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Abstract

We present an effective end-to-end memory
network model that jointly (i) predicts whether
a given document can be considered as rele-
vant evidence for a given claim, and (ii) ex-
tracts snippets of evidence that can be used to
reason about the factuality of the target claim.
Our model combines the advantages of con-
volutional and recurrent neural networks as
part of a memory network. We further in-
troduce a similarity matrix at the inference
level of the memory network in order to ex-
tract snippets of evidence for input claims
more accurately. Our experiments on a pub-
lic benchmark dataset, FakeNewsChallenge,
demonstrate the effectiveness of our approach.

1 Introduction

Recently, an unprecedented amount of false infor-
mation has been flooding the Internet with aims
ranging from affecting individual people’s beliefs
and decisions (Mihaylov et al., 2015; Mihaylov
and Nakov, 2016) to influencing major events such
as political elections (Vosoughi et al., 2018). Con-
sequently, manual fact checking has emerged with
the promise to support accurate and unbiased anal-
ysis of rumors spreading in social medias, as well
as of claims made by public figures or news media.

As manual fact checking is a very tedious task,
automatic fact checking has been proposed as a
possible alternative. This is often broken into in-
termediate steps in order to alleviate the task com-
plexity. One such step is stance detection, which
is also useful for human experts as a stand-alone
task. The task aims to identify the relative per-
spective of a piece of text with respect to a claim,
typically modeled using labels such as agree, dis-
agree, discuss, and unrelated; Figure 1 gives some
examples.

∗Work conducted while these authors were at QCRI.

Claim: Robert Plant Ripped up $800M Led Zeppelin Re-
union Contract.

Stance Snippet
agree Led Zeppelin’s Robert Plant turned down £500m

to reform supergroup...
disagree Robert Plant’s publicist has described as “rub-

bish” a Daily Mirror report that he rejected a
£500m Led Zeppelin reunion...

discuss Robert Plant reportedly tore up an $800 million
Led Zeppelin reunion deal...

unrelated Richard Branson’s Virgin Galactic is set to launch
SpaceShipTwo today...

Figure 1: Examples of snippets of text and their stance
with respect to the target claim.

Here, we address the problem of stance detection
using a novel model based on end-to-end memory
networks (Sukhbaatar et al., 2015), which incorpo-
rates convolutional and recurrent neural networks,
as well as a similarity matrix. Our model jointly
addresses the problems of predicting the stance of
a text with respect to a given claim, and of extract-
ing relevant text snippets as support for the predic-
tion of the model. We further introduce a similar-
ity matrix, which we use at inference time in order
to improve the extraction of relevant snippets.

The experimental results on the Fake News
Challenge benchmark dataset show that our
model, which is very feature-light, performs close
to the state of the art. Our contributions can
be summarized as follows: (i) We apply a novel
memory network model enhanced with CNN and
LSTM networks for stance detection. (ii) We fur-
ther propose a novel extension of the general ar-
chitecture based on a similarity matrix, which we
use at inference time, and we show that this exten-
sion offers sizable performance gains. (iii) Finally,
we show that our model is capable of extracting
meaningful snippets from a given text document,
which is useful not only for stance detection, but
more importantly can support human experts who
need to decide on the factuality of a given claim.
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2 Stance Detection Memory Networks

Long-term memory is necessary to determine the
stance of a long document with respect to a claim,
as relevant parts of a document—paragraphs or
text snippets—can indicate the perspective of a
document with respect to a claim. Memory net-
works have been designed to remember past in-
formation (Sukhbaatar et al., 2015) and they can
be particularly well-suited for stance detection
since they can use a variety of inference strategies
alongside their memory component.

In this section, we present a novel memory net-
work for stance detection. It contains a new infer-
ence component that incorporates a similarity ma-
trix to extract, with better accuracy, textual snip-
pets that are relevant to the input claims.

2.1 Overview of the network

A memory network is a 5-tuple {M, I,G,O,R},
where the memory M is a sequence of objects or
representations, the input I is a component that
maps the input to its representation, the general-
ization component G (Sukhbaatar et al., 2015) up-
dates the memory with respect to new input, the
output O generates an output for each new input
and the current memory state, and finally, the re-
sponse R converts the output into a desired re-
sponse format, e.g., a textual response or an ac-
tion. These components can potentially use many
different machine learning models.

Our new memory network for stance detection
is a 6-tuple {M, I, F,G,O,R}, where F repre-
sents the new inference component. It takes an
input document d as evidence and a textual state-
ment s as a claim and converts them into their cor-
responding representations in the input I . Then, it
passes them to the memory M . Next, the relevant
parts of the input are identified in F , and after-
wards they are used by G to update the memory.
Finally, O generates an output from the updated
memory, and converts it to a desired response for-
mat with R. The network architecture is depicted
in Figure 2. We describe the components below.

2.2 Input Representation Component

The input to the stance detection algorithm is a
document d as evidence and a textual statement
s as a claim, (see lines 2 and 3 in Table 1). Each d
is segmented into paragraphs xj of varied lengths,
where each xj is considered as a piece of evidence
for stance detection.

1 Inputs:
2 (1) A document (d) as a set of pieces of evidence {xj}
3 (2) A textual statement containing a claim (s)

4 Outputs:
5 (1) predicting the relative perspective (or stance) of (d, s)

to a claim as agree, disagree, discuss, unrelated.
6 Inference outputs:
7 (2) Top K evidence pieces xj with their similarity scores
8 (3) Top K snippets of xj with their similarity scores

9 Memory Network Model:
10 1. Input memory representation (I):
11 d→ (X,W,E)

12 (X,W,E)
TimeDistributed(LSTM)−−−−−−−−−−−−−−−−−→ {m1, ...,mn}

13 (X,W,E)
TimeDistributed(CNN)−−−−−−−−−−−−−−−−→ {c1, .., cn}

14 s
LSTM,CNN−−−−−−−−→ slstm, scnn

15 2. Memory (M), updating memory (G) and inference (F):
16 mj = mj � P j

tfidf, ∀j
17 P j

lstm = slstm
ᵀ ×M×mj , ∀j

18 cj = cj � P j
lstm, ∀j

19 P j
cnn = scnn

ᵀ ×M′ × cj ,∀j

20 3. Output memory representation (O): o =
[
mean({cj});

21
[
max({P j

cnn});mean({P j
cnn})

]
;
[
max({P j

lstm});
mean({P j

lstm})
]
;
[
max({P j

tfidf});mean({P j
tfidf})

]]

22 4. Generating the final prediction (R):
23 [o; slstm; scnn]

MLP−−−→ δ

24 5. Inference (F) outputs:
25 P j

cnn −→ {a set of evidence}+ {similarity scores}
26 M ′ −→ {snippets}+ {similarity scores}

Table 1: Summary of our memory network algorithm
for stance detection.

Indeed, a paragraph usually presents a coherent ar-
gument, unified under one or more inter-related
topics. The input component in our model con-
verts each d into a set of pieces of evidence in a
three dimensional (3D) tensor space as shown be-
low (see line 11 in Table 1):

d = (X,W,E) (1)

where X = {x1, ..., xn} is a set of paragraphs
considered as pieces of evidence; each xj is rep-
resented by a set of words W = {w1, ..., wv}—
drawn from a global vocabulary of size v—and a
set of neural representations E = {e1, ..., ev} for
words in W . This 3D space is illustrated as a cube
in Figure 2.

Each xj is encoded from the 3D space into a se-
mantic representation at the input component us-
ing a Long Short-Term Memory (LSTM) network.
The lower left component in Figure 2 shows our
LSTM network, which operates on our input as
follows (see also line 12 in Table 1):

(X,W,E)
T imeDistributed(LSTM)−−−−−−−−−−−−−−−−→ {m1, ...,mn}

(2)
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Figure 2: The architecture of our memory network model for stance detection.

where mj is the LSTM representation of xj , and
TimeDistributed() indicates a wrapper that enables
training the LSTM over all pieces of evidence by
applying the same LSTM model to each time-step
of a 3D input tensor, i.e., (X,W,E).

While LSTM networks were designed to ef-
fectively capture and memorize their inputs (Tan
et al., 2016), Convolutional Neural Networks
(CNNs) emphasize the local interaction between
the individual words in the input word sequence,
which is important for obtaining an effective rep-
resentation. Here, we use a CNN in order to en-
code each xj into its representation cj as shown
below (see line 13 in Table 1).

(X,W,E)
T imeDistributed(CNN)−−−−−−−−−−−−−−−→ {c1, .., cn}

(3)
As shown in the left-top corner of Figure 2, this
representation is passed as a new input to the com-
ponent M of our memory network model. More-
over, we keep track of the computed n-grams from
the CNN so that we can use them later in the in-
ference and in the response components (see sec-
tions 2.3 and 2.6). For this purpose, we use a
Maxout layer (Goodfellow et al., 2013) to take the
maximum across k affine feature maps computed
by the CNN, i.e., pooling across channels.

Previous work investigated the combination
of convolutional and recurrent representations,
which were fed to the other network as input (Tan
et al., 2016; Donahue et al., 2015; Zuo et al., 2015;
Sainath et al., 2015). In contrast, we feed individ-
ual outputs into our memory network separately,
and we let it decide which representation better
helps the target task. We demonstrate the effec-
tiveness of this choice in our experiments.

Furthermore, we convert each input claim s into
its representation using the corresponding LSTM
and CNN networks as follows:

s
LSTM,CNN−−−−−−−−→ slstm, scnn (4)

where slstm and scnn are the representations of s
computed using LSTM and CNN networks, re-
spectively. Note that these are separate networks
with different parameters from those used to en-
code the pieces of evidence.

Lines 10–14 of Table 1 describe the above steps
in representing I in our memory network. This
component encodes each input document d into
a set of pieces of evidence {xj}∀j: it computes
LSTM and CNN representations, mj and cj , re-
spectively, for each xj , and LSTM and CNN rep-
resentations, slstm and scnn, for each claim s.

2.3 Inference Component
The resulting representations can serve to compute
semantic similarity between claims and pieces of
evidence. We define the similarity P j

lstm between s
and xj as follows (see line 17 in Table 1):

P j
lstm = slstm

ᵀ ×M×mj , ∀j (5)

where slstm ∈ Rq and mj ∈ Rd are the LSTM rep-
resentations of s and xj , respectively, and M ∈
Rq×d is a similarity matrix capturing their similar-
ity. For this purpose, M maps s and xj into the
same space as shown in Figure 3. M is a set of
q × d parameters of the network, which are opti-
mized during the training.

In a similar fashion, we compute the similarity
P j

cnn between xj and s using the CNN representa-
tions as follows (see line 19 in Table 1):

P j
cnn = scnn

ᵀ ×M′ × cj ,∀j (6)
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Figure 3: Matching a claim s and a piece of evidence
xj using a similarity matrix M . Here, slstm and scnn are
the LSTM and CNN representations of s, whereas mj

and cj are the LSTM and CNN representations of xj .

where scnn ∈ Rq′ and cj ∈ Rd′ are the represen-
tations of s and xj obtained with CNN, respec-
tively. The similarity matrix M ′ ∈ Rq′×d′ is a
set of q′ × d′ parameters of the network and is
optimized during the training. P j

lstm and P j
cnn in-

dicate the claim-evidence similarity vectors com-
puted based on the LSTM and on the CNN repre-
sentations of s and xj , respectively.

The rationale behind using the similarity matrix
is that in our memory network model, as Figure 3
shows, we seek a transformation of the input claim
such that s′ =M × s in order to obtain the closest
facts to the claim.

In fact, the relevant parts of the input document
with respect to the input claim can be captured at
a different level, e.g., using M ′ for the n-gram
level or using the claim-evidence P j

lstm or P j
cnn,∀j

at the paragraph level. We note that (i) P j
lstm uses

LSTM to take the word order and long-length de-
pendencies into account, and (ii) P j

cnn uses CNN
to take n-grams and local dependencies into ac-
count, as explained in sections 2.2 and 2.3. Ad-
ditionally, we compute another semantic similar-
ity vector, P j

tfidf, by applying a cosine similarity
between the TF.IDF (Spärck Jones, 2004) repre-
sentation of xj and s. This is particularly useful
for stance detection as it can help detect unrelated
pieces of evidence.

2.4 Memory and Generalization Components
The information flow and updates in the mem-
ory is as follows: first, the representation vector
{mj}∀j is passed to the memory and updated us-
ing the claim-evidence similarity vector {P j

tfidf}:

mj = mj � P j
tfidf, ∀j (7)

The reason for this weighting is to filter out
most unrelated evidence with respect to the claim.
The updated mj in conjunction with slstm are
used by the inference component–component F to
compute {P j

lstm} as explained in Section 2.3.

Then, {P j
lstm} is used to update the new input set

{cj}∀j to the memory:

cj = cj � P j
lstm,∀j (8)

Finally, the updated cj in conjunction with scnn

are used to compute P j
cnn as explained in Sec. 2.3.

2.5 Output Representation Component
In memory networks, the memory output depends
on the final goal, which, in our case, is to detect
the relative perspective of a document to a claim.
For this purpose, we apply the following equation:

o =
[
mean({cj});

[
max({P j

cnn});mean({P j
cnn})

]
;
[
max({P j

lstm});
mean({P j

lstm})
]
;
[
max({P j

tfidf});mean({P j
tfidf})

]]

(9)

where mean({cj}) is the average vector of cj rep-
resentations. Furthermore, we compute the max-
imum and the average similarity between each
piece of evidence and the claim using P j

tfidf, P
j
lstm

and P j
cnn, which are computed for each evidence

and claim in the inference component F . The
maximum similarity identifies the part of docu-
ment xj that is most similar to the claim, while the
average similarity measures the overall similarity
between the document and the claim.

2.6 Response and Output Generation
This component computes the final stance of a
document with respect to a claim. For this pur-
pose, the concatenation of vectors o, slstm and scnn

is fed into a Multi-Layer Perceptron (MLP), where
a softmax predicts the stance of the document with
respect to the claim, as shown below (see also lines
22–23 in Table 1):

[o; slstm; scnn]
MLP−−−→ δ (10)

where δ is a softmax function. In addition to the
resulting stance, we extract snippets from the in-
put document that best indicate the perspective of
the document with respect to the claim. For this
purpose, we use P j

cnn and M ′ as explained in Sec-
tion 2.3 (see also lines 24–26 in Table 1).

The overall model is shown in Figure 2 and a
summary of the model is presented in Table 1. All
the model parameters, including those of (i) CNN
and LSTM in I , (ii) the similarity matrices M
and M ′ in F , and (iii) the MLP in R, are jointly
learned during the training process.

770



3 Experiments and Evaluation

3.1 Data
We use the dataset provided by the Fake News
Challenge,1 where each example consists of a
claim–document pair with the following possi-
ble relations between them: agree (the document
agrees with the claim), disagree (the document
disagrees with the claim), discuss (the document
discusses the same topic as the claim, but does not
take a stance with respect to the claim), unrelated
(the document discusses a different topic than the
topic of the claim). The data includes a total
of 75.4K claim–document pairs, which link 2.5K
unique articles with 2.5K unique claims, i.e., each
claim is associated with 29.8 articles on average.

3.2 Settings
We use 100-dimensional word embeddings from
GloVe (Pennington et al., 2014), which were
trained on two billion tweets. We further use
Adam as an optimizer and categorical cross-
entropy as a loss. We use 100-dimensional units
for the LSTM embeddings, and 100 feature maps
with filter width of 5 for the CNN. We consider the
first p = 9 paragraphs for each document, where p
is the median of the number of paragraphs.

We optimize the hyper-parameters of the mod-
els using a validation dataset (20% of the training
data). Finally, as the data is largely imbalanced to-
wards the unrelated class, during training, we ran-
domly select an equal number of instances from
each class at each epoch.

3.3 Evaluation Measures
We use the following evaluation measures:

Accuracy: The number of correctly classified
examples divided by the total number of examples.
It is equivalent to micro-averaged F1.

Macro-F1: We calculate F1 for each class, and
then we average across all classes.

Weighted Accuracy: This is a weighted, two-
level scoring scheme, which is applied to each test
example. First, if the example is from the un-
related class and the model correctly predicts it,
the score is incremented by 0.25; otherwise, if the
example is related and the model predicts agree,
disagree, or discuss, the score is incremented by
0.25. Second, there is a further increment by 0.75
for each related example if the model predicts the
correct label: agree, disagree, or discuss.

1Available at www.fakenewschallenge.org

Finally, the score is normalized by dividing it
by the total number of test examples. The ra-
tionale behind this metric is that the binary re-
lated/unrelated classification task is expected to be
much easier, while also being arguably less rele-
vant to fake news detection than the stance detec-
tion task, which aims to further classify relevant
instances as agree, disagree, or discuss. There-
fore, the former task is given less weight and
the latter task is given more weight through the
weighted accuracy metric.

3.4 Baselines

Given the imbalanced nature of our data, we use
two baselines in which we label all testing exam-
ples with the same label: (i) unrelated and (ii) dis-
cuss. The former is the majority class baseline,
which is a reasonable baseline for Accuracy and
macro-F1, while the latter is a potentially better
baseline for Weighted Accuracy.

We further use CNN and LSTM, and combina-
tions thereof as baselines, since they form compo-
nents of our model, and also because they yield
state-of-the-art results for text, image, and video
classification (Tan et al., 2016; Donahue et al.,
2015; Zuo et al., 2015; Sainath et al., 2015).

Finally, we include the official baseline from the
challenge, which is a Gradient Boosting classifier
with word and n-gram overlap features, as well as
indicators for refutation and polarity.

3.5 Our Models

sMemNN: This is our model presented in Fig-
ure 2. Note that unlike the CNN+LSTM and
the LSTM+CNN baselines above, which feed the
output of one network into the other one, the
sMemNN model feeds the individual outputs of
both the CNN and the LSTM networks into the
memory network, and lets it decide how much to
rely on each of them. This consideration also facil-
itates reasoning and explaining model predictions,
as we will discuss in more detail below.

sMemNN (dotProduct): This is a version of
sMemNN, where the similarity matrices are re-
placed by the dot product between the represen-
tation of the claims and of the evidence. For this
purpose, we first project the claim representation
to a dense layer that has the same size as the rep-
resentation of each piece of evidence, and then we
compute the dot product between the resulting rep-
resentation and the representation of the evidence.
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Methods Total
Parameters

Trainable
Parameters

Weighted
Accuracy Macro-F1 Accuracy

1. All-unrelated – – 39.37 20.96 72.20
2. All-discuss – – 43.89 7.47 17.57
3. CNN 2.7M 188.7K 40.66 24.44 41.53
4. LSTM 2.8M 261.3K 57.23 37.23 60.21
5. CNN+LSTM 4.2M 361.5K 42.02 27.36 48.54
6. LSTM+CNN 2.8M 281.5K 60.21 40.33 65.36
7. Gradient Boosting – – 75.20 46.13 86.32
8. sMemNN (dotProduct) 5.4M 275.2K 75.13 50.21 83.85
9. sMemNN 5.5M 377.5K 78.97 56.75 87.27
10. sMemNN (with TF) 110M 105M 81.23 56.88 88.57

Table 2: Evaluation results on the test data.

sMemNN (with TF): Since our LSTM and
CNN networks use a limited number of starting
paragraphs2 for an input document, we enrich our
model with the BOW representation of documents
and claims as well as their TF.IDF-based cosine
similarity. We concatenate these vectors with the
memory outputs (section 2.5) and pass them to
the R component (section 2.6) of sMemNN. We
expect these BOW vectors provide useful infor-
mation that are not initially incorporated into the
sMemNN model.

3.6 Results
Table 2 reports the performance of all models on
the test dataset. The All-unrelated and the All-
discuss baselines perform poorly across the eval-
uation measures, except for All-unrelated, which
achieves high accuracy, which is due to unrelated
being by far the dominant class in the dataset.

Next, we can see that the LSTM model consis-
tently outperforms the CNN across all evaluation
measures. Although the larger number of parame-
ters of the LSTM can play a role, we believe that
its superiority comes from it being able to remem-
ber previously observed relevant pieces of text.

Next, we see systematic improvements for the
combinations of the CNN and the LSTM mod-
els: CNN+LSTM is better than CNN alone, and
LSTM+CNN is better than LSTM alone. Bet-
ter performance is achieved by the LSTM+CNN
model, where claims and evidence are first pro-
cessed by a LSTM and then fed into a CNN.

The Gradient Boosting model achieves sizable
improvement over the above baseline neural mod-
els. However, we should note that these neural
models do not have the rich hand-crafted features
that were used in the Gradient Boosting model.

2Due to the long length of documents, it is impractical to
consider all paragraphs when training LSTM and CNN.

Row 9 shows the results for our memory net-
work model (sMemNN), which consistently out-
performs all other baseline models across all eval-
uation metrics, achieving 10.62 and 3.77 points
of absolute improvement in terms of Macro-F1
and Weighted Accuracy, respectively, over the best
baseline (Gradient Boosting). We believe this is
due to the memory network being able to capture
good text snippets. As we will see below, these
snippets are also useful for explaining the model’s
predictions. Comparing row 9 to row 8, we can
see the importance of our proposed similarity ma-
trix: replacing that matrix by a simple dot product
hurts the performance of the model considerably
across all evaluation measures, thus lowering it to
the level of the Gradient Boosting model.

Finally, row 10 shows the results for our mem-
ory network model enriched by BOW representa-
tion. As we expected, it improves the performance
of sMemNN - perhaps by capturing useful infor-
mation from paragraphs beyond the starting few.

To put the results of sMemNN in perspective,
we should mention that the best system at the Fake
News Challenge (Baird et al., 2017) achieved a
macro-F1 of 57.79, which is not significantly dif-
ferent from our results at the 0.05 significance
level (p-value=0.53). Yet, they have an ensemble
combining the feature-rich Gradient Boosting sys-
tem with neural networks. In contrast, we only use
raw text as input and no ensembles, and our main
goal is to study a new memory network model and
its explainability component.

Further analysis of the outputs (namely, the con-
fusion matrices) of the different models we exper-
imented with reveals the following general trends:
(i) The unrelated examples are easy to detect, and
most models show high performance for this class.
(ii) The agree and the disagree examples are often
misclassified as discuss by the baseline models.
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Claim 1: man saved from bear attack - thanks to his justin bieber ringtone
Evidence Id Pj

cnn Evidence Snippet
2069-3 0.89 ... fishing in the yakutia republic , russia , igor vorozhbitsyn is lucky to be alive after

his justin bieber ringtone , baby , scared off a bear that was attacking him 0.41 ...
2069-7 1.0 ... but as the bear clawed vorozhbitsyn ’ s face and back his mobile phone rang

, the ringtone selected was justin bieber ’ s hit song baby . rightly startled 1.00 ,

the bear retreated back into 0.39 the forest ...
true label: agree; predicted label: agree

Claim 2: 50ft crustacean , dubbed crabzilla , photographed lurking beneath the waters in whitstable
Evidence Id Pj

cnn Evidence Snippet
24835-1 0.0046 ... a marine biologist has killed off claims -0.0008 that a giant crab is 0.0033 living on the

kent coast - insisting the image is probably a well - doctored hoax 0.0012 ...
24835-7 -0.0008 ... i don ’ t know what the currents are like around that harbour or what sort of they might

produce in the sand , but i think it ’ s more conceivable that someone is playing 0.0007

about with the photo ...
true label: disagree; predicted label: disagree

Table 3: Examples of highly ranked snippets of evidence for an input claim, which are automatically extracted by
our inference component. The P j

cnn column and the values in the top-right corner of the highlighted snippets show
the similarity between the claim and evidence, and between the claim and snippets of the evidence, respectively.
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Figure 4: Effect of data coverage. The left y-axis shows
the fraction of data observed during training (cover-
age), the right y-axis shows the loss during training.

This is mainly because the document that dis-
cusses a claim often shares the same topic with
the claim, but then it does not take a stance with
respect to that claim. (iii) The disagree examples
are the most difficult ones for all models, probably
because they represent by far the smallest class.

4 Discussion

4.1 Training Data Coverage

As discussed previously, we balance the data at
each training iteration by randomly selecting z in-
stances from each of the four target classes, where
z is the size of the class with the minimum num-
ber of training instances. Here, we investigate the
amount of training data that gets actually used.

For this purpose, at each training iteration, we re-
port the proportion of the training instances from
each class that have been used for training so far,
either at the current or at any of the previous iter-
ations. As Figure 4 shows, our random data sam-
pling procedure eventually covers almost all train-
ing instances. Since the disagree class is the small-
est, its instances remain fully covered through-
out the process. Moreover, almost all other re-
lated instances, i.e., agree and discuss, are ob-
served during training, as well as a large fraction
of the dominating unrelated examples. Note that
the model achieves its best (lowest) loss on the val-
idation dataset at iteration 31, when almost all re-
lated training instances are observed. This hap-
pens while the corresponding fraction for the un-
related pairs is around 50%, i.e., a considerable
number of the unrelated instances are not required
to be used for training.

4.2 Explainability

One of the main advantages of our memory net-
work model, compared to the baselines and to re-
lated work in general, is that it has the capacity
to explain its predictions by extracting snippets
from each piece of evidence that supports its pre-
diction. As we explained in Section 2.3, our in-
ference component predicts the similarity between
each piece of evidence xj and the claim s at the n-
grams level using the similarity matrix M ′ and the
claim-evidence similarity vector P j

cnn. Below, we
explore our model’s explainability in more detail.
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Figure 5: Prediction explainability. Sub-figures (a)-(c) show the precision of our model at explaining its predictions
when the pieces of evidence are (a) fixed-length n-grams (n = 5), (b) combinations of several consecutive n-grams
with similar scores, or (c) the entire sentence, if it includes at least one extracted n-gram snippet.

Table 3 shows examples of two claims and the
snippets extracted as evidence. Column P j

cnn

shows the overall similarity between the evidence
and the corresponding claim as computed by the
inference component of our model. The high-
lighted texts are the snippets with the highest sim-
ilarity to the claim as extracted by the same com-
ponent. The values on the snippets’ top-right show
the claim-snippet similarity values obtained by the
inference component.

Note that all snippets are fixed-length, namely
5-grams; however, in case there are several con-
secutive n-grams with similar scores, for better il-
lustration, we combine them into a single snippet
and we report their average values (see the snippet
for evidence 2069-3). As these examples show,
our model can accurately predict the stance of
these pieces of evidence against their correspond-
ing claims. Also, claim 2 and its corresponding
evidence are shown at the second row of Table 3.
As this example shows, the similarity values asso-
ciated with snippets are either too small or nega-
tive, e.g., see the similarity value for the snippet
“biologist has killed off claims.” We can see that
these help the model to make accurate predictions.

We conduct the following experiment to quan-
tify the performance of our memory network at
explaining its predictions: we randomly sam-
ple 100 agree/disagree claim–document examples
from our gold data, and we manually evaluate the
top five pieces of evidence that our model provides
to support/oppose the corresponding claims. 3

3In 76 cases, our model correctly classified the
agree/disagree examples when the evaluation was conducted,
and it further provided arguably adequate snippets.

Figure 5(a) shows the precision of our memory
network model at explaining its predictions when
each supporting/opposing piece of evidence is an
n-gram snippet of fixed length (n = 5) for the
agree and the disagree classes, and their combina-
tions at the top-k ranks, k = {1, . . . , 5}. We can
see in the figure that the model achieves precision
of 0.28, 0.32, 0.35, 0.25, and 0.33 at ranks 1–5.
Moreover, we find that it can accurately identify
useful key phrases such as officials declared the
video, according to previous reports, believed will
come, president in his tweets as supporting pieces
of evidence, and proved a hoax, shot down a cnn
report, would be skeptical as opposing pieces of
evidence.

Note that this relatively low precision of
our memory network model at explaining its
agree/disagree predictions is mainly due to the un-
supervised nature of this task as no gold snippets
justifying the document’s gold stance with respect
to the target claim are available in the Fake News
Challenge dataset.4

Furthermore, our evaluation setup is at the n-
gram level in Figure 5(a). However, if we conduct
a more coarse-grained evaluation where we com-
bine consecutive n-grams with similar scores into
a single snippet, the precision for these new snip-
pets will improve to 0.40, 0.38, 0.42, 0.38, and
0.42 at ranks 1–5, as Figure 5(b) shows. If we fur-
ther extend the evaluation to the sentence level, the
precision will jump to 0.60, 0.58, 0.55, 0.62, and
0.57 at ranks 1–5, as we can see in Figure 5(c).

4Some other recent datasets, to be presented at this same
HLT-NAACL’2018 conference, do have such gold evidence
annotations (Baly et al., 2018; Thorne et al., 2018).
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5 Related Work

While stance detection is an interesting task in its
own right, e.g., for media monitoring, it is also
an important component for fact checking and ve-
racity inference.5 Automatic fact checking was
envisioned by Vlachos and Riedel (2014) as a
multi-step process that (i) identifies check-worthy
statements (Hassan et al., 2015; Gencheva et al.,
2017; Jaradat et al., 2018), (ii) generates questions
to be asked about these statements (Karadzhov
et al., 2017), (iii) retrieves relevant information to
create a knowledge base (Shiralkar et al., 2017),
and (iv) infers the veracity of these statements,
e.g., using text analysis (Castillo et al., 2011;
Rashkin et al., 2017) or information from external
sources (Mihaylova et al., 2018; Karadzhov et al.,
2017; Popat et al., 2017).

There have been some nuances in the way re-
searchers have defined the stance detection task.
SemEval-2016 Task 6 (Mohammad et al., 2016)
targets stances with respect to some target propo-
sition, e.g., entities, concepts or events, as in-
favor, against, or neither. The winning model
in the task was based on transfer learning: a Re-
current Neural Network trained on a large Twitter
corpus was used to predict task-relevant hashtags
and to initialize a second recurrent neural network
trained on the provided dataset for stance predic-
tion (Zarrella and Marsh, 2016). Subsequently,
Zubiaga et al. (2016) detected the stance of tweets
toward rumors and hot topics using linear-chain
conditional random fields (CRFs) and tree CRFs
that analyze tweets based on their position in tree-
like conversational threads.

Most commonly, stance detection is defined
with respect to a claim, e.g., as in the 2017 Fake
News Challenge. The best system in the chal-
lenge was an ensemble of gradient-boosted de-
cision trees with rich features (e.g., sentiment,
word2vec, singular value decomposition (SVD)
and TF.IDF features, etc.) and a deep convolu-
tional neural network to address the stance detec-
tion problem (Baird et al., 2017).

Unlike the above work, we use a feature-light
memory network that jointly infers the stance and
highlights relevant snippets of evidence with re-
spect to a given claim.

5Yet, stance detection and fact checking are typically sup-
ported by separate datasets. Two notable upcoming excep-
tions, both appearing in this HLT-NAACL’2018, are (Thorne
et al., 2018) for English and (Baly et al., 2018) for Arabic.

6 Conclusion

We studied the problem of stance detection, which
aims to predict whether a given document sup-
ports, challenges, or just discusses a given claim.
The nature of the task requires a machine learn-
ing model to focus on the relevant paragraphs of
the evidence. Moreover, in order to understand
whether a paragraph supports a claim, there is a
need to refer to information in other paragraphs.
CNNs or LSTMs are not well-suited for this task
as they cannot model complex dependencies such
as semantic relationships with respect to entire
previous paragraphs. In contrast, memory net-
works are exactly designed to remember previous
information. However, given the large size of doc-
uments and paragraphs, basic memory networks
do not handle well irrelevant and noisy informa-
tion, which we confirmed in our experiments.

Thus, we proposed a novel extension of general
memory networks based on a similarity matrix and
a stance filtering component, which we apply at
the inference level, and we have shown that this
extension offers sizable performance gains mak-
ing memory networks competitive. Moreover, our
model can extract meaningful snippets from docu-
ments that can explain the stance of a given claim.

In future work, we plan to extend the inference
component to select an optimal set of explanations
for each prediction, and to explain the model as a
whole, not only at the instance level.
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