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Abstract
We introduce a new task called Multimodal
Named Entity Recognition (MNER) for noisy
user-generated data such as tweets or Snapchat
captions, which comprise short text with ac-
companying images. These social media posts
often come in inconsistent or incomplete syn-
tax and lexical notations with very limited
surrounding textual contexts, bringing signif-
icant challenges for NER. To this end, we cre-
ate a new dataset for MNER called SnapCap-
tions (Snapchat image-caption pairs submitted
to public and crowd-sourced stories with fully
annotated named entities). We then build upon
the state-of-the-art Bi-LSTM word/character
based NER models with 1) a deep image net-
work which incorporates relevant visual con-
text to augment textual information, and 2)
a generic modality-attention module which
learns to attenuate irrelevant modalities while
amplifying the most informative ones to ex-
tract contexts from, adaptive to each sam-
ple and token. The proposed MNER model
with modality attention significantly outper-
forms the state-of-the-art text-only NER mod-
els by successfully leveraging provided visual
contexts, opening up potential applications of
MNER on myriads of social media platforms.

1 Introduction

Social media with abundant user-generated posts
provide a rich platform for understanding events,
opinions and preferences of groups and individ-
uals. These insights are primarily hidden in un-
structured forms of social media posts, such as
in free-form text or images without tags. Named
entity recognition (NER), the task of recognizing
named entities from free-form text, is thus a criti-
cal step for building structural information, allow-
ing for its use in personalized assistance, recom-
mendations, advertisement, etc.

While many previous approaches (Lample
et al., 2016; Ma and Hovy, 2016; Chiu and

(a) (b)

Figure 1: Multimodal NER + modality attention.
(a) Visual contexts help recognizing polysemous entity
names (‘Monopoly’ as in a board game versus an eco-
nomics term). (b) Modality attention successfully sup-
presses word embeddings of a unknown token (‘Marsh-
melloooo’ with erroneously trailing ‘o’s), and focuses
on character-based context (e.g. capitalized first letter,
and lexical similarity to a known named entity (‘Marsh-
mello’, a music producer)) for correct prediction.

Nichols, 2015; Huang et al., 2015; Lafferty et al.,
2001) on NER have shown success for well-
formed text in recognizing named entities via
word context resolution (e.g. LSTM with word
embeddings) combined with character-level fea-
tures (e.g. CharLSTM/CNN), several additional
challenges remain for recognizing named enti-
ties from extremely short and coarse text found
in social media posts. For instance, short so-
cial media posts often do not provide enough tex-
tual contexts to resolve polysemous entities (e.g.
“monopoly is da best ”, where ‘monopoly’ may
refer to a board game (named entity) or a term
in economics). In addition, noisy text includes
a huge number of unknown tokens due to in-
consistent lexical notations and frequent mentions
of various newly trending entities (e.g. “xoxo
Marshmelloooo ”, where ‘Marshmelloooo’ is a
mis-spelling of a known entity ‘Marshmello’, a
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music producer), making word embeddings based
neural networks NER models vulnerable.

To address the challenges above for social me-
dia posts, we build upon the state-of-the-art neu-
ral architecture for NER with the following two
novel approaches (Figure 1). First, we propose to
leverage auxiliary modalities for additional con-
text resolution of entities. For example, many pop-
ular social media platforms now provide ways to
compose a post in multiple modalities - specifi-
cally image and text (e.g. Snapchat captions, Twit-
ter posts with image URLs), from which we can
obtain additional context for understanding posts.
While “monopoly” in the previous example is am-
biguous in its textual form, an accompanying snap
image of a board game can help disambiguate
among polysemous entities, thereby correctly rec-
ognizing it as a named entity.

Second, we also propose a general modal-
ity attention module which chooses per decod-
ing step the most informative modality among
available ones (in our case, word embeddings,
character embeddings, or visual features) to ex-
tract context from. For example, the modality
attention module lets the decoder attenuate the
word-level signals for unknown word tokens (e.g.
“Marshmellooooo” with trailing ‘o’s) and ampli-
fies character-level features intsead (e.g. capital-
ized first letter, lexical similarity to other known
named entity token ‘Marshmello’, etc.), thereby
suppressing noise information (“UNK” token em-
bedding) in decoding steps. Note that most of
the previous literature in NER or other NLP
tasks combine word and character-level informa-
tion with naive concatenation, which is vulnerable
to noisy social media posts. When an auxiliary
image is available, the modality attention module
determines to amplify this visual context e.g. in
disambiguating polysemous entities, or to atten-
uate visual contexts when they are irrelevant to
target named entities, e.g. selfies, etc. Note that
the proposed modality attention module is distinct
from how attention is used in other sequence-to-
sequence literature (e.g. attending to a specific to-
ken within an input sequence). Section 2 provides
the detailed literature review.

Our contributions are three-fold: we propose
(1) an LSTM-CNN hybrid multimodal NER net-
work that takes as input both image and text for
recognition of a named entity in text input. To the
best of our knowledge, our approach is the first

work to incorporate visual contexts for named en-
tity recognition tasks. (2) We propose a general
modality attention module that selectively chooses
modalities to extract primary context from, max-
imizing information gain and suppressing irrele-
vant contexts from each modality (we treat words,
characters, and images as separate modalities). (3)
We show that the proposed approaches outperform
the state-of-the-art NER models (both with and
without using additional visual contexts) on our
new MNER dataset SnapCaptions, a large collec-
tion of informal and extremely short social media
posts paired with unique images.

2 Related Work

Neural models for NER have been recently pro-
posed, producing state-of-the-art performance on
standard NER tasks. For example, some of the
end-to-end NER systems (Passos et al., 2014; Chiu
and Nichols, 2015; Huang et al., 2015; Lample
et al., 2016; Ma and Hovy, 2016) use a recur-
rent neural network usually with a CRF (Laf-
ferty et al., 2001; McCallum and Li, 2003) for
sequence labeling, accompanied with feature ex-
tractors for words and characters (CNN, LSTMs,
etc.), and achieve the state-of-the-art performance
mostly without any use of gazetteers information.
Note that most of these work aggregate textual
contexts via concatenation of word embeddings
and character embeddings. Recently, several work
have addressed the NER task specifically on noisy
short text segments such as Tweets, etc. (Baldwin
et al., 2015; Aguilar et al., 2017). They report per-
formance gains from leveraging external sources
of information such as lexical information (e.g.
POS tags, etc.) and/or from several preprocessing
steps (e.g. token substitution, etc.). Our model
builds upon these state-of-the-art neural models
for NER tasks, and improves the model in two
critical ways: (1) incorporation of visual contexts
to provide auxiliary information for short media
posts, and (2) addition of the modality attention
module, which better incorporates word embed-
dings and character embeddings, especially when
there are many missing tokens in the given word
embedding matrix. Note that we do not explore
the use of gazetteers information or other auxiliary
information (POS tags, etc.) (Ratinov and Roth,
2009) as it is not the focus of our study.

Attention modules are widely applied in sev-
eral deep learning tasks (Xu et al., 2015; Chan

853



et al., 2015; Sukhbaatar et al., 2015; Yao et al.,
2015). For example, they use an attention mod-
ule to attend to a subset within a single input (a
part/region of an image, a specific token in an in-
put sequence of tokens, etc.) at each decoding step
in an encoder-decoder framework for image cap-
tioning tasks, etc. (Rei et al., 2016) explore var-
ious attention mechanisms in NLP tasks, but do
not incorporate visual components or investigate
the impact of such models on noisy social media
data. (Moon and Carbonell, 2017) propose to use
attention for a subset of discrete source samples
in transfer learning settings. Our modality atten-
tion differs from the previous approaches in that
we attenuate or amplifies each modality input as
a whole among multiple available modalities, and
that we use the attention mechanism essentially to
map heterogeneous modalities in a single joint em-
bedding space. Our approach also allows for re-
use of the same model for predicting labels even
when some of the modalities are missing in input,
as other modalities would still preserve the same
semantics in the embeddings space.

Multimodal learning is studied in various do-
mains and applications, aimed at building a joint
model that extracts contextual information from
multiple modalities (views) of parallel datasets.

The most relevant task to our multimodal NER
system is the task of multimodal machine transla-
tion (Elliott et al., 2015; Specia et al., 2016), which
aims at building a better machine translation sys-
tem by taking as input a sentence in a source lan-
guage as well as a corresponding image. Sev-
eral standard sequence-to-sequence architectures
are explored (e.g. a target-language LSTM de-
coder that takes as input an image first).

Other previous literature include study of
Canonical Correlation Analysis (CCA) (Dhillon
et al., 2011) to learn feature correlations among
multiple modalities, which is widely used in many
applications. Other applications include image
captioning (Xu et al., 2015), audio-visual recogni-
tion (Moon et al., 2015), visual question answer-
ing systems (Antol et al., 2015), etc.

To the best of our knowledge, our approach is
the first work to incorporate visual contexts for
named entity recognition tasks.

3 Proposed Methods

Figure 2 illustrates the proposed multimodal NER
(MNER) model. First, we obtain word embed-

Figure 2: The main architecture for our multimodal
NER (MNER) network with modality attention. At
each decoding step, word embeddings, character em-
beddings, and visual features are merged with modality
attention. Bi-LSTM/CRF takes as input each token and
produces an entity label.

dings, character embeddings, and visual features
(Section 3.1). A Bi-LSTM-CRF model then takes
as input a sequence of tokens, each of which com-
prises a word token, a character sequence, and an
image, in their respective representation (Section
3.2). At each decoding step, representations from
each modality are combined via the modality at-
tention module to produce an entity label for each
token (3.3). We formulate each component of the
model in the following subsections.

Notations: Let x = {xt}Tt=1 a sequence of in-
put tokens with length T , with a corresponding la-
bel sequence y = {yt}Tt=1 indicating named en-
tities (e.g. in standard BIO formats). Each in-
put token is composed of three modalities: xt =

{x(w)
t ,x

(c)
t ,x

(v)
t } for word embeddings, character

embeddings, and visual embeddings representa-
tions, respectively.

3.1 Features

Similar to the state-of-the-art NER approaches
(Lample et al., 2016; Ma and Hovy, 2016; Aguilar
et al., 2017; Passos et al., 2014; Chiu and Nichols,
2015; Huang et al., 2015), we use both word em-
beddings and character embeddings.

Word embeddings are obtained from an unsu-
pervised learning model that learns co-occurrence
statistics of words from a large external corpus,
yielding word embeddings as distributional se-
mantics (Mikolov et al., 2013). Specifically, we
use pre-trained embeddings from GloVE (Pen-
nington et al., 2014).
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Character embeddings are obtained from a Bi-
LSTM which takes as input a sequence of char-
acters of each token, similarly to (Lample et al.,
2016). An alternative approach for obtaining char-
acter embeddings is using a convolutional neural
network as in (Ma and Hovy, 2016), but we find
that Bi-LSTM representation of characters yields
empirically better results in our experiments.

Visual embeddings: To extract features from
an image, we take the final hidden layer represen-
tation of a modified version of the convolutional
network model called Inception (GoogLeNet)
(Szegedy et al., 2014, 2015) trained on the Ima-
geNet dataset (Russakovsky et al., 2015) to clas-
sify multiple objects in the scene. Our implemen-
tation of the Inception model has deep 22 lay-
ers, training of which is made possible via “net-
work in network” principles and several dimen-
sion reduction techniques to improve computing
resource utilization. The final layer representa-
tion encodes discriminative information describ-
ing what objects are shown in an image, which
provide auxiliary contexts for understanding tex-
tual tokens and entities in accompanying captions.

Incorporating this visual information onto the
traditional NER system is an open challenge, and
multiple approaches can be considered. For in-
stance, one may provide visual contexts only as
an initial input to decoder as in some encoder-
decoder image captioning systems (Vinyals et al.,
2015). However, we empirically observe that
an NER decoder which takes as input the vi-
sual embeddings at every decoding step (Section
3.2), combined with the modality attention mod-
ule (Section 3.3), yields better results.

Lastly, we add a transform layer for
each feature e.g. x

(w)
t ,x

(c)
t ,x

(v)
t :=

σw(x
(w)
t ), σc(x

(c)
t ), σv(x

(v)
t ) before it is fed

to the NER entity LSTM.

3.2 Bi-LSTM + CRF for Multimodal NER
Our MNER model is built on a Bi-LSTM and CRF
hybrid model. We use the following implementa-
tion for the entity Bi-LSTM.

it = σ(Wxiht−1 +Wcict−1)

ct = (1− it)� ct−1
+ it � tanh(Wxcxt +Whcht−1)

ot = σ(Wxoxt +Whoht−1 +Wcoct)

ht = LSTM(xt) (1)

= ot � tanh(ct)

where xt is a weighted average of three modalities
xt = {x(w)

t ;x
(c)
t ;x

(v)
t } via the modality attention

module, which will be defined in Section 3.3. Bias
terms for gates are omitted here for simplicity of
notation.

We then obtain bi-directional entity token rep-
resentations

←→
ht = [

−→
ht;
←−
ht] by concatenating its

left and right context representations. To enforce
structural correlations between labels in sequence
decoding,

←→
ht is then passed to a conditional ran-

dom field (CRF) to produce a label for each token
maximizing the following objective.

y∗ = argmax
y

p(y|←→h ;WCRF) (2)

p(y|←→h ;WCRF) =

∏
t ψt(yt−1,yt;

←→
h )

∑
y′
∏

t ψt(y′t−1,y′t;
←→
h )

where ψt(y
′,y′;

←→
h ) is a potential function,

WCRF is a set of parameters that defines the po-
tential functions and weight vectors for label pairs
(y′,y′). Bias terms are omitted for brevity of for-
mulation.

The model can be trained via log-likelihood
maximization for the training set {(xi,yi)}:

L(WCRF) =
∑

i

log p(y|←→h ;W) (3)

3.3 Modality Attention
The modality attention module learns a unified
representation space for multiple available modal-
ities (e.g. words, characters, images, etc.), and
produces a single vector representation with ag-
gregated knowledge among multiple modalities,
based on their weighted importance. We motivate
this module from the following observations.

A majority of the previous literature combine
the word and character-level contexts by sim-
ply concatenating the word and character em-
beddings at each decoding step, e.g. ht =

LSTM([x
(w)
t ;x

(c)
t ]) in Eq.1. However, this naive

concatenation of two modalities (word and char-
acters) results in inaccurate decoding, specifically
for unknown word token embeddings (e.g. an
all-zero vector x

(w)
t = 0 or a random vector

x
(w)
t = ε ∼ U(−σ,+σ) is assigned for any un-

known token xt, thus ht = LSTM([0;x
(c)
t ]) or

LSTM([ε;x
(c)
t ])). While this concatenation ap-

proach does not cause significant errors for well-
formatted text, we observe that it induces per-
formance degradation for our social media post
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datasets which contain a significant number of
missing tokens.

Similarly, naive merging of textual and visual
information (e.g. ht = LSTM([x

(w)
t ;x

(c)
t ;x

(v)
t ]))

yields suboptimal results as each modality is
treated equally informative, whereas in our
datasets some of the images may contain irrele-
vant contexts to textual modalities. Hence, ideally
there needs a mechanism in which the model can
effectively turn the switch on and off the modali-
ties adaptive to each sample.

To this end, we propose a general modality
attention module, which adaptively attenuates or
emphasizes each modality as a whole at each de-
coding step t, and produces a soft-attended context
vector xt as an input token for the entity LSTM.

[a
(w)
t ,a

(c)
t ,a

(v)
t ] = σ

(
Wm · [x(w)

t ;x
(c)
t ;x

(v)
t ] + bm

)

α
(m)
t =

exp(a
(m)
t )

∑
m′∈{w,c,v}

exp(a
(m′)
t )

∀m ∈ {w, c, v}

xt =
∑

m∈{w,c,v}
α
(m)
t x

(m)
t (4)

where αt = [α
(w)
t ;α

(c)
t ;α

(v)
t ] ∈ R3 is an atten-

tion vector at each decoding step t, and xt is a
final context vector at t that maximizes informa-
tion gain for xt. Note that the optimization of the
objective function (Eq.1) with modality attention
(Eq.4) requires each modality to have the same
dimension (e.g. x

(w)
t ,x

(c)
t ,x

(v)
t ∈ Rp), and that

the transformation via Wm essentially enforces
each modality to be mapped into the same unified
subspace, where the weighted average of which
encodes discrimitive features for recognition of
named entities.

When visual context is not provided with each
token (as in the traditional NER task), we can de-
fine the modality attention for word and character
embeddings only in a similar way:

[a
(w)
t ,a

(c)
t ] = σ

(
Wm · [x(w)

t ;x
(c)
t ] + bm

)
(5)

α
(m)
t =

exp(a
(m)
t )

∑
m′∈{w,c}

exp(a
(m′)
t )

∀m ∈ {w, c}

xt =
∑

m∈{w,c}
α
(m)
t x

(m)
t

Note that while we apply this modality attention
module to the Bi-LSTM+CRF architecture (Sec-
tion 3.2) for its empirical superiority, the module

itself is flexible and thus can work with other NER
architectures or for other multimodal applications.

4 Empirical Evaluation

4.1 SnapCaptions Dataset
The SnapCaptions dataset is composed of 10K
user-generated image (snap) and textual caption
pairs where named entities in captions are man-
ually labeled by expert human annotators (en-
tity types: PER, LOC, ORG, MISC). These cap-
tions are collected exclusively from snaps sub-
mitted to public and crowd-sourced stories (aka
Snapchat Live Stories or Our Stories). Examples
of such public crowd-sourced stories are “New
York Story” or “Thanksgiving Story”, which com-
prise snaps that are aggregated for various public
events, venues, etc. All snaps were posted be-
tween year 2016 and 2017, and do not contain
raw images or other associated information (only
textual captions and obfuscated visual descriptor
features extracted from the pre-trained Inception-
Net are available). We split the dataset into train
(70%), validation (15%), and test sets (15%). The
captions data have average length of 30.7 char-
acters (5.81 words) with vocabulary size 15,733,
where 6,612 are considered unknown tokens from
Stanford GloVE embeddings (Pennington et al.,
2014). Named entities annotated in the Snap-
Captions dataset include many of new and emerg-
ing entities, and they are found in various sur-
face forms (various nicknames, typos, etc.) To the
best of our knowledge, SnapCaptions is the only
dataset that contains natural image-caption pairs
with expert-annotated named entities.

4.2 Baselines
Task: given a caption and a paired image (if used),
the goal is to label every token in a caption in BIO
scheme (B: beginning, I: inside, O: outside) (Sang
and Veenstra, 1999). We report the performance of
the following state-of-the-art NER models as base-
lines, as well as several configurations of our pro-
posed approach to examine contributions of each
component (W: word, C: char, V: visual).

• Bi-LSTM/CRF (W only): only takes word to-
ken embeddings (Stanford GloVE) as input.
The rest of the architecture is kept the same.

• Bi-LSTM/CRF + Bi-CharLSTM (C only):
only takes a character sequence of each word
token as input. (No word embeddings)
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Modalities Model
4 Entity Types (%) Segmentation (%)

Prec. Recall F1 Prec. Recall F1

C Bi-LSTM/CRF + Bi-CharLSTM 5.0 28.1 8.5 68.6 10.8 18.6
W Bi-LSTM/CRF 38.2 53.3 44.6 82.5 50.1 62.4

W + C (Aguilar et al., 2017) 45.9 48.9 47.4 74.0 61.7 67.3
W + C (Ma and Hovy, 2016) 46.0 51.9 48.7 76.8 61.0 68.0
W + C (Lample et al., 2016) 47.7 49.9 48.8 74.4 63.3 68.4
W + C Bi-LSTM/CRF + Bi-CharLSTM w/ Modality Attention 49.4 51.7 50.5 75.7 63.3 68.9

W + C + V Bi-LSTM/CRF + Bi-CharLSTM + Inception 50.5 52.3 51.4 71.9 66.5 69.1
W + C + V Bi-LSTM/CRF + Bi-CharLSTM + Inception w/ Modality Attention 48.7 58.7 52.4 77.4 60.6 68.0

Table 1: NER performance on the SnapCaptions dataset with varying modalities (W: word, C: char, V: visual).
We report precision, recall, and F1 score for both entity types recognition (PER, LOC, ORG, MISC) and entity
segmentation (untyped recognition - named entity or not) tasks.

• Bi-LSTM/CRF + Bi-CharLSTM (W+C)
(Lample et al., 2016): takes as input both
word embeddings and character embed-
dings extracted from a Bi-CharLSTM. Entity
LSTM takes concatenated vectors of word
and character embeddings as input tokens.

• Bi-LSTM/CRF + CharCNN (W+C) (Ma and
Hovy, 2016): uses character embeddings ex-
tracted from a CNN instead.

• Bi-LSTM/CRF + CharCNN (W+C) + Multi-
task (Aguilar et al., 2017): trains the model to
perform both recognition (into multiple entity
types) as well as segmentation (binary) tasks.

• (proposed) Bi-LSTM/CRF + Bi-CharLSTM
with modality attention (W+C): uses the
modality attention to merge word and char-
acter embeddings.

• (proposed) Bi-LSTM/CRF + Bi-CharLSTM
+ Inception (W+C+V): takes as input visual
contexts extracted from InceptionNet as well,
concatenated with word and char vectors.

• (proposed) Bi-LSTM/CRF + Bi-CharLSTM
+ Inception with modality attention
(W+C+V): uses the modality attention
to merge word, character, and visual
embeddings as input to entity LSTM.

4.3 Results: SnapCaptions Dataset

Table 1 shows the NER performance on the Snap
Captions dataset. We report both entity types
recognition (PER, LOC, ORG, MISC) and named
entity segmentation (named entity or not) results.

Parameters: We tune the parameters of each
model with the following search space (bold in-
dicate the choice for our final model): character
embeddings dimension: {25, 50, 100, 150, 200,
300}, word embeddings size: {25, 50, 100, 150,
200, 300}, LSTM hidden states: {25, 50, 100,
150, 200, 300}, and x dimension: {25, 50, 100,
150, 200, 300}. We optimize the parameters with
Adagrad (Duchi et al., 2011) with batch size 10,
learning rate 0.02, epsilon 10−8, and decay 0.0.

Main Results: When visual context is available
(W+C+V), we see that the model performance
greatly improves over the textual models (W+C),
showing that visual contexts are complimentary
to textual information in named entity recognition
tasks. In addition, it can be seen that the modality
attention module further improves the entity type
recognition performance for (W+C+V). This re-
sult indicates that the modality attention is able
to focus on the most effective modality (visual,
words, or characters) adaptive to each sample to
maximize information gain. Note that our text-
only model (W+C) with the modality attention
module also significantly outperform the state-of-
the-art baselines (Aguilar et al., 2017; Ma and
Hovy, 2016; Lample et al., 2016) that use the same
textual modalities (W+C), showing the effective-
ness of the modality attention module for textual
models as well.

Error Analysis: Table 2 shows example cases
where incorporation of visual contexts affects pre-
diction of named entities. For example, the token
‘curry’ in the caption “The curry’s ” is poly-
semous and may refer to either a type of food or
a famous basketball player ‘Stephen Curry’, and
the surrounding textual contexts do not provide

857



Caption (target) Visual Tags GT
Prediction

(W+C+V) (W+C)

+

“The curry’s ” parade, marching, urban area, ... B-PER B-PER O
“Grandma w dat lit Apple Crisp” funnel cake, melting, frozen, ... O O B-ORG
“Okay duke dumont ” DJ, guitarist, circus, ... B,I-PER B,I-PER O,O
“CSI with my hubby” TV, movie, television, ... B-MISC B-MISC B-ORG
“Twin day at angel stadium” stadium, arena, stampede, ... B,I-LOC B,I-LOC O,O
“LETS GO CID” drum, DJ, drummer, ... B-PER B-PER O
“MARSHMELLOOOOOOOOS” DJ, night, martini, ... B-PER B-PER O

-
“Y’all come see me at bojangles. ” floor, tile, airport terminal, ... B-ORG O B-ORG
“If u’re not watching this season of

monitor, suite, cubicle, ... B-MISC O B-MISC
bachelorette ur doing LIFE WRONG”

Table 2: Error analysis: when do images help NER? Ground-truth labels (GT) and predictions of our model with
vision input (W+C+V) and the one without (W+C) for the underlined named entities (or false positives) are shown.
For interpretability, visual tags (label output of InceptionNet) are presented instead of actual feature vectors used.

enough information to disambiguate it. On the
other hand, visual contexts (visual tags: ‘parade’,
‘urban area’, ...) provide similarities to the token’s
distributional semantics from other training exam-
ples (e.g. snaps from “NBA Championship Pa-
rade Story”), and thus the model successfully pre-
dicts the token as a named entity. Similarly, while
the text-only model erroneously predicts ‘Apple’
in the caption “Grandma w dat lit Apple Crisp”
as an organization (e.g. Apple Inc.), the visual
contexts (describing objects related to food) help
disambiguate the token, making the model pre-
dict it correctly as a non-named entity (a fruit).
Trending entities (musicians or DJs such as ‘CID’,
‘Duke Dumont’, ‘Marshmello’, etc.) are also rec-
ognized correctly with strengthened contexts from
visual information (describing concert scenes) de-
spite lack of surrounding textual contexts. A few
cases where visual contexts harmed the perfor-
mance mostly include visual tags that are unre-
lated to a token or its surrounding textual contexts.

Visualization of Modality Attention: Figure 3
visualizes the modality attention module at each
decoding step (each column), where amplified
modality is represented with darker color, and at-
tenuated modality is represented with lighter color.

For the image-aided model (W+C+V; upper row
in Figure 3), we confirm that the modality at-
tention successfully attenuates irrelevant signals
(e.g. selfies, etc.) and amplifies relevant modality-
based contexts in prediction of a given token.
In the example of “disney word essential = cof-
fee” with visual tags selfie, phone, person, the
modality attention successfully attenuates distract-

ing visual signals and focuses on textual modali-
ties, consequently making correct predictions. The
named entities in the examples of “Beautiful night
atop The Space Needle” and “Splash Mountain”
are challenging to predict because they are com-
posed of common nouns (space, needle, splash,
mountain), and thus they often need additional
contexts to correctly predict. In the training data,
visual contexts make stronger indicators for these
named entities (space needle, splash mountain),
and the modality attention module successfully at-
tends more to stronger signals.

For text-only model (W+C), we observe that
performance gains mostly come from the modal-
ity attention module better handling tokens unseen
during training or unknown tokens from the pre-
trained word embeddings matrix. For example,
while WaRriOoOrs and Kooler Matic are missing
tokens in the word embeddings matrix, it success-
fully amplifies character-based contexts (e.g. cap-
italized first letters, similarity to known entities
‘Golden State Warriors’) and suppresses word-
based contexts (word embeddings for unknown to-
kens e.g. ‘WaRriOoOrs’), leading to correct pre-
dictions. This result is significant because it shows
performance of the model, with an almost identi-
cal architecture, can still improve without having
to scale the word embeddings matrix indefinitely.

Figure 3 (b) shows the cases where the modality
attention led to incorrect predictions. For example,
the model predicts missing tokens HUUUGE and
Shampooer incorrectly as named entities by am-
plifying misleading character-based contexts (e.g.
capitalized first letters) or visual contexts (e.g.
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Figure 3: Visualization of modality attention (a) successful cases and (b) unsuccessful ones from SnapCaptions
test data. For each decoding step of a token (column), the modality attention module amplifies the most relevant
modality (darker) while attenuating irrelevant modalities (lighter). The model makes final predictions based on
weighted signals from all modalities. For interpretability, visual tags (label output of InceptionNet) are presented
instead of actual feature vectors used. GT: ground-truth, Pred: prediction by our model. Modalities- W: words, C:
characters, V: visual.

Vocab Size w/o M.A. w/ M.A.

100% 48.8 50.5

75% 48.7 50.1
50% 47.8 49.6
25% 46.4 48.7

Table 3: NER performance (F1) on SnapCaptions with
varying word embeddings vocabulary size. Mod-
els being compared: (W+C) Bi-LSTM/CRF + Bi-
CharLSTM w/ and w/o modality attention (M.A.)

concert scenes, associated contexts of which often
include named entities in the training dataset).

Sensitivity to Word Embeddings Vocabulary
Size: In order to isolate the effectiveness of the
modality attention module on textual models in
handling missing tokens, we report the perfor-
mance with varying word embeddings vocabulary
sizes in Table 3. By increasing the number of
missing tokens artificially by randomly removing
words from the word embeddings matrix (original
vocab size: 400K), we observe that while the over-
all performance degrades, the modality attention
module is able to suppress the peformance degra-
dation. Note also that the performance gap gen-
erally gets bigger as we decrease the vocabulary
size of the word embeddings matrix. This result is

significant in that the modality attention is able to
improve the model more robust to missing tokens
without having to train an indefinitely large word
embeddings matrix for arbitrarily noisy social me-
dia text datasets.

5 Conclusions

We proposed a new multimodal NER (MNER: im-
age + text) task on short social media posts. We
demonstrated for the first time an effective MNER
system, where visual information is combined
with textual information to outperform traditional
text-based NER baselines. Our work can be ap-
plied to myriads of social media posts or other arti-
cles across multiple platforms which often include
both text and accompanying images. In addition,
we proposed the modality attention module, a new
neural mechanism which learns optimal integra-
tion of different modes of correlated information.
In essence, the modality attention learns to attenu-
ate irrelevant or uninformative modal information
while amplifying the primary modality to extract
better overall representations. We showed that the
modality attention based model outperforms other
state-of-the-art baselines when text was the only
modality available, by better combining word and
character level information.
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