Unsupervised Learning of Sentence Embeddings
using Compositional n-Gram Features

Matteo Pagliardini*
Iprova SA, Switzerland

mpagliardini@iprova.com

Abstract

The recent tremendous success of unsuper-
vised word embeddings in a multitude of ap-
plications raises the obvious question if simi-
lar methods could be derived to improve em-
beddings (i.e. semantic representations) of
word sequences as well. We present a sim-
ple but efficient unsupervised objective to train
distributed representations of sentences. Our
method outperforms the state-of-the-art unsu-
pervised models on most benchmark tasks,
highlighting the robustness of the produced
general-purpose sentence embeddings.

1 Introduction

Improving unsupervised learning is of key impor-

tance for advancing machine learning methods, as
to unlock access to almost unlimited amounts of
data to be used as training resources. The ma-
jority of recent success stories of deep learning
does not fall into this category but instead relied
on supervised training (in particular in the vision
domain). A very notable exception comes from
the text and natural language processing domain,
in the form of semantic word embeddings trained
unsupervised (Mikolov et al., 2013b,a; Penning-
ton et al., 2014). Within only a few years from
their invention, such word representations — which
are based on a simple matrix factorization model
as we formalize below — are now routinely trained
on very large amounts of raw text data, and have
become ubiquitous building blocks of a majority
of current state-of-the-art NLP applications.

While very useful semantic representations are
available for words, it remains challenging to pro-
duce and learn such semantic embeddings for
longer pieces of text, such as sentences, para-
graphs or entire documents. Even more so, it re-

* indicates equal contribution

Prakhar Gupta*

EPFL, Switzerland
prakhar.gupta@epfl.ch

Martin Jaggi
EPFL, Switzerland
martin. jaggi@epfl.ch

mains a key goal to learn such general-purpose
representations in an unsupervised way.

Currently, two contrary research trends have
emerged in text representation learning: On one
hand, a strong trend in deep-learning for NLP
leads towards increasingly powerful and com-
plex models, such as recurrent neural networks
(RNNs), LSTMs, attention models and even Neu-
ral Turing Machine architectures. While ex-
tremely strong in expressiveness, the increased
model complexity makes such models much
slower to train on larger datasets. On the other end
of the spectrum, simpler “shallow” models such
as matrix factorizations (or bilinear models) can
benefit from training on much larger sets of data,
which can be a key advantage, especially in the
unsupervised setting.

Surprisingly, for constructing sentence embed-
dings, naively using averaged word vectors was
shown to outperform LSTMs (see Wieting et al.
(2016b) for plain averaging, and Arora et al.
(2017) for weighted averaging). This example
shows potential in exploiting the trade-off be-
tween model complexity and ability to process
huge amounts of text using scalable algorithms,
towards the simpler side. In view of this trade-
off, our work here further advances unsupervised
learning of sentence embeddings. Our proposed
model can be seen as an extension of the C-BOW
(Mikolov et al., 2013b,a) training objective to train
sentence instead of word embeddings. We demon-
strate that the empirical performance of our re-
sulting general-purpose sentence embeddings very
significantly exceeds the state of the art, while
keeping the model simplicity as well as training
and inference complexity exactly as low as in aver-
aging methods (Wieting et al., 2016b; Arora et al.,
2017), thereby also putting the work by (Arora
et al., 2017) in perspective.

New Orleans, Louisiana, June 1 - 6, 2018. (©2018 Association for Computational Linguistics

528
Proceedings of NAACL-HLT 2018, pages 528-540

Contributions. The main contributions in this
work can be summarized as follows:

* Model. We propose Sent2Vec!, a sim-
ple unsupervised model allowing to com-
pose sentence embeddings using word vec-
tors along with n-gram embeddings, simulta-
neously training composition and the embed-
ding vectors themselves.

* Efficiency & Scalability. The computational
complexity of our embeddings is only O(1)
vector operations per word processed, both
during training and inference of the sentence
embeddings. This strongly contrasts all neu-
ral network based approaches, and allows our
model to learn from extremely large datasets,
in a streaming fashion, which is a crucial ad-
vantage in the unsupervised setting. Fast in-
ference is a key benefit in downstream tasks
and industry applications.

* Performance. Our method shows signifi-
cant performance improvements compared to
the current state-of-the-art unsupervised and
even semi-supervised models. The resulting
general-purpose embeddings show strong ro-
bustness when transferred to a wide range of
prediction benchmarks.

2 Model

Our model is inspired by simple matrix factor
models (bilinear models) such as recently very
successfully used in unsupervised learning of
word embeddings (Mikolov et al., 2013b,a; Pen-
nington et al., 2014; Bojanowski et al., 2017)
as well as supervised of sentence classification
(Joulin et al., 2017). More precisely, these models
can all be formalized as an optimization problem
of the form

min

U,v

> fs(UVis))

SeC

for two parameter matrices U € R¥*" and V' €
RhXM, where) denotes the vocabulary. Here,
the columns of the matrix V represent the learnt
source word vectors whereas those of U represent
the target word vectors. For a given sentence S,

' All our code and pre-trained models will be made
publicly available on http://github.com/epfml/
sent2vec

529

which can be of arbitrary length, the indicator vec-
tor tg € {0,1}V is a binary vector encoding S
(bag of words encoding).

Fixed-length context windows .S running over
the corpus are used in word embedding methods
as in C-BOW (Mikolov et al., 2013b,a) and GloVe
(Pennington et al., 2014). Here we have k = |V|
and each cost function fg : R¥ — R only de-
pends on a single row of its input, describing the
observed target word for the given fixed-length
context S. In contrast, for sentence embeddings
which are the focus of our paper here, S will
be entire sentences or documents (therefore vari-
able length). This property is shared with the su-
pervised FastText classifier (Joulin et al., 2017),
which however uses soft-max with & < || being
the number of class labels.

2.1 Proposed Unsupervised Model

We propose a new unsupervised model, Sent2Vec,
for learning universal sentence embeddings. Con-
ceptually, the model can be interpreted as a natu-
ral extension of the word-contexts from C-BOW
(Mikolov et al., 2013b,a) to a larger sentence con-
text, with the sentence words being specifically
optimized towards additive combination over the
sentence, by means of the unsupervised objective
function.

Formally, we learn a source (or context) embed-
ding v,, and target embedding wu,, for each word w
in the vocabulary, with embedding dimension A
and k = |V| as in (1). The sentence embedding
is defined as the average of the source word em-
beddings of its constituent words, as in (2). We
augment this model furthermore by also learning
source embeddings for not only unigrams but also
n-grams present in each sentence, and averaging
the n-gram embeddings along with the words, i.e.,
the sentence embedding vg for .S is modeled as

vs = wisyVers) = w2 e @

where R(S) is the list of n-grams (including un-
igrams) present in sentence S. In order to pre-
dict a missing word from the context, our objective
models the softmax output approximated by neg-
ative sampling following (Mikolov et al., 2013b).
For the large number of output classes |V| to be
predicted, negative sampling is known to signifi-
cantly improve training efficiency, see also (Gold-
berg and Levy, 2014). Given the binary logistic

loss function ¢ : = +— log (1 + e~*) coupled with
negative sampling, our unsupervised training ob-
jective is formulated as follows:

wip 3 % (Hudsiwo)
’ SeC wieS
+ - “mTu'US\{wt})>
w' € Ny,

where S corresponds to the current sentence and
N, is the set of words sampled negatively for
the word w; € S. The negatives are sampled?
following a multinomial distribution where each
word w is associated with a probability g, (w) :
Viw/ (D ey fuw:)» Where f,, is the normal-
ized frequency of w in the corpus.

To select the possible target unigrams (posi-
tives), we use subsampling as in (Joulin et al.,
2017; Bojanowski et al., 2017), each word w be-
ing discarded with probability 1 — ¢,(w) where
gp(w) = min {1, \/t/fw + t/fuw}. Where t is
the subsampling hyper-parameter. Subsampling
prevents very frequent words of having too much
influence in the learning as they would introduce
strong biases in the prediction task. With positives
subsampling and respecting the negative sampling
distribution, the precise training objective function
becomes

min D" (qp(wt)f(UIt”S\{wt}))
T SeCwieS
+ 1 Nw | Y an(w')e(~ ulwswm))

w’' eV
2.2 Computational Efficiency

In contrast to more complex neural network based
models, one of the core advantages of the pro-
posed technique is the low computational cost for
both inference and training. Given a sentence S
and a trained model, computing the sentence rep-
resentation vg only requires |S| - h floating point
operations (or |R(S)| - h to be precise for the n-
gram case, see (2)), where h is the embedding di-
mension. The same holds for the cost of training
with SGD on the objective (3), per sentence seen
in the training corpus. Due to the simplicity of the

2To efficiently sample negatives, a pre-processing table
is constructed, containing the words corresponding to the
square root of their corpora frequency. Then, the negatives
N, are sampled uniformly at random from the negatives ta-
ble except the target w; itself, following (Joulin et al., 2017;
Bojanowski et al., 2017).

530

model, parallel training is straight-forward using
parallelized or distributed SGD.

Also, in order to store higher-order n-grams effi-
ciently, we use the standard hashing trick, see e.g.
(Weinberger et al., 2009), with the same hashing
function as used in FastText (Joulin et al., 2017;
Bojanowski et al., 2017).

2.3 Comparison to C-BOW

C-BOW (Mikolov et al., 2013b,a) aims to predict
a chosen target word given its fixed-size context
window, the context being defined by the average
of the vectors associated with the words at a dis-
tance less than the window size hyper-parameter
ws. If our system, when restricted to unigram
features, can be seen as an extension of C-BOW
where the context window includes the entire sen-
tence, in practice there are few important differ-
ences as C-BOW uses important tricks to facilitate
the learning of word embeddings. C-BOW first
uses frequent word subsampling on the sentences,
deciding to discard each token w with probability
¢p(w) or alike (small variations exist across imple-
mentations). Subsampling prevents the generation
of n-grams features, and deprives the sentence of
an important part of its syntactical features. It also
shortens the distance between subsampled words,
implicitly increasing the span of the context win-
dow. A second trick consists of using dynamic
context windows: for each subsampled word w,
the size of its associated context window is sam-
pled uniformly between 1 and ws. Using dynamic
context windows is equivalent to weighing by the
distance from the focus word w divided by the
window size (Levy et al., 2015). This makes the
prediction task local, and go against our objective
of creating sentence embeddings as we want to
learn how to compose all n-gram features present
in a sentence. In the results section, we report
a significant improvement of our method over C-
BOW.

2.4 Model Training

Three different datasets have been used to train
our models: the Toronto book corpus®, Wikipedia
sentences and tweets. The Wikipedia and Toronto
books sentences have been tokenized using the
Stanford NLP library (Manning et al., 2014),
while for tweets we used the NLTK tweets tok-
enizer (Bird et al., 2009). For training, we select a

*http://www.cs.toronto.edu/ ~mbweb/

sentence randomly from the dataset and then pro-
ceed to select all the possible target unigrams us-
ing subsampling. We update the weights using
SGD with a linearly decaying learning rate.

Also, to prevent overfitting, for each sentence
we use dropout on its list of n-grams R(S) \
{U(S)}, where U(S) is the set of all unigrams
contained in sentence S. After empirically try-
ing multiple dropout schemes, we find that drop-
ping K n-grams (n > 1) for each sentence is
giving superior results compared to dropping each
token with some fixed probability. This dropout
mechanism would negatively impact shorter sen-
tences. The regularization can be pushed further
by applying L1 regularization to the word vec-
tors. Encouraging sparsity in the embedding vec-
tors is particularly beneficial for high dimension h.
The additional soft thresholding in every SGD step
adds negligible computational cost. See also Ap-
pendix B. We train two models on each dataset,
one with unigrams only and one with unigrams
and bigrams. All training parameters for the mod-
els are provided in Table 5 in the appendix. Our
C++ implementation builds upon the FastText li-
brary (Joulin et al., 2017; Bojanowski et al., 2017).
We will make our code and pre-trained models
available open-source.

3 Related Work

We discuss existing models which have been pro-
posed to construct sentence embeddings. While
there is a large body of works in this direction —
several among these using e.g. labelled datasets of
paraphrase pairs to obtain sentence embeddings in
a supervised manner (Wieting et al., 2016a,b; Con-
neau et al., 2017) to learn sentence embeddings —
we here focus on unsupervised, task-independent
models. While some methods require ordered raw
text i.e., a coherent corpus where the next sentence
is a logical continuation of the previous sentence,
others rely only on raw text i.e., an unordered col-
lection of sentences. Finally, we also discuss alter-
native models built from structured data sources.

3.1 Unsupervised Models Independent of
Sentence Ordering

The ParagraphVector DBOW model (Le and
Mikolov, 2014) is a log-linear model which is
trained to learn sentence as well as word embed-
dings and then use a softmax distribution to predict
words contained in the sentence given the sentence

531

vector representation. They also propose a dif-
ferent model ParagraphVector DM where they
use n-grams of consecutive words along with the
sentence vector representation to predict the next
word.

(Lev et al., 2015) also presented an early ap-
proach to obtain compositional embeddings from
word vectors. They use different compositional
techniques including static averaging or Fisher
vectors of a multivariate Gaussian to obtain sen-
tence embeddings from word2vec models.

Hill et al. (2016a) propose a Sequential (De-
noising) Autoencoder, S(D)AE. This model first
introduces noise in the input data: Firstly each
word is deleted with probability pg, then for each
non-overlapping bigram, words are swapped with
probability p,. The model then uses an LSTM-
based architecture to retrieve the original sentence
from the corrupted version. The model can then
be used to encode new sentences into vector rep-
resentations. In the case of pg = p, = 0, the
model simply becomes a Sequential Autoencoder.
Hill et al. (2016a) also propose a variant (S(D)AE
+ embs.) in which the words are represented by
fixed pre-trained word vector embeddings.

Arora et al. (2017) propose a model in which
sentences are represented as a weighted average
of fixed (pre-trained) word vectors, followed by
post-processing step of subtracting the principal
component. Using the generative model of (Arora
et al., 2016), words are generated conditioned on
a sentence “discourse” vector cg:

Priw|es]) = afy + (1 —a)

where Zg, S wey €Xp(€] vy,) and & =
Beo + (1 — B)es and «, [are scalars. ¢y is the
common discourse vector, representing a shared
component among all discourses, mainly related
to syntax. It allows the model to better generate
syntactical features. The « f,, term is here to en-
able the model to generate some frequent words
even if their matching with the discourse vector ¢;
is low.

Therefore, this model tries to generate sentences
as a mixture of three type of words: words match-
ing the sentence discourse vector cg, syntacti-
cal words matching cg, and words with high f,,.
(Arora et al., 2017) demonstrated that for this
model, the MLE of ¢, can be approximated by

a .
> wes ForaVws where a is a scalar. The sentence

discourse vector can hence be obtained by sub-
tracting co estimated by the first principal com-
ponent of ¢s’s on a set of sentences. In other
words, the sentence embeddings are obtained by
a weighted average of the word vectors strip-
ping away the syntax by subtracting the com-
mon discourse vector and down-weighting fre-
quent tokens. They generate sentence embed-
dings from diverse pre-trained word embeddings
among which are unsupervised word embeddings
such as GloVe (Pennington et al., 2014) as well
as supervised word embeddings such as paragram-
SL999 (PSL) (Wieting et al., 2015) trained on the
Paraphrase Database (Ganitkevitch et al., 2013).

In a very different line of work, C-PHRASE
(Pham et al., 2015) relies on additional informa-
tion from the syntactic parse tree of each sentence,
which is incorporated into the C-BOW training
objective.

Huang and Anandkumar (2016) show that sin-
gle layer CNNs can be modeled using a tensor
decomposition approach. While building on an
unsupervised objective, the employed dictionary
learning step for obtaining phrase templates is
task-specific (for each use-case), not resulting in
general-purpose embeddings.

3.2 Unsupervised Models Depending on
Sentence Ordering

The SkipThought model (Kiros et al., 2015) com-
bines sentence level models with recurrent neu-
ral networks. Given a sentence S; from an or-
dered corpus, the model is trained to predict S;_;
and Sz’+1-

FastSent (Hill et al.,, 2016a) is a sentence-
level log-linear bag-of-words model. Like
SkipThought, it uses adjacent sentences as the pre-
diction target and is trained in an unsupervised
fashion. Using word sequences allows the model
to improve over the earlier work of paragraph2vec
(Le and Mikolov, 2014). (Hill et al., 2016a) aug-
ment FastSent further by training it to predict the
constituent words of the sentence as well. This
model is named FastSent + AE in our compar-
isons.

Compared to our approach, Siamese C-BOW
(Kenter et al., 2016) shares the idea of learning to
average word embeddings over a sentence. How-
ever, it relies on a Siamese neural network archi-
tecture to predict surrounding sentences, contrast-
ing our simpler unsupervised objective.

532

Note that on the character sequence level in-
stead of word sequences, FastText (Bojanowski
etal., 2017) uses the same conceptual model to ob-
tain better word embeddings. This is most similar
to our proposed model, with two key differences:
Firstly, we predict from source word sequences to
target words, as opposed to character sequences to
target words, and secondly, our model is averaging
the source embeddings instead of summing them.

3.3 Models requiring structured data

DictRep (Hill et al., 2016b) is trained to map dic-
tionary definitions of the words to the pre-trained
word embeddings of these words. They use two
different architectures, namely BOW and RNN
(LSTM) with the choice of learning the input word
embeddings or using them pre-trained. A similar
architecture is used by the CaptionRep variant,
but here the task is the mapping of given image
captions to a pre-trained vector representation of
these images.

4 Evaluation Tasks

We use a standard set of supervised as well as un-
supervised benchmark tasks from the literature to
evaluate our trained models, following (Hill et al.,
2016a). The breadth of tasks allows to fairly mea-
sure generalization to a wide area of different do-
mains, testing the general-purpose quality (univer-
sality) of all competing sentence embeddings. For
downstream supervised evaluations, sentence em-
beddings are combined with logistic regression to
predict target labels. In the unsupervised evalua-
tion for sentence similarity, correlation of the co-
sine similarity between two embeddings is com-
pared to human annotators.

Downstream Supervised Evaluation. Sen-
tence embeddings are evaluated for various su-
pervised classification tasks as follows. We
evaluate paraphrase identification (MSRP) (Dolan
et al., 2004), classification of movie review sen-
timent (MR) (Pang and Lee, 2005), product re-
views (CR) (Hu and Liu, 2004), subjectivity clas-
sification (SUBJ) (Pang and Lee, 2004), opinion
polarity (MPQA) (Wiebe et al., 2005) and ques-
tion type classification (TREC) (Voorhees, 2002).
To classify, we use the code provided by (Kiros
et al., 2015) in the same manner as in (Hill et al.,
2016a). For the MSRP dataset, containing pairs of
sentences (.51, .52) with associated paraphrase la-
bel, we generate feature vectors by concatenating

their Sent2Vec representations |vg, — vg,| with
the component-wise product vs, ® vg,. The pre-
defined training split is used to tune the L2 penalty
parameter using cross-validation and the accuracy
and F1 scores are computed on the test set. For
the remaining 5 datasets, Sent2Vec embeddings
are inferred from input sentences and directly fed
to a logistic regression classifier. Accuracy scores
are obtained using 10-fold cross-validation for the
MR, CR, SUBIJ and MPQA datasets. For those
datasets nested cross-validation is used to tune the
L2 penalty. For the TREC dataset, as for the
MRSP dataset, the L2 penalty is tuned on the pre-
defined train split using 10-fold cross-validation,
and the accuracy is computed on the test set.

Unsupervised Similarity Evaluation. We per-
form unsupervised evaluation of the learnt sen-
tence embeddings using the sentence cosine sim-
ilarity, on the STS 2014 (Agirre et al., 2014)
and SICK 2014 (Marelli et al., 2014) datasets.
These similarity scores are compared to the gold-
standard human judgements using Pearson’s r
(Pearson, 1895) and Spearman’s p (Spearman,
1904) correlation scores. The SICK dataset con-
sists of about 10,000 sentence pairs along with
relatedness scores of the pairs. The STS 2014
dataset contains 3,770 pairs, divided into six dif-
ferent categories on the basis of the origin of sen-
tences/phrases, namely Twitter, headlines, news,
forum, WordNet and images.

5 Results and Discussion

In Tables 1 and 2, we compare our results with
those obtained by (Hill et al., 2016a) on different
models. Table 3 in the last column shows the dra-
matic improvement in training time of our mod-
els (and other C-BOW-inspired models) in con-
trast to neural network based models. All our
Sent2Vec models are trained on a machine with
2x Intel Xeon E5—2680v3, 12 cores @2.5GHz.
Along with the models discussed in Section 3, this
also includes the sentence embedding baselines
obtained by simple averaging of word embeddings
over the sentence, in both the C-BOW and skip-
gram variants. TF-IDF BOW is a representation
consisting of the counts of the 200,000 most com-
mon feature-words, weighed by their TF-IDF fre-
quencies. To ensure coherence, we only include
unsupervised models in the main paper. Perfor-
mance of supervised and semi-supervised models
on these evaluations can be observed in Tables 6

533

and 7 in the appendix.

Downstream Supervised Evaluation Results.
On running supervised evaluations and observing
the results in Table 1, we find that on an aver-
age our models are second only to SkipThought
vectors. Also, both our models achieve state
of the art results on the CR task. We also ob-
serve that on half of the supervised tasks, our
unigrams + bigram model is the best model af-
ter SkipThought. Our models are weaker on the
MSRP task (which consists of the identification of
labelled paraphrases) compared to state-of-the-art
methods. However, we observe that the models
which perform very strongly on this task end up
faring very poorly on the other tasks, indicating a
lack of generalizability.

On rest of the tasks, our models perform ex-
tremely well. The SkipThought model is able to
outperform our models on most of the tasks as it is
trained to predict the previous and next sentences
and a lot of tasks are able to make use of this con-
textual information missing in our Sent2Vec mod-
els. For example, the TREC task is a poor measure
of how one predicts the content of the sentence
(the question) but a good measure of how the next
sentence in the sequence (the answer) is predicted.

Unsupervised Similarity Evaluation Results.
In Table 2, we see that our Sent2Vec models
are state-of-the-art on the majority of tasks when
comparing to all the unsupervised models trained
on the Toronto corpus, and clearly achieve the
best averaged performance. Our Sent2Vec mod-
els also on average outperform or are at par with
the C-PHRASE model, despite significantly lag-
ging behind on the STS 2014 WordNet and News
subtasks. This observation can be attributed to
the fact that a big chunk of the data that the C-
PHRASE model is trained on comes from English
Wikipedia, helping it to perform well on datasets
involving definition and news items. Also, C-
PHRASE uses data three times the size of the
Toronto book corpus. Interestingly, our model out-
performs C-PHRASE when trained on Wikipedia,
as shown in Table 3, despite the fact that we use
no parse tree information.

Official STS 2017 benchmark. In the official
results of the most recent edition of the STS 2017
benchmark (Cer et al., 2017), our model also sig-
nificantly outperforms C-PHRASE, and in fact de-
livers the best unsupervised baseline method.

“For the Siamese C-BOW model trained on the Toronto

Data Model (Al\gcsflls) MR CR SUBJ] MPQA TREC | Average
SAE 74.3/81.7 62.6 68.0 86.1 76.8 80.2 74.7
SAE + embs. 70.6/779 732 753 89.8 86.2 80.4 79.3
Unordered Sentences: SDAE 76.4/834 676 740 893 81.3 77.7 78.3
(Toronto Books: SDAE + embs. 73.7/80.7 746 78.0 90.8 86.9 78.4 80.4
70 million sentenc’es ParagraphVec DBOW | 72.9/81.1 602 669 76.3 70.7 59.4 67.7
0.9 Billion Words) > | ParagraphVec DM 73.6/819 615 68.6 764 78.1 55.8 69.0
’ Skipgram 69.3/772 736 713 892 85.0 82.2 78.5
C-BOW 67.6/76.1 736 773 89.1 85.0 82.2 79.1
Unigram TFIDF 73.6/81.7 737 792 903 82.4 85.0 80.7
Sent2Vec uni. 722/803 75.1 802 90.6 86.3 83.8 814
Sent2Vec uni. + bi. 72.5/80.8 75.8 803 91.2 85.9 86.4 82.0
Ordered Sentences: SkipThought 73.0/82.0 76.5 80.1 93.6 87.1 92.2 83.8
Toronto Books FastSent 72.2/803 708 784 88.7 80.6 76.8 77.9
FastSent+AE 71.2/79.1 71.8 76.7 88.8 81.5 80.4 78.4
2.8 Billion words C-PHRASE 722/79.6 757 788 91.1 86.2 78.8 80.5

Table 1: Comparison of the performance of different models on different supervised evaluation tasks. An underline indicates
the best performance for the dataset. Top 3 performances in each data category are shown in bold. The average is calculated as
the average of accuracy for each category (For MSRP, we take the accuracy).)

STS 2014 SICK 2014

Model News Forum WordNet Twitter Images Headlines | Test+ Train | Average
SAE JA7/.16 0 .12/.12 .30/.23 28/.22 49/46 .13/.11 .32/.31 .26/.23
SAE + embs. 52/.54 22/.23 .60/.55 .60/.60 .64/.64 .41/41 47/.49 .50/.49
SDAE .07/.04 .11/13 .33/.24 44742 44/38 .36/.36 46/.46 .31/.29
SDAE + embs. S1/.54 29/.29 .56/.50 57158 59159 .43/.44 46/.46 .49/.49
ParagraphVec DBOW | .31/.34 .32/.32 .53/.50 A43/46 46/44 .39/41 42/.46 41742
ParagraphVec DM A42/.46 33/34 51/.48 54157 .32/.30 .46/.47 44/.40 43/.43
Skipgram 56/.59 42142 73170 71774 .65/.67 .55/.58 .60/.69 .60/.63
C-BOW 57161 43/.44 72/.69 J1.75 71773 .55/1.59 .60/.69 .60/.65
Unigram TF-IDF A48/.48 40738 .60/.59 .63/.65 .72/.74 .49/.49 .52/.58 .55/.56
Sent2Vec uni. .62/.67 .49/49 .75/.72 70,775 .78/.82 .61/.63 .61/.70 .65/.68
Sent2Vec uni. + bi. .62/.67 .51/.51 .71/.68 70075 751779 .59/.62 .62/.70 .65/.67
SkipThought 44745 14/.15 39/.34 42743 55/.60 .43/.44 .571.60 42/.43
FastSent .58/.59 41/36 .74/.70 .63/.66 .74/.78 .57/.59 .61/.72 .61/.63
FastSent+AE 56/.59 41740 .69/.64 701774 .63/.65 .58/.60 .60/.65 .60/.61
Siamese C-BOW* 58159 42/41 .66/.61 J1/773 65165 .63/.64 — —
C-PHRASE 69/.71 .43/41 .76/.73 .60/.65 75179 .60/.65 .60/.72 .63/.67

Table 2: Unsupervised Evaluation Tasks: Comparison of the performance of different models on Spearman/Pearson corre-
lation measures. An underline indicates the best performance for the dataset. Top 3 performances in each data category are
shown in bold. The average is calculated as the average of entries for each correlation measure.

Macro Average. To summarize our contribu-
tions on both supervised and unsupervised tasks,
in Table 3 we present the results in terms of the
macro average over the averages of both super-
vised and unsupervised tasks along with the train-
ing times of the models’. For unsupervised tasks,
averages are taken over both Spearman and Pear-
son scores. The comparison includes the best per-
forming unsupervised and semi-supervised meth-
ods described in Section 3. For models trained
on the Toronto books dataset, we report a 3.8 %
points improvement over the state of the art. Con-
sidering all supervised, semi-supervised methods
and all datasets compared in (Hill et al., 2016a),

corpus, supervised evaluation as well as similarity evaluation
results on the SICK 2014 dataset are unavailable.
Stime taken to train C-PHRASE models is unavailable

we report a 2.2 % points improvement.

We also see a noticeable improvement in ac-
curacy as we use larger datasets like Twitter and
Wikipedia. We furthermore see that the Sent2Vec
models are faster to train when compared to meth-
ods like SkipThought and DictRep, owing to the
SGD optimizer allowing a high degree of paral-
lelizability.

We can clearly see Sent2Vec outperforming
other unsupervised and even semi-supervised
methods. This can be attributed to the superior
generalizability of our model across supervised
and unsupervised tasks.

Comparison with Arora et al. (2017). We also
compare our work with Arora et al. (2017) who
also use additive compositionality to obtain sen-
tence embeddings. However, in contrast to our

534

Type Training corpus Method Supervised | Unsupervised Macro Trgining time
average average average (in hours)
unsupervised twitter (19.7B words) Sent2Vec uni. + bi. 83.5 68.3 75.9 6.5%
unsupervised twitter (19.7B words) Sent2Vec uni. 82.2 69.0 75.6 3%
unsupervised Wikipedia (1.7B words) Sent2Vec uni. + bi. 83.3 66.2 74.8 2%
unsupervised Wikipedia (1.7B words) Sent2Vec uni. 82.4 66.3 74.3 3.5%
unsupervised Toronto books (0.9B words) Sent2Vec books uni. 81.4 66.7 74.0 1*
unsupervised Toronto books (0.9B words) Sent2Vec books uni. + bi. 82.0 65.9 74.0 1.2%
semi-supervised | structured dictionary dataset DictRep BOW + emb 80.5 66.9 73.7 24%%
unsupervised 2.8B words + parse info. C-PHRASE 80.5 64.9 72.7 —
unsupervised Toronto books (0.9B words) C-BOW 79.1 62.8 70.2 2
unsupervised Toronto books (0.9B words) FastSent 71.9 62.0 70.0 2
unsupervised Toronto books (0.9B words) SkipThought 83.8 42.5 63.1 336%*

Table 3: Best unsupervised and semi-supervised methods ranked by macro average along with their training times. ** indicates
trained on GPU. * indicates trained on a single node using 30 threads. Training times for non-Sent2Vec models are due to Hill
et al. (2016a). For CPU based competing methods, we were able to reproduce all published timings (+-10%) using our same

hardware as for training Sent2Vec.

Unsupervised Semi-supervised Sent2Vec Unigrams | Sent2Vec Unigrams + Bigrams
Dataset GloVe (840B words) PSL EWR (19.7B words) (19.7B words)
+ WR Tweets Model Tweets Model
STS 2014 0.685 0.735 0.710 0.701
SICK 2014 0.722 0.729 0.710 0.715
Supervised average 0.815 0.807 0.822 0.835

Table 4: Comparison of the performance of the unsupervised and semi-supervised sentence embeddings by (Arora et al., 2017)
with our models. Unsupervised comparisons are in terms of Pearson’s correlation, while comparisons on supervised tasks are

stating the average described in Table 1.

model, they use fixed, pre-trained word embed-
dings to build a weighted average of these em-
beddings using unigram probabilities. While we
couldn’t find pre-trained state of the art word em-
beddings trained on the Toronto books corpus, we
evaluated their method using GloVe embeddings
obtained from the larger Common Crawl Corpus®,
which is 42 times larger than our twitter corpus,
greatly favoring their method over ours.

In Table 4, we report an experimental compar-
ison to their model on unsupervised tasks. In
the table, the suffix W indicates that their down-
weighting scheme has been used, while the suf-
fix R indicates the removal of the first princi-
pal component. They report values of a €
[107%,1073] as giving the best results and used
a = 1073 for all their experiments. We observe
that our results are competitive with the embed-
dings of Arora et al. (2017) for purely unsuper-
vised methods. It is important to note that the
scores obtained from supervised task-specific PSL
embeddings trained for the purpose of semantic
similarity outperform our method on both SICK
and average STS 2014, which is expected as our
model is trained purely unsupervised.

In order to facilitate a more detailed compari-
son, we also evaluated the unsupervised Glove +
WR embeddings on downstream supervised tasks

*http://www.cs.toronto.edu/-mbweb/

[1wll

535

and compared them to our twitter models. To use
Arora et al. (2017)’s method in a supervised setup,
we precomputed and stored the common discourse
vector ¢y using 2 million random Wikipedia sen-
tences. On an average, our models outperform
their unsupervised models by a significant margin,
this despite the fact that they used GloVe embed-
dings trained on larger corpora than ours (42 times
larger). Our models also outperform their semi-
supervised PSL. + WR model. This indicates our
model learns a more precise weighing scheme than
the static one proposed by Arora et al. (2017).

— a=10"
a=10"*
0.8

0.6

weight

0.4

0.2

0.0

% 5 4 3 2 -

logolfi)

% 5 -1+ -3 =2 B 7

log1olfi)

T Y
Figure 1: Left figure: the profile of the word vector Lo-
norms as a function of log(f.,) for each vocabulary word w,
as learnt by our unigram model trained on Toronto books.
Right figure: down-weighting scheme proposed by Arora
etal. (2017): weight(w) =

C’«Jrafw !

The effect of datasets and n-grams. Despite
being trained on three very different datasets, all
of our models generalize well to sometimes very

specific domains. Models trained on Toronto Cor-
pus are the state-of-the-art on the STS 2014 im-
ages dataset even beating the supervised Caption-
Rep model trained on images. We also see that
addition of bigrams to our models doesn’t help
much when it comes to unsupervised evaluations
but gives a significant boost-up in accuracy on
supervised tasks. We attribute this phenomenon
to the ability of bigrams models to capture some
non-compositional features missed by unigrams
models. Having a single representation for “not
good” or “very bad” can boost the supervised
model’s ability to infer relevant features for the
corresponding classifier. For semantic similarity
tasks however, the relative uniqueness of bigrams
results in pushing sentence representations further
apart, which can explain the average drop of scores
for bigrams models on those tasks.

On learning the importance and the direction
of the word vectors. Our model — by learning
how to generate and compose word vectors — has
to learn both the direction of the word embeddings
as well as their norm. Considering the norms of
the used word vectors as by our averaging over the
sentence, we observe an interesting distribution of
the “importance” of each word. In Figure 1 we
show the profile of the Lo-norm as a function of
log(fy) for each w € V), and compare it to the
static down-weighting mechanism of Arora et al.
(2017). We can observe that our model is learn-
ing to down-weight frequent tokens by itself. It
is also down-weighting rare tokens and the norm
profile seems to roughly follow Luhn’s hypothesis
(Luhn, 1958), a well known information retrieval
paradigm, stating that mid-rank terms are the most
significant to discriminate content.

6 Conclusion

In this paper, we introduce a novel, computa-
tionally efficient, unsupervised, C-BOW-inspired
method to train and infer sentence embeddings.
On supervised evaluations, our method, on an av-
erage, achieves better performance than all other
unsupervised competitors with the exception of
SkipThought. However, SkipThought vectors
show a very poor performance on sentence simi-
larity tasks while our model is state-of-the-art for
these evaluations on average. Also, our model is
generalizable, extremely fast to train, simple to un-
derstand and easily interpretable, showing the rel-
evance of simple and well-grounded representa-
tion models in contrast to the models using deep

536

architectures. Future work could focus on aug-
menting the model to exploit data with ordered
sentences. Furthermore, we would like to investi-
gate the model’s ability to use pre-trained embed-
dings for downstream transfer learning tasks.

Acknowledgments

We are indebted to Piotr Bojanowski and Armand
Joulin for helpful discussions. This project was
supported by a Google Faculty Research Award.

References

Eneko Agirre, Carmen Banea, Claire Cardie, Daniel
Cer, Mona Diab, Aitor Gonzalez-Agirre, Weiwei
Guo, Rada Mihalcea, German Rigau, and Janyce
Wiebe. 2014. Semeval-2014 task 10: Multilin-
gual semantic textual similarity. In Proceedings of
the 8th international workshop on semantic evalua-
tion (SemEval 2014). Association for Computational
Linguistics Dublin, Ireland, pages 81-91.

Sanjeev Arora, Yuanzhi Li, Yingyu Liang, Tengyu
Ma, and Andrej Risteski. 2016. A Latent Vari-
able Model Approach to PMI-based Word Embed-
dings. In Transactions of the Association for Com-
putational Linguistics. pages 385-399.

Sanjeev Arora, Yingyu Liang, and Tengyu Ma. 2017.
A simple but tough-to-beat baseline for sentence em-
beddings. In International Conference on Learning
Representations (ICLR).

Steven Bird, Ewan Klein, and Edward Loper. 2009.
Natural language processing with Python: analyz-
ing text with the natural language toolkit. ” O’Reilly
Media, Inc.”.

Piotr Bojanowski, Edouard Grave, Armand Joulin, and
Tomas Mikolov. 2017. Enriching Word Vectors with
Subword Information. Transactions of the Associa-
tion for Computational Linguistics 5:135-146.

Daniel Cer, Mona Diab, Eneko Agirre, Inigo Lopez-
Gazpio, and Lucia Specia. 2017. SemEval-2017
Task 1: Semantic Textual Similarity Multilin-
gual and Cross-lingual Focused Evaluation. In
SemEval-2017 - Proceedings of the 1l1th Interna-
tional Workshop on Semantic Evaluations. Asso-
ciation for Computational Linguistics, Vancouver,
Canada, pages 1-14.

Alexis Conneau, Douwe Kiela, Holger Schwenk, Loic
Barrault, and Antoine Bordes. 2017. Supervised
learning of universal sentence representations from
natural language inference data. arXiv preprint
arXiv:1705.02364 .

Bill Dolan, Chris Quirk, and Chris Brockett. 2004.
Unsupervised construction of large paraphrase cor-
pora: Exploiting massively parallel news sources. In
Proceedings of the 20th international conference on

Computational Linguistics. Association for Compu-
tational Linguistics, page 350.

Juri Ganitkevitch, Benjamin Van Durme, and Chris
Callison-Burch. 2013. Ppdb: The paraphrase
database. In HLT-NAACL. pages 758-764.

Yoav Goldberg and Omer Levy. 2014. word2vec Ex-
plained: deriving Mikolov et al.’s negative-sampling
word-embedding method. arXiv .

Felix Hill, Kyunghyun Cho, and Anna Korhonen.
2016a. Learning Distributed Representations of
Sentences from Unlabelled Data. In Proceedings of
NAACL-HLT.

Felix Hill, KyungHyun Cho, Anna Korhonen, and
Yoshua Bengio. 2016b. Learning to understand
phrases by embedding the dictionary. 7ACL 4:17-
30.

Minging Hu and Bing Liu. 2004. Mining and summa-
rizing customer reviews. In Proceedings of the tenth
ACM SIGKDD international conference on Knowl-
edge discovery and data mining. ACM, pages 168—
177.

Furong Huang and Animashree Anandkumar. 2016.
Unsupervised Learning of Word-Sequence Repre-
sentations from Scratch via Convolutional Tensor
Decomposition. arXiv .

Armand Joulin, Edouard Grave, Piotr Bojanowski, and
Tomas Mikolov. 2017. Bag of Tricks for Efficient
Text Classification. In Proceedings of the 15th Con-
ference of the European Chapter of the Association
for Computational Linguistics, Short Papers. Valen-
cia, Spain, pages 427-431.

Tom Kenter, Alexey Borisov, and Maarten de Rijke.
2016. Siamese CBOW: Optimizing Word Embed-
dings for Sentence Representations. In ACL - Pro-
ceedings of the 54th Annual Meeting of the Asso-
ciation for Computational Linguistics. Berlin, Ger-
many, pages 941-951.

Ryan Kiros, Yukun Zhu, Ruslan R Salakhutdinov,
Richard Zemel, Raquel Urtasun, Antonio Torralba,
and Sanja Fidler. 2015. Skip-Thought Vectors. In
NIPS 2015 - Advances in Neural Information Pro-
cessing Systems 28. pages 3294-3302.

Quoc V Le and Tomas Mikolov. 2014. Distributed
Representations of Sentences and Documents. In
ICML 2014 - Proceedings of the 31st International
Conference on Machine Learning. volume 14, pages
1188-1196.

Guy Lev, Benjamin Klein, and Lior Wolf. 2015. In de-
fense of word embedding for generic text representa-
tion. In International Conference on Applications of

Natural Language to Information Systems. Springer,
pages 35-50.

537

Omer Levy, Yoav Goldberg, and Ido Dagan. 2015. Im-
proving distributional similarity with lessons learned
from word embeddings. Transactions of the Associ-
ation for Computational Linguistics 3:211-225.

Hans Peter Luhn. 1958. The automatic creation of lit-
erature abstracts. IBM Journal of research and de-
velopment 2(2):159-165.

Christopher D Manning, Mihai Surdeanu, John Bauer,
Jenny Rose Finkel, Steven Bethard, and David Mc-
Closky. 2014. The stanford corenlp natural lan-
guage processing toolkit. In ACL (System Demon-
strations). pages 55—60.

Marco Marelli, Stefano Menini, Marco Baroni, Luisa
Bentivogli, Raffaella Bernardi, and Roberto Zam-
parelli. 2014. A sick cure for the evaluation of com-
positional distributional semantic models. In LREC.
pages 216-223.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jef-
frey Dean. 2013a. Efficient estimation of word
representations in vector space. arXiv preprint
arXiv:1301.3781 .

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013b. Distributed Representa-
tions of Words and Phrases and their Compositional-
ity. In NIPS - Advances in Neural Information Pro-
cessing Systems 26. pages 3111-3119.

Bo Pang and Lillian Lee. 2004. A sentimental educa-
tion: Sentiment analysis using subjectivity summa-
rization based on minimum cuts. In Proceedings of
the 42nd annual meeting on Association for Compu-
tational Linguistics. Association for Computational
Linguistics, page 271.

Bo Pang and Lillian Lee. 2005. Seeing stars: Ex-
ploiting class relationships for sentiment categoriza-
tion with respect to rating scales. In Proceedings of
the 43rd annual meeting on association for compu-
tational linguistics. Association for Computational
Linguistics, pages 115-124.

Karl Pearson. 1895. Note on regression and inheritance
in the case of two parents. Proceedings of the Royal
Society of London 58:240-242.

Jeffrey Pennington, Richard Socher, and Christopher D
Manning. 2014. Glove: Global vectors for word
representation. In EMNLP. volume 14, pages 1532—
1543.

NT Pham, G Kruszewski, A Lazaridou, and M Baroni.
2015. Jointly optimizing word representations for
lexical and sentential tasks with the c-phrase model.
ACL/IJCNLP .

R Tyrrell Rockafellar. 1976. Monotone operators and
the proximal point algorithm. SIAM journal on con-
trol and optimization 14(5):877-898.

Charles Spearman. 1904. The proof and measurement
of association between two things. The American
Jjournal of psychology 15(1):72-101.

Ellen M Voorhees. 2002. Overview of the trec 2001
question answering track. In NIST special publica-
tion. pages 42-51.

Kilian Weinberger, Anirban Dasgupta, John Langford,
Alex Smola, and Josh Attenberg. 2009. Feature
hashing for large scale multitask learning. In Pro-
ceedings of the 26th Annual International Confer-
ence on Machine Learning. ACM, pages 1113—
1120.

Janyce Wiebe, Theresa Wilson, and Claire Cardie.
2005. Annotating expressions of opinions and emo-

tions in language. Language resources and evalua-
tion 39(2):165-210.

John Wieting, Mohit Bansal, Kevin Gimpel, and Karen
Livescu. 2016a. Charagram: Embedding Words
and Sentences via Character n-grams. In EMNLP
- Proceedings of the 2016 Conference on Empiri-
cal Methods in Natural Language Processing. Asso-
ciation for Computational Linguistics, Stroudsburg,
PA, USA, pages 1504-1515.

John Wieting, Mohit Bansal, Kevin Gimpel, and Karen
Livescu. 2016b. Towards universal paraphrastic
sentence embeddings. In International Conference
on Learning Representations (ICLR).

John Wieting, Mohit Bansal, Kevin Gimpel, Karen
Livescu, and Dan Roth. 2015. From paraphrase
database to compositional paraphrase model and
back. In TACL - Transactions of the Association for
Computational Linguistics.

538

A Parameters for training models

. . Minimum Initial . Bigrams Number of
Embedding Minimum . Subsampling .
Model . . Target word | Learning | Epochs Dropped negatives
Dimensions word count hyper-parameter
Count Rate per sentence sampled
Book corpus
Sent2Vec 700 5 8 0.2 13 1x107° - 10
unigrams
Book corpus
Sent2Vec 700 5 5 0.2 12 5x107° 7 10
unigrams + bigrams
Wiki Seni2Vee 1 8 20 02 9 1x107° - 10
unigrams
Wiki Sent2Vee 700 8 20 0.2 9 5% 1076 4 10
unigrams + bigrams
Twitter Sen2Vee |5y 20 20 02 3 1x1078 - 10
unigrams
Twitter Sent2Vec 4, 20 20 02 3 1x107° 3 10
unigrams + bigrams

Table 5: Training parameters for the Sent2Vec models

B L1 regularization of models

Optionally, our model can be additionally improved by adding an L1 regularizer term in the objective
function, leading to slightly better generalization performance. Additionally, encouraging sparsity in the
embedding vectors is beneficial for memory reasons, allowing higher embedding dimensions h.

We propose to apply L1 regularization individually to each word (and n-gram) vector (both source and
target vectors). Formally, the training objective function (3) then becomes

min >~ > g (wr) ((é(ultvS\{wt}) + 711 + 05\ 1)) + o)
© SeCwieS
Ml 32) (£ 0ot guny) + ())
w' eV

where T is the regularization parameter.

Now, in order to minimize a function of the form f(z) + ¢g(z) where g(z) is not differentiable over the
domain, we can use the basic proximal-gradient scheme. In this iterative method, after doing a gradient
descent step on f(z) with learning rate «, we update z as

Zni1 = Proa,g(Z,, 1) ©)

where proaq,¢(x) = arg miny {g(y) + 5 ||y — x||3} is called the proximal function (Rockafellar, 1976)
of g with a being the proximal parameter and z, , 1 is the value of z after a gradient (or SGD) step on zy,.
2

In our case, g(z) = ||z||1 and the corresponding proximal operator is given by
Proxa, g(X) = sign(x) © max(|x,| — a,0) (6)

where © corresponds to element-wise product.

Similar to the proximal-gradient scheme, in our case we can optionally use the thresholding operator
on the updated word and n-gram vectors after an SGD step. The soft thresholding parameter used for
this update is % and 7 - 7’ for the source and target vectors respectively where [r’ is the current
learning rate, 7 is the L1 regularization parameter and S is the sentence on which SGD is being run.

We observe that L1 regularization using the proximal step gives our models a small boost in perfor-
mance. Also, applying the thresholding operator takes only |R(S \ {w:})| - h floating point operations
for the updating the word vectors corresponding to the sentence and (|N| 4 1) - h for updating the target

539

as well as the negative word vectors, where | V| is the number of negatives sampled and A is the em-
bedding dimension. Thus, performing L1 regularization using soft-thresholding operator comes with a
small computational overhead.

We set 7 to be 0.0005 for both the Wikipedia and the Toronto Book Corpus unigrams + bigrams
models.

C Performance comparison with Sent2Vec models trained on different corpora

Data Model MSRP (Acc/F1) MR CR SUBJ] MPQA TREC | Average
Sent2Vec uni. 72.2/80.3 75.1 802 90.6 86.3 83.8 81.4
Unordered Sentences: Sent2Vec uni. + bi. 72.5/80.8 75.8 80.3 91.2 85.9 86.4 82.0
(Toronto Books) Sent2Vec uni. + bi. L1-reg | 71.6/80.1 76.1 809 91.1 86.1 86.8 82.1
Sent2Vec uni. 71.8/80.2 773 803 920 874 85.4 82.4
Unordered sentences: Wikipedia Sent2Vec uni. + bi. 72.4/80.8 779 809 926 86.9 89.2 83.3
(69 million sentences; 1.7 B words) Sent2Vec uni. + bi. L1-reg | 73.6/81.5 781 815 928 87.2 87.4 83.4
Unordered sentences: Twitter Sent2Vec uni. 71.5/80.0 771 813 90.8 87.3 85.4 82.2
(1.2 billion sentences; 19.7 B words) | Sent2Vec uni. + bi. 72.4/80.6 780 8.1 91.8 86.7 89.8 83.5
CaptionRep BOW 73.6/81.9 619 693 774 70.8 72.2 70.9
CaptionRep RNN 72.6/81.1 550 649 649 71.0 62.4 65.1
Other structured DictRep BOW 73.7/81.6 713 756 86.6 82.5 73.8 71.3
Data Sources DictRep BOW+embs 68.4/76.8 76.7 787 90.7 87.2 81.0 80.5
DictRep RNN 73.2/81.6 67.8 727 814 825 75.8 75.6
DictRep RNN+embs. 66.8/76.0 725 735 85.6 85.7 72.0 76.0

Table 6: Comparison of the performance of different Sent2Vec models with different semi-
supervised/supervised models on different downstream supervised evaluation tasks. An underline
indicates the best performance for the dataset and Sent2Vec model performances are bold if they per-
form as well or better than all other non-Sent2Vec models, including those presented in Table 1.

STS 2014 SICK 2014 Average

Model News Forum WordNet ~ Twitter ~ Images Headlines | Test + Train

Sent2Vec book corpus uni. .62/.67 49149 75/.72. 70175 .78/.82 .61/.63 .61/.70 .65/.68
Sent2Vec book corpus uni. + bi. .62/.67 51/.51 .71/.68 70175 75179 .59/.62 .62/.70 .65/.67
Sent2Vec book corpus uni. + bi. L1-reg | .62/.68 .51/.52 .72/.70 .69/.75 .76/.81 .60/.63 .62/.71 .66/.68
Sent2Vec wiki uni. .66/.71 A7/.47 .70/.68 .68/.72 .76/.79 .63/.67 .64/.71 .65/.68
Sent2Vec wiki uni. + bi. .68/.74 .50/.50 .66/.64 .67/.72 .751.79 .62/.67 .63/.71 .65/.68
Sent2Vec wiki uni. + bi. L1-reg 69175 .52/.52 .72/.69 .67/.72 .76/.80 .61/.66 .63/.72 .66/.69
Sent2Vec twitter uni. .67/.74 52/.53 75/.72 72178 77/.81 .64/.68 .62/.71 67171
Sent2Vec twitter uni. + bi. .68/.74 .54/.54 .72/.69 70177 .76/.79 .62/.67 .63/.72 .66/.70
CaptionRep BOW 26126 29/22 50135 37/31 78/.81 .39/.36 A45/.44 .54/.62
CaptionRep RNN .05/.05 .13/.09 .40/.33 36/.30 .76/.82 .30/.28 .36/.35 .51/.59
DictRep BOW .62/.67 .42/40 .81/.81 .62/.66 .66/.68 .53/.58 .61/.63 .58/.66
DictRep BOW + embs. .65/.72 49/.47 .85/.86 .67/.72 71174 .57/.61 .61/.70 .62/.70
DictRep RNN 40/.46 26/23 .78/.78 42/.42 .56/.56 .38/.40 471.49 .49/.55
DictRep RNN + embs. 51/.60 29/.27 .80/.81 A4/.47 .65/.70 42/.46 .52/.56 .49/.59

Table 7: Unsupervised Evaluation: Comparison of the performance of different Sent2Vec models with
semi-supervised/supervised models on Spearman/Pearson correlation measures. An underline indicates
the best performance for the dataset and Sent2Vec model performances are bold if they perform as well
or better than all other non-Sent2Vec models, including those presented in Table 2.

D Dataset Description

STS 2014 SICK 2014 Wikipedia | Twitter Book Corpus
Sentence Length News | Forum | WordNet | Twitter | Images | Headlines | Test+ Train Dataset Dataset Dataset
Average 17.23 10.12 8.85 11.64 10.17 7.82 9.67 25.25 16.31 13.32
Standard Deviation | 8.66 3.30 3.10 5.28 2.77 2.21 3.75 12.56 7.22 8.94

Table 8: Average sentence lengths for the datasets used in the comparison.

540

