mikolov
et al., 2013a) is trained on the Google News
dataset, which contains around 100 billion to-
kens, and the GloVe embedding (Pennington et al.,
2014) is trained on a crawled corpus that contains
840 billion tokens in total. However, such an as-
sumption may not hold for low-resource languages
such as Inuit or Sindhi, which are not spoken by
many people or have not been put into a digital
format. For those languages, usually, only a lim-
ited size corpus is available. Training word vectors
under such a setting is a challenging problem.

One key restriction of the existing approaches
is that they often mainly rely on the word pairs
that are observed to co-occur on the training data.
When the size of the text corpus is small, most
word pairs are unobserved, resulting in an ex-
tremely sparse co-occurrence matrix (i.e., most en-
tries are zero)1. For example, the text82 corpus
has about 17,000,000 tokens and 71,000 distinct
words. The corresponding co-occurrence matrix
has more than five billion entries, but only about
45,000,000 are non-zeros (observed on the train-
ing corpus). Most existing approaches, such as
Glove and Skip-gram, cannot handle a vast num-
ber of zero terms in the co-occurrence matrix;
therefore, they only sub-sample a small subset of
zero entries during the training.

In contrast, we argue that the unobserved word
pairs can provide valuable information for train-
ing a word embedding model, especially when
the co-occurrence matrix is very sparse. Inspired

1Note that the zero term can mean either the pairs of
words cannot co-occur or the co-occurrence is not observed
in the training corpus.

2http://mattmahoney.net/dc/text8.zip
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by the success of Positive-Unlabeled Learning
(PU-Learning) in collaborative filtering applica-
tions (Pan et al., 2008; Hu et al., 2008; Pan and
Scholz, 2009; Qin et al., 2010; Paquet and Koenig-
stein, 2013; Hsieh et al., 2015), we design an algo-
rithm to effectively learn word embeddings from
both positive (observed terms) and unlabeled (un-
observed/zero terms) examples. Essentially, by
using the square loss to model the unobserved
terms and designing an efficient update rule based
on linear algebra operations, the proposed PU-
Learning framework can be trained efficiently and
effectively.

We evaluate the performance of the proposed
approach in English3 and other three resource-
scarce languages. We collected unlabeled lan-
guage corpora from Wikipedia and compared the
proposed approach with popular approaches, the
Glove and the Skip-gram models, for training
word embeddings. The experimental results show
that our approach significantly outperforms the
baseline models, especially when the size of the
training corpus is small.

Our key contributions are summarized below.

• We propose a PU-Learning framework for
learning word embedding.

• We tailor the coordinate descent algo-
rithm (Yu et al., 2017b) for solving the cor-
responding optimization problem.

• Our experimental results show that PU-
Learning improves the word embedding
training in the low-resource setting.

2 Related work

Learning word vectors. The idea of learning
word representations can be traced back to La-
tent Semantic Analysis (LSA) (Deerwester et al.,
1990) and Hyperspace Analogue to Language
(HAL) (Lund and Burgess, 1996), where word
vectors are generated by factorizing a word-
document and word-word co-occurrence matrix,
respectively. Similar approaches can also be ex-
tended to learn other types of relations between
words (Yih et al., 2012; Chang et al., 2013) or enti-
ties (Chang et al., 2014). However, due to the lim-
itation of the use of principal component analysis,

3Although English is not a resource-scarce language, we
simulate the low-resource setting in an English corpus. In this
way, we leverage the existing evaluation methods to evaluate
the proposed approach.

these approaches are often less flexible. Besides,
directly factorizing the co-occurrence matrix may
cause the frequent words dominating the training
objective.

In the past decade, various approaches have
been proposed to improve the training of word em-
beddings. For example, instead of factorizing the
co-occurrence count matrix, Bullinaria and Levy
(2007); Levy and Goldberg (2014b) proposed to
factorize point-wise mutual information (PMI) and
positive PMI (PPMI) matrices as these metrics
scale the co-occurrence counts (Bullinaria and
Levy, 2007; Levy and Goldberg, 2014b). Skip-
gram model with negative-sampling (SGNS) and
Continuous Bag-of-Words models (Mikolov et al.,
2013b) were proposed for training word vectors on
a large scale without consuming a large amount of
memory. GloVe (Pennington et al., 2014) is pro-
posed as an alternative to decompose a weighted
log co-occurrence matrix with a bias term added
to each word. Very recently, WordRank model
(Ji et al., 2015) has been proposed to minimize
a ranking loss which naturally fits the tasks re-
quiring ranking based evaluation metrics. Stratos
et al. (2015) also proposed CCA (canonical cor-
relation analysis)-based word embedding which
shows competitive performance. All these ap-
proaches focus on the situations where a large text
corpus is available.

Positive and Unlabeled (PU) Learning: Pos-
itive and Unlabeled (PU) learning (Li and Liu,
2005) is proposed for training a model when the
positive instances are partially labeled and the un-
labeled instances are mostly negative. Recently,
PU learning has been used in many classification
and collaborative filtering applications due to the
nature of “implicit feedback” in many recommen-
dation systems—users usually only provide posi-
tive feedback (e.g., purchases, clicks) and it is very
hard to collect negative feedback.

To resolve this problem, a series of PU matrix
completion algorithms have been proposed (Pan
et al., 2008; Hu et al., 2008; Pan and Scholz, 2009;
Qin et al., 2010; Paquet and Koenigstein, 2013;
Hsieh et al., 2015; Yu et al., 2017b). The main
idea is to assign a small uniform weight to all
the missing or zero entries and factorize the corre-
sponding matrix. Among them, Yu et al. (2017b)
proposed an efficient algorithm for matrix factor-
ization with PU-learning, such that the weighted
matrix is constructed implicitly. In this paper, we
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W, C vocabulary of central and context words
m,n vocabulary sizes
k dimension of word vectors
W,H m× k and n× k latent matrices
Cij weight for the (i, j) entry
Aij value of the PPMI matrix
Qij value of the co-occurrence matrix
wi,hj i-th row of W and j-th row of H
b, b̂ bias term
λi, λj regularization parameters
| · | the size of a set
Ω Set of possible word-context pairs
Ω+ Set of observed word-context pairs
Ω− Set of unobserved word-context pairs

Table 1: Notations.

design a new approach for training word vectors
by leveraging the PU-Learning framework and ex-
isting word embedding techniques. To the best of
our knowledge, this is the first work to train word
embedding models using the PU-learning frame-
work.

3 PU-Learning for Word Embedding

Similar to GloVe and other word embedding learn-
ing algorithms, the proposed approach consists of
three steps. The first step is to construct a co-
occurrence matrix. Follow the literature (Levy and
Goldberg, 2014a), we use the PPMI metric to mea-
sure the co-occurrence between words. Then, in
the second step, a PU-Learning approach is ap-
plied to factorize the co-occurrence matrix and
generate word vectors and context vectors. Fi-
nally, a post-processing step generates the final
embedding vector for each word by combining the
word vector and the context vector.

We summarize the notations used in this paper
in Table 1 and describe the details of each step in
the remainder of this section.

3.1 Building the Co-Occurrence Matrix

Various metrics can be used for estimating the
co-occurrence between words in a corpus. PPMI
metric stems from point-wise mutual information
(PMI) which has been widely used as a mea-
sure of word association in NLP for various tasks
(Church and Hanks, 1990). In our case, each entry
PMI(w, c) represents the relevant measure be-
tween a word w and a context word c by calcu-
lating the ratio between their joint probability (the

chance they appear together in a local context win-
dow) and their marginal probabilities (the chance
they appear independently) (Levy and Goldberg,
2014b). More specifically, each entry of PMI ma-
trix can be defined by

PMI(w, c) = log
P̂ (w, c)

P̂ (w) · P̂ (c)
, (1)

where P̂ (w), P̂ (c) and P̂ (w, c) are the the fre-
quency of word w, word c, and word pairs (w, c),
respectively. The PMI matrix can be computed
based on the co-occurrence counts of word pairs,
and it is an information-theoretic association mea-
sure which effectively eliminates the big differ-
ences in magnitude among entries in the co-
occurrence matrix.

Extending from the PMI metric, the PPMI met-
ric replaces all the negative entries in PMI matrix
by 0:

PPMI(w, c) = max(PMI(w, c), 0). (2)

The intuition behind this is that people usually
perceive positive associations between words (e.g.
“ice” and “snow”). In contrast, the negative as-
sociation is hard to define (Levy and Goldberg,
2014b). Therefore, it is reasonable to replace the
negative entries in the PMI matrix by 0, such that
the negative association is treated as “uninforma-
tive”. Empirically, several existing works (Levy
et al., 2015; Bullinaria and Levy, 2007) showed
that the PPMI metric achieves good performance
on various semantic similarity tasks.

In practice, we follow the pipeline described in
Levy et al. (2015) to build the PPMI matrix and
apply several useful tricks to improve its quality.
First, we apply a context distribution smoothing
mechanism to enlarge the probability of sampling
a rare context. In particular, all context counts are
scaled to the power of α.4:

PPMIα(w, c) = max

(
log

P̂ (w, c)

P̂ (w)P̂α(c)
, 0

)

P̂α(c) =
#(c)α∑
c̄ #(c̄)α

,

where #(w) denotes the number of times word w
appears. This smoothing mechanism effectively

4Empirically, α = 0.75 works well (Mikolov et al.,
2013b).
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alleviates PPMI’s bias towards rare words (Levy
et al., 2015).

Next, previous studies show that words that oc-
cur too frequent often dominate the training ob-
jective (Levy et al., 2015) and degrade the per-
formance of word embedding. To avoid this is-
sue, we follow Levy et al. (2015) to sub-sample
words with frequency more than a threshold twith
a probability p defined as:

p = 1−
√

t

P̂ (w)
.

3.2 PU-Learning for Matrix Factorization

We proposed a matrix factorization based word
embedding model which aims to minimize the re-
construction error on the PPMI matrix. The low-
rank embeddings are obtained by solving the fol-
lowing optimization problem:

min
W,H

∑

i,j∈Ω

Cij(Aij −wT
i hj − bi − b̂j)2

+
∑

i

λi‖wi‖2 +
∑

j

λj‖hj‖2, (3)

where W and H are m× k and n× k latent ma-
trices, representing words and context words, re-
spectively. The first term in Eq. (3) aims for min-
imizing reconstruction error, and the second and
third terms are regularization terms. λi and λj are
weights of regularization term. They are hyper-
parameters that need to be tuned.

The zero entries in co-occurrence matrix denote
that two words never appear together in the cur-
rent corpus, which also refers to unobserved terms.
The unobserved term can be either real zero (two
words shouldn’t be co-occurred even when we use
very large corpus) or just missing in the small cor-
pus. In contrast to SGNS sub-sampling a small set
of zero entries as negative samples, our model will
try to use the information from all zeros.

The set Ω includes all the |W| × |C| entries—
both positive and zero entries:

Ω = Ω+ ∪ Ω−. (4)

Note that we define the positive samples Ω+ to be
all the (w, c) pairs that appear at least one time
in the corpus, and negative samples Ω− are word
pairs that never appear in the corpus.

Weighting function. Eq (3) is very similar to
the one used in previous matrix factorization ap-
proaches such as GloVe, but we propose a new
way to set the weights Cij . If we set equal
weights for all the entries, then Cij = constant,
and the model is very similar to conducting SVD
for the PPMI matrix. Previous work has shown
that this approach often suffers from poor per-
formance (Pennington et al., 2014). More ad-
vanced methods, such as GloVe, set non-uniform
weights for observed entries to reflect their con-
fidence. However, the time complexity of their
algorithm is proportional to number of nonzero
weights (|(i, j) | Cij 6= 0|), thus they have to
set zero weights for all the unobserved entries
(Cij = 0 for Ω−), or try to incorporate a small
set of unobserved entries by negative sampling.

We propose to set the weights for Ω+ and Ω−

differently using the following scheme:

Cij =




(Qij/xmax)α, if Qij ≤ xmax, and (i, j) ∈ Ω+

1, if Qij > xmax, and (i, j) ∈ Ω+

ρ, (i, j) ∈ Ω−

(5)

Here xmax and α are re-weighting parameters, and
ρ is the unified weight for unobserved terms. We
will discuss them later.

For entries in Ω+, we set the non-uniform
weights as in GloVe (Pennington et al., 2014),
which assigns larger weights to context word that
appears more often with the given word, but also
avoids overwhelming the other terms. For entries
in Ω−, instead of setting their weights to be 0, we
assign a small constant weight ρ. The main idea is
from the literature of PU-learning (Hu et al., 2008;
Hsieh et al., 2015): although missing entries are
highly uncertain, they are still likely to be true 0,
so we should incorporate them in the learning pro-
cess but multiplying with a smaller weight accord-
ing to the uncertainty. Therefore, ρ in (5) reflects
how confident we are to the zero entries.

In our experiments, we set xmax = 10, α =
3/4 according to (Pennington et al., 2014), and let
ρ be a parameter to tune. Experiments show that
adding weighting function obviously improves the
performance especially on analogy tasks.

Bias term. Unlike previous work on PU matrix
completion (Yu et al., 2017b; Hsieh et al., 2015),
we add the bias terms for word and context word
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vectors. Instead of directly using w>i hj to approx-
imate Aij , we use

Aij ≈ w>i hj + bi + b̂j .

Yu et al. (2017b) design an efficient column-
wise coordinate descent algorithm for solving the
PU matrix factorization problem; however, they
do not consider the bias term in their implementa-
tions. To incorporate the bias term in (3), we pro-
pose the following training algorithm based on the
coordinate descent approach. Our algorithm does
not introduce much overhead compared to that in
(Yu et al., 2017b).

We augment each wi,hj ∈ Rk into the follow-
ing (k + 2) dimensional vectors:

w′i =




wi1
...
wik
1
bi




h′j =




hj1
...
hjk
b̂j
1




Therefore, for each word and context vector, we
have the following equality

〈w′i,h′j〉 = 〈wi,hj〉+ bi + b̂j ,

which means the loss function in (3) can be written
as

∑

i,j∈Ω

Cij(Aij −w′>i h′j)
2.

Also, we denote W ′ = [w′1,w
′
2, . . . ,w

′
n]> and

H ′ = [h′1,h
′
2, . . . ,h

′
n]>. In the column-wise co-

ordinate descent method, at each iteration we pick
a t ∈ {1, . . . , (k+2)}, and update the t-th column
of W ′ and H ′. The updates can be derived for the
following two cases:

a. When t ≤ k, the elements in the t-th col-
umn is w1t, . . . , wnt and we can directly use
the update rule derived in Yu et al. (2017b) to
update them.

b. When t = k + 1, we do not update the cor-
responding column of W ′ since the elements
are all 1, and we use the similar coordinate
descent update to update the k+ 1-th column
of H ′ (corresponding to b̂1, . . . , b̂n). When
t = k+2, we do not update the corresponding
column of H ′ (they are all 1) and we update
the k+ 2-th column of W ′ (corresponding to
b1, . . . , bn) using coordinate descent.

With some further derivations, we can show that
the algorithm only requires O(nnz(A) + nk) time
to update each column,5 so the overall complexity
is O(nnz(A)k + nk2) time per epoch, which is
only proportional to number of nonzero terms in
A. Therefore, with the same time complexity as
GloVe, we can utilize the information from all the
zero entries in A instead of only sub-sampling a
small set of zero entries.

3.3 Interpretation of Parameters

In the PU-Learning formulation, ρ represents the
unified weight that assigned to the unobserved
terms. Intuitively, ρ reflects the confidence on un-
observed entries—larger ρmeans that we are quite
certain about the zeroes, while small ρ indicates
the many of unobserved pairs are not truly zero.
When ρ = 0, the PU-Learning approach reduces
to a model similar to GloVe, which discards all the
unobserved terms. In practice, ρ is an important
parameter to tune, and we find that ρ = 0.0625
achieves the best results in general. Regarding
the other parameter, λ is the regularization term
for preventing the embedding model from over-
fitting. In practice, we found the performance is
not very sensitive to λ as long as it is resonably
small. More discussion about the parameter set-
ting can be found in Section 5.

Post-processing of Word/Context Vectors The
PU-Learning framework factorizes the PPMI ma-
trix and generates two vectors for each word i,
wi ∈ Rk and hi ∈ Rk. The former represents
the word when it is the central word and the lat-
ter represents the word when it is in context. Levy
et al. (2015) shows that averaging these two vec-
tors (uavg

i = wi + hi) leads to consistently better
performance. The same trick of constructing word
vectors is also used in GloVe. Therefore, in the
experiments, we evaluate all models with uavg.

4 Experimental Setup

Our goal in this paper is to train word embedding
models for low-resource languages. In this sec-
tion, we describe the experimental designs to eval-
uate the proposed PU-learning approach. We first
describe the data sets and the evaluation metrics.
Then, we provide details of parameter tuning.

5Here we assume m = n for the sake of simplicity. And,
nnz(A) denotes the number of nonzero terms in the matrix A.
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Similarity task Analogy task
Word embedding WS353 Similarity Relatedness M. Turk MEN 3CosAdd 3CosMul

GloVe 48.7 50.9 53.7 54.1 17.6 32.1 28.5
SGNS 67.2 70.3 67.9 59.9∗ 25.1∗ 30.4 27.8

PU-learning 68.3∗ 71.8∗ 68.2∗ 57.0 22.7 32.6∗ 32.3∗

Table 2: Performance of the best SGNS, GloVe, PU-Learning models, trained on the text8 corpus. Results
show that our proposed model is better than SGNS and GloVe. Star indicates it is significantly better
than the second best algorithm in the same column according to Wilcoxon signed-rank test. (p < 0.05)

Similarity task Analogy task
Language WS353 Similarity Relatedness M. Turk MEN Google

English (en) 353 203 252 287 3,000 19,544
Czech (cs) 337 193 241 268 2,810 18,650
Danish (da) 346 198 247 283 2,951 18,340
Dutch (nl) 346 200 247 279 2,852 17,684

Table 3: The size of the test sets. The data sets in English are the original test sets. To evaluate other
languages, we translate the data sets from English.

4.1 Evaluation tasks

We consider two widely used tasks for evaluating
word embeddings, the word similarity task and the
word analogy task. In the word similarity task,
each question contains a word pairs and an an-
notated similarity score. The goal is to predict
the similarity score between two words based on
the inner product between the corresponding word
vectors. The performance is then measured by
the Spearmans rank correlation coefficient, which
estimates the correlation between the model pre-
dictions and human annotations. Following the
settings in literature, the experiments are con-
ducted on five data sets, WordSim353 (Finkelstein
et al., 2001), WordSim Similarity (Zesch et al.,
2008), WordSim Relatedness (Agirre et al., 2009),
Mechanical Turk (Radinsky et al., 2011) and
MEN (Bruni et al., 2012).

In the word analogy task, we aim at solving
analogy puzzles like “man is to woman as king
is to ?”, where the expected answer is “queen.”
We consider two approaches for generating an-
swers to the puzzles, namely 3CosAdd and 3Cos-
Mul (see (Levy and Goldberg, 2014a) for details).
We evaluate the performances on Google anal-
ogy dataset (Mikolov et al., 2013a) which con-
tains 8,860 semantic and 10,675 syntactic ques-
tions. For the analogy task, only the answer that
exactly matches the annotated answer is counted
as correct. As a result, the analogy task is more
difficult than the similarity task because the evalu-

ation metric is stricter and it requires algorithms to
differentiate words with similar meaning and find
the right answer.

To evaluate the performances of models in the
low-resource setting, we train word embedding
models on Dutch, Danish, Czech and, English
data sets collected from Wikipedia. The original
Wikipedia corpora in Dutch, Danish, Czech and
English contain 216 million, 47 million, 92 mil-
lion, and 1.8 billion tokens, respectively. To sim-
ulate the low-resource setting, we sub-sample the
Wikipedia corpora and create a subset of 64 mil-
lion tokens for Dutch and Czech and a subset of 32
million tokens for English. We will demonstrate
how the size of the corpus affects the performance
of embedding models in the experiments.

To evaluate the performance of word embed-
dings in Czech, Danish, and Dutch, we translate
the English similarity and analogy test sets to the
other languages by using Google Cloud Trans-
lation API6. However, an English word may be
translated to multiple words in another language
(e.g., compound nouns). We discard questions
containing such words (see Table 3 for details).
Because all approaches are compared on the same
test set for each language, the comparisons are fair.

4.2 Implementation and Parameter Setting

We compare the proposed approach with two
baseline methods, GloVe and SGNS. The imple-

6https://cloud.google.com/translate
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Dutch (nl) Similarity task Analogy task
Word embedding WS353 Similarity Relatedness M. Turk MEN 3CosAdd 3CosMul

GloVe 35.4 35.0 41.7 44.3 11 21.2 20.2
SGNS 51.9 52.9 53.5 49.8∗ 15.4 22.1 23.6

PU-learning 53.7∗ 53.4∗ 55.1∗ 46.7 16.4∗ 23.5∗ 24.7∗

Danish (da) Similarity task Analogy task
Word embedding WS353 Similarity Relatedness M. Turk MEN 3CosAdd 3CosMul

GloVe 25.7 18.4 40.3 49.0 16.4 25.8∗ 24.3∗

SGNS 49.7 47.1 52.1 51.5 22.4 22.0 21.2
PU-learning 53.5∗ 49.5∗ 59.3∗ 51.7∗ 22.7∗ 22.6 22.8
Czech (cs) Similarity task Analogy task

Word embedding WS353 Similarity Relatedness M. Turk MEN 3CosAdd 3CosMul
GloVe 34.3 23.2 48.9 36.5 16.2 8.9 8.6
SGNS 51.4 42.7 61.1 44.2 21.3 10.4∗ 9.8

PU-learning 54.0∗ 45.4∗ 65.3∗ 46.2∗ 21.7∗ 9.9 10.1∗

English (en) Similarity task Analogy task
Word embedding WS353 Similarity Relatedness M. Turk MEN 3CosAdd 3CosMul

GloVe 47.9 52.1 49.5 58.8 19.1 34.3 32.6
SGNS 65.7 67.1∗ 66.5 62.8∗ 26.1∗ 31.2 27.4

PU-learning 67.0∗ 66.7 69.6∗ 59.4 22.4 39.2∗ 38.8∗

Table 4: Performance of SGNS, GloVe, and the proposed PU-Learning model in four different languages.
Results show that the proposed PU-Learning model outperforms SGNS and GloVe in most cases when
the size of corpus is relatively small (around 50 million tokens). Star indicates it is significant better than
the second best algorithm in the same column according to Wilcoxon signed-rank test. (p < 0.05).

mentations of Glove7 and SGNS8 and provided
by the original authors, and we apply the default
settings when appropriate. The proposed PU-
Learning framework is implemented based on Yu
et al. (2017a). With the implementation of effi-
cient update rules, our model requires less than
500 seconds to perform one iteration over the en-
tire text8 corpus, which consists of 17 million to-
kens 9. All the models are implemented in C++.

We follow Levy et al. (2015)10 to set windows
size as 15, minimal count as 5, and dimension of
word vectors as 300 in the experiments. Training
word embedding models involves selecting sev-
eral hyper-parameters. However, as the word em-
beddings are usually evaluated in an unsupervised
setting (i.e., the evaluation data sets are not seen
during the training), the parameters should not be
tuned on each dataset. To conduct a fair com-
parison, we tune hyper-parameters on the text8
dataset. For GloVe model, we tune the discount
parameters xmax and find that xmax = 10 per-

7https://nlp.stanford.edu/projects/glove
8https://code.google.com/archive/p/word2vec/
9http://mattmahoney.net/dc/text8.zip

10https://bitbucket.org/omerlevy/hyperwords

forms the best. SGNS has a natural parameter k
which denotes the number of negative samples.
Same as Levy et al. (2015), we found that set-
ting k to 5 leads to the best performance. For
the PU-learning model, ρ and λ are two important
parameters that denote the unified weight of zero
entries and the weight of regularization terms, re-
spectively. We tune ρ in a range from 2−1 to 2−14

and λ in a range from 20 to 2−10. We analyze the
sensitivity of the model to these hyper-parameters
in the experimental result section. The best perfor-
mance of each model on the text8 dataset is shown
in the Table 2. It shows that PU-learning model
outperforms two baseline models.

5 Experimental Results

We compared the proposed PU-Learning frame-
work with two popular word embedding models
– SGNS (Mikolov et al., 2013b) and Glove (Pen-
nington et al., 2014) on English and three other
languages. The experimental results are reported
in Table 4. The results show that the proposed PU-
Learning framework outperforms the two baseline
approaches significantly in most datasets. This re-
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Figure 1: Performance change as the corpus size growing (a) on the Google word analogy task (on the
left-hand side) and (b) on the WS353 word similarity task (on the right-hand side). We demonstrate
the performance on four languages, Dutch, Danish, Czech and English datasets. Results show that PU-
Learning model consistently outperforms SGNS and GloVe when the size of corpus is small.
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Figure 2: Impact of ρ and λ in the PU-Learning framework.

sults confirm that the unobserved word pairs carry
important information and the PU-Learning model
leverages such information and achieves better
performance. To better understand the model, we
conduct detailed analysis as follows.

Performance v.s. Corpus size We investigate
the performance of our algorithm with respect to
different corpus size, and plot the results in Fig-
ure 1. The results in analogy task are obtained by
3CosMul method (Levy and Goldberg, 2014a). As
the corpus size grows, the performance of all mod-
els improves, and the PU-learning model consis-
tently outperforms other methods in all the tasks.
However, with the size of the corpus increases, the
difference becomes smaller. This is reasonable as
when the corpus size increases the number of non-
zero terms becomes smaller and the PU-learning
approach is resemblance to Glove.

Impacts of ρ and λ We investigate how sensi-
tive the model is to the hyper-parameters, ρ and λ.
Figure 2 shows the performance along with vari-
ous values of λ and ρ when training on the text8
corpus, respectively. Note that the x-axis is in log
scale. When ρ is fixed, a big λ degrades the perfor-
mance of the model significantly. This is because
when λ is too big the model suffers from under-
fitting. The model is less sensitive when λ is small
and in general, λ = 2−11 achieves consistently
good performance.

When λ is fixed, we observe that large ρ (e.g.,
ρ ≈ 2−4) leads to better performance. As ρ repre-
sents the weight assigned to the unobserved term,
this result confirms that the model benefits from
using the zero terms in the co-occurrences matrix.

6 Conclusion

In this paper, we presented a PU-Learning frame-
work for learning word embeddings of low-
resource languages. We evaluated the proposed
approach on English and other three languages and
showed that the proposed approach outperforms
other baselines by effectively leveraging the infor-
mation from unobserved word pairs.

In the future, we would like to conduct experi-
ments on other languages where available text cor-
pora are relatively hard to obtain. We are also in-
terested in applying the proposed approach to do-
mains, such as legal documents and clinical notes,
where the amount of accessible data is small. Be-
sides, we plan to study how to leverage other in-
formation to facilitate the training of word embed-
dings under the low-resource setting.
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