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Abstract

The present work investigates whether differ-
ent quantification mechanisms (set compari-
son, vague quantification, and proportional es-
timation) can be jointly learned from visual
scenes by a multi-task computational model.
The motivation is that, in humans, these
processes underlie the same cognitive, non-
symbolic ability, which allows an automatic
estimation and comparison of set magnitudes.
We show that when information about lower-
complexity tasks is available, the higher-level
proportional task becomes more accurate than
when performed in isolation. Moreover, the
multi-task model is able to generalize to un-
seen combinations of target/non-target objects.
Consistently with behavioral evidence show-
ing the interference of absolute number in
the proportional task, the multi-task model no
longer works when asked to provide the num-
ber of target objects in the scene.

1 Introduction

Understanding and producing sentences like
‘There are more cars than parking lots’, ‘Most of
the supporters wear blue t-shirts’, ‘Twenty percent
of the trees have been planted last year’, or ‘Seven
students passed the exam’, is a fundamental com-
petence which allows speakers to communicate
information about quantities. Crucially, the type
of information conveyed by these expressions, as
well as their underlying cognitive mechanisms, are
not equivalent, as suggested by evidence from lin-
guistics, language acquisition, and cognition.

First, comparatives (‘more’, ‘less’), quantifiers
(‘some’, ‘most’, ‘all’), and proportions (‘20%’,
‘two thirds’) express a comparison or relation be-
tween sets (e.g., between the set of cars and the
set of parking lots). Such relational information
is rather coarse when expressed by comparatives
and vague quantifiers, more precise when denoted
by proportions. In contrast, numbers (‘one’, ‘six’,

‘twenty-two’) denote the exact, absolute cardinal-
ity of the items belonging to one set (e.g., the set
of students who passed the exam).

Second, during language acquisition, these ex-
pressions are neither learned at the same time nor
governed by the same rules. Recent evidence
showed that children can understand comparatives
at around 3.3 years (Odic et al., 2013; Bryant,
2017), with quantifiers being learned a few months
later, at around 3.4-3.6 years (Hurewitz et al.,
2006; Minai, 2006; Halberda et al., 2008). Cru-
cially, knowing the meaning of numbers, an ability
that starts not before the age of 3.5 years (Le Corre
and Carey, 2007), is not required to understand
and use these expressions. As for proportions,
they are acquired significantly later, being fully
mastered only at the age of 9 or 10 (Hartnett and
Gelman, 1998; Moss and Case, 1999; Sophian,
2000).

Third, converging evidence from cognition
and neuroscience supports the hypothesis that
some important components of these expressions
of quantity are grounded on a preverbal, non-
symbolic system representing magnitudes (Piazza,
2010). This system, often referred to as Approx-
imate Number System (ANS), is invariant to the
sensory modality and almost universal in the an-
imal domain, and consists in the ability of holis-
tically extracting and comparing approximate nu-
merosities (Piazza and Eger, 2016). In humans, it
is present since the youngest age, with 6-month-
old infants being able to automatically com-
pare sets and combine them by means of proto-
arithmetical operations (Xu and Spelke, 2000; Mc-
Crink and Wynn, 2004). Since it obeys Weber’s
law, according to which highly differing sets (e.g.
2:8) are easier to discriminate than highly similar
sets (e.g. 7:8), ANS has been recently claimed to
be a ratio-based mechanism (Sidney et al., 2017;
Matthews et al., 2016). In support of this, be-
havioral findings indicate that, in non-symbolic
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Figure 1: Toy representation of the quantification tasks
and corresponding outputs explored in the paper. Note
that quantification always refers to animals (target set).

contexts (e.g. visual scenes), proportional values
are extracted holistically, i.e. without relying on
the pre-computed cardinalities of the sets (Fab-
bri et al., 2012; Yang et al., 2015). Indeed, peo-
ple are fairly accurate in providing the propor-
tion of targets in a scene, even in high-speed set-
tings (Healey et al., 1996; Treisman, 2006). Sim-
ilarly, in briefly-presented scenes, the interpreta-
tion of quantifiers is shown to be best described
by proportional information (Pezzelle et al., under
review).

Altogether, this suggests that performing (1)
set comparison, (2) vague quantification, and (3)
proportional estimation, which all rely on infor-
mation regarding relations among sets, underlies
increasingly-complex steps of the same mecha-
nism. Notably, such complexity would range
from ‘more/less’ judgements to proportional es-
timation, as suggested by the increasing preci-
sion of ANS through years (Halberda and Feigen-
son, 2008), the reported boundary role of ‘half’ in
early proportional reasoning (Spinillo and Bryant,
1991), and the different age of acquisition of the
corresponding linguistic expressions. Finally, the
ratio-based operation underlying these task would
be different from (and possibly conflicting with)
that of estimating the absolute numerosity of one
set. Indeed, absolute numbers are found to inter-
fere with the access to proportions (Fabbri et al.,
2012).

Inspired by this converging evidence, the
present work proposes a computational framework
to explore various quantification tasks in the vi-
sual domain (see Figure 1). In particular, we in-
vestigate whether ratio-based quantification tasks
can be modeled by a single, multi-task learning
neural network. Given a synthetic scene depicting
animals (in our setting, the ‘target’ objects) and
artifacts (‘non-target’), our model is designed to
jointly perform all the tasks by means of an ar-
chitecture that reflects their increasing complex-

ity.1 To perform proportional estimation (the most
complex), the model builds on the representations
learned to perform vague quantification and, in
turn, set comparison (the least complex). We show
that the multi-task model achieves both higher ac-
curacy and higher generalization power compared
to the one-task models. In contrast, we prove that
introducing the absolute number task in the loop is
not beneficial and indeed hurts the performance.

Our main contribution lies in the novel applica-
tion and evaluation of a multi-task learning archi-
tecture on the task of jointly modeling 3 different
quantification operations. On the one hand, our
results confirm the interdependency of the mech-
anisms underlying the tasks of set comparison,
vague quantification, and proportional estimation.
On the other, we provide further evidence on the
effectiveness of these computational architectures.

2 Related Work

2.1 Quantities in Language & Vision
In recent years, the task of extracting quantity in-
formation from visual scenes has been tackled via
Visual Question Answering (VQA). Given a real
image and a natural language question, a VQA
computational model is asked to understand the
image, the linguistic query, and their interaction
to provide the correct answer. So-called count
questions, i.e. ‘How many Xs have the property
Y?’, are very frequent and have been shown to
be particularly challenging for any model (Antol
et al., 2015; Malinowski et al., 2015; Ren et al.,
2015; Fukui et al., 2016). The difficulty of the
task has been further confirmed by the similarly
poor performance achieved even on the ‘diagnos-
tic’ datasets, which include synthetic visual scenes
depicting geometric shapes (Johnson et al., 2017;
Suhr et al., 2017).

Using Convolutional Neural Networks (CNN),
a number of works in Computer Vision (CV) have
proposed specific architectures for counting dig-
its (Seguı́ et al., 2015), people in the crowd (Zhang
et al., 2015a), and penguins (Arteta et al., 2016).
With a more cognitive flavor, Chattopadhyay et al.
(2017) employed a ‘divide-and-conquer’ strategy
to split the image into subparts and count the ob-
jects in each subpart by mimicking the ‘subitizing’
mechanism (i.e. numerosities up to 3-4 can be
rapidly and accurately appreciated). Inspired by

1The dataset and the code can be downloaded from
github.com/sandropezzelle/multitask-quant
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the same cognitive ability is Zhang et al. (2015b),
who trained a CNN to detect and count the salient
objects in the image. Except Suhr et al. (2017),
who evaluated models against various types of
quantity expressions (including existential quanti-
fiers), these works were just focused on the abso-
lute number.

More akin to our work is Stoianov and Zorzi
(2012), who showed that hierarchical generative
models learn ANS as a statistical property of (syn-
thetic) images. Their networks were tested on
the task of set comparison (‘more/less’) and ob-
tained 93% accuracy. A few studies specifically
focused on the learning of quantifiers. Sorodoc
et al. (2016) proposed a model to assign the cor-
rect quantifier to synthetic scenes of colored dots,
whereas Sorodoc et al. (2018) operationalized the
same task in a VQA fashion, using real images
and object-property queries (e.g. ‘How many dogs
are black?’). Overall, the results of these studies
showed that vague quantification can be learned
by neural networks, though the performance is
much lower when using real images and complex
queries. Finally, Pezzelle et al. (2017) investi-
gated the difference between the learning of car-
dinals and quantifiers from visual scenes, showing
that they require two distinct computational oper-
ations. To our knowledge, this is the first attempt
to jointly investigate the whole range of quantifi-
cation mechanisms. Moreover, we are the first
to exploit a multi-task learning paradigm for ex-
ploring the interactions between set comparison,
vague quantification, and proportions.

2.2 Multi-Task Learning

Multi-Task Learning (MTL) has been shown to
be very effective for a wide range of applications
in machine learning (for an overview, see Ruder
(2017)). The core idea is that different and yet
related tasks can be jointly learned by a multi-
purpose model rather than by separate and highly
fine-tuned models. Since they share representa-
tions between related (or ‘auxiliary’) tasks, multi-
task models are more robust and generalize better
than single-task models. Successful applications
of MTL have been proposed in CV to improve ob-
ject classification (Girshick, 2015), face detection
and rotation (Zhang et al., 2014; Yim et al., 2015),
and to jointly perform a number of tasks as ob-
ject detection, semantic segmentation, etc. (Misra
et al., 2016; Li and Hoiem, 2016). Though, re-

cently, a few studies applied MTL techniques to
either count or estimate the number of objects in a
scene (Sun et al., 2017; Sindagi and Patel, 2017),
to our knowledge none of them were devoted to
the learning of various quantification mechanisms.

In the field of natural language processing
(NLP), MTL turned out to be beneficial for ma-
chine translation (Luong et al., 2016) and for a
range of tasks such as chunking, tagging, se-
mantic role labelling, etc. (Collobert et al., 2011;
Søgaard and Goldberg, 2016; Bingel and Søgaard,
2017). In particular, Søgaard and Goldberg (2016)
showed the benefits of keeping low-level tasks at
the lower layers of the network, a setting which en-
ables higher-level tasks to make a better use of the
shared representations. Since this finding was also
in line with previous evidence suggesting a natu-
ral order among different tasks (Shen and Sarkar,
2005), further work proposed MTL models in
which several increasingly-complex tasks are hi-
erarchically ordered (Hashimoto et al., 2017).
The intuition behind this architecture, referred
to as ‘joint many-task model’ in the source pa-
per (Hashimoto et al., 2017), as well as its techni-
cal implementation, constitute the building blocks
of the model proposed in the present study.

3 Tasks and Dataset

3.1 Tasks
Given a visual scene depicting a number of ani-
mals (targets) and artifacts (non-targets), we ex-
plore the following tasks, represented in Figure 1:

(a) set comparison (hence, setComp), i.e. judg-
ing whether the targets are ‘more’, ‘same’,
‘less’ than non-targets;

(b) vague quantification (hence, vagueQ), i.e.
predicting the probability to use each of the 9
quantifiers (‘none’, ‘almost none’, ‘few’, ‘the
smaller part’, ‘some’, ‘many’, ‘most’, ‘almost
all’, ‘all’) to refer to the target set;

(c) proportional estimation (hence, propTarg),
i.e. predicting the proportion of targets choos-
ing among 17 ratios, ranging from 0 to 100%.

Tasks (a) and (c) are operationalized as classi-
fication problems and evaluated through accuracy.
That is, only one answer out of 3 and 17, respec-
tively, is considered as correct. Given the vague
status of quantifiers, whose meanings are ‘fuzzy’
and overlapping, task (b) is evaluated by means
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Figure 2: Two scenes included in our dataset. The letf-
most one depicts a ratio 1:4 (3 animals, 12 artifacts, 15
total items), the rightmost one a ratio 2:3 (6, 9, 15).

of Pearson’s correlation (r) between the predicted
and the ground-truth probability vector (cf. § 3.2),
for each datapoint.2 The overall r is obtained by
averaging these scores. It is worth mentioning that
we could either evaluate (b) in terms of a classi-
fication task or operationalize (a) and (c) in terms
of a correlation with human responses. The for-
mer evaluation is straightforward and can be eas-
ily carried out by picking the quantifier with the
highest probability. The latter, in contrast, implies
relying on behavioral data assessing the degree of
overlap between ground-truth classes and speak-
ers’ choice. Though interesting, such evaluation
is less crucial given the discrete, non-overlapping
nature of the classes in tasks (a) and (c).

The tasks are explored by means of a MTL net-
work that jointly performs the three quantification
operations (see § 4.2). The intuition is that solving
the lower-level tasks would be beneficial for tack-
ling the higher-level ones. In particular, providing
a proportional estimation (‘80%’) after perform-
ing vagueQ (‘most’) and setComp (‘more’) should
lead to a higher accuracy in the highest-level task,
which represents a further step in complexity com-
pared to the previous ones. Moreover, lower-level
tasks might be boosted in accuracy by the higher-
level ones, since the latter include all the opera-
tions that are needed to carry out the former. In
addition to the MTL model, we test a number of
‘one-task’ networks specifically designed to solve
one task at a time (see § 4.1).

3.2 Dataset

We built a large dataset of synthetic visual scenes
depicting a variable number of animals and ar-
tifacts on the top of a neutral, grey background

2We also experimented with Mean Average Error and dot
product and found the same patterns of results (not reported).

train val test total
no. datapoints 11.9K 1.7K 3.4K 17K
% datapoints 70% 10% 20% 100%

Table 1: Number and partitioning of the datapoints.

(see Figure 2). In doing so, we employed the
same methodology and materials used in Pezzelle
et al. (under review), where the use of quantifiers
in grounded contexts was explored by asking par-
ticipants to select the most suitable quantifier for
a given scene. Since the category of animals was
always treated as the ‘target’, and that of artifacts
as the ‘non-target’, we will henceforth use this ter-
minology throughout the paper. The scenes were
automatically generated by an in-house script us-
ing the following pipeline: (a) Two natural im-
ages, one depicting a target object (e.g. a butter-
fly) and one depicting a non-target (e.g. a mug)
were randomly picked up from a sample of the
dataset by Kiani et al. (2007). The sample was
obtained by Pezzelle et al. (under review), who
manually selected pictures depicting whole items
(not just parts) and whose color, orientation and
shape were not deceptive. In total, 100 unique in-
stances of animals and 145 unique instances of ar-
tifacts were included; (b) The proportion of tar-
gets in the scene (e.g. 20%) was chosen by se-
lecting one among 17 pre-defined ratios between
targets:non-targets (e.g. 1:4, ‘four non-targets to
one target’). Out of 17 ratios, 8 were positive (tar-
gets > 50%), 8 negative (targets < 50%), and 1
equal (targets = 50%); (c) The absolute number
of targets/non-targets was chosen to equally repre-
sent the various combinations available for a given
ratio (e.g., for ratio 1:4: 1-4, 2-8, 3-12, 4-16), with
the constraint of having a number of total objects
in the scene (targets+non-targets) ranging from 3
to 20. In total, 97 combinations were represented
in the dataset, with an average of 5.7 combina-
tions/ratio (min 2, max 18); (d) To inject some
variability, the instances of target/non-target ob-
jects were randomly resized according to one of
three possible sizes (i.e. medium, big, and small)
and flipped on the vertical axis before being ran-
domly inserted onto a 5*5-cell virtual grid. As re-
ported in Table 1, 17K scenes balanced per ratio
(1K scenes/ratio) were generated and further split
into train (70%), validation (10%), and test (20%).

Ground-truth classes for the tasks of setComp
and propTarg were automatically assigned to each
scene while generating the data. For vagueQ,
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we took the probability distributions obtained on
a dataset of 340 scenes by Pezzelle et al. (un-
der review) and we applied them to our data-
points, which were built in the exact same way.
These probability distributions had been collected
by asking participants to select, from a list of
9 quantifiers (reported in § 3.1), the most suit-
able one to describe the target objects in a visual
scene presented for 1 second. In particular, they
were computed against the proportion of targets in
the scene, which in that study was shown to be
the overall best predictor for quantifiers. To il-
lustrate, given a scene containing 20% of targets
(cf. leftmost panel in Figure 2), the probability
of choosing ‘few’ (ranging from 0 to 1) is 0.38,
‘almost none’ 0.27, ‘the smaller part’ 0.25, etc.
It is worth mentioning that, for scenes contain-
ing either 100% or 0% targets the probability of
choosing ‘all’ and ‘none’, respectively, is around
1. In all other cases, the distribution of probabili-
ties is fuzzier and reflects the largely overlapping
use of quantifiers, as in the example above. On
average, the probability of the most-chosen quan-
tifier across ratios is 0.53. Though this number
cannot be seen as a genuine inter-annotator agree-
ment score, it suggests that, on average, there is
one quantifier which is preferred over the others.

4 Models

In this section, we describe the various models im-
plemented to perform the tasks. For each model,
several settings and parameters were evaluated by
means of a thorough ablation analysis. Based on
a number of factors like performance, speed, and
stability of the networks, we opted for using ReLU
nonlinear activation at all hidden layers and the
simple and effective Stochastic Gradient Descent
(SGD) as optimizer (lr = 0.01). We run each model
for 100 epochs and saved weights and parameters
of the epoch with the lowest validation loss. The
best model was then used to obtain the predictions
in the test set. All models were implemented using
Keras.3

4.1 One-Task Models

We implemented separate models to tackle one
task at a time. For each task, in particular, both
a network using ‘frozen’ (i.e. pretrained) visual
features and one computing the visual features in
an ‘end-to-end’ fashion were tested.

3https://keras.io/

One-Task-Frozen These models are simple, 2-
layer (ReLU) Multi-Layer Perceptron (MLP) net-
works that take as input a 2048-d frozen represen-
tation of the scene and output a vector containing
softmax probability values. The frozen represen-
tation of the scene had been previously extracted
using the state-of-art Inception v3 CNN (Szegedy
et al., 2016) pretrained on ImageNet (Deng et al.,
2009). In particular, the network is fed with the
average of the features computed by the last Con-
volutional layer, which has size 25*2048.

One-Task-End2end These models are MLP
networks that take as input the 203*203-pixel im-
age and compute the visual features by means of
the embedded Inception v3 module, which outputs
25*2048-d vectors (the grey and colored box in
Figure 1). Subsequently, the 25 feature vectors are
reduced twice via ReLU hidden layers, then con-
catenated, reduced (ReLU), and fed into a softmax
layer to obtain the probability values.

4.2 Multi-Task Model
The multi-task-prop model performs 3
tasks at the same time with an architecture that re-
produces in its order the conjectured complexity
(see Figure 3 and its caption for technical details).
The model has a core structure, represented by lay-
ers 1-5 in the figure, which is shared across tasks
and trained with multiple outputs. In particular,
(a) layers 1, 2, and 3 are trained using information
regarding the output of all 3 tasks. That is, these
layers are updated three times by as many back-
propagation passes: One on the top of setComp
output, the second on the top of vagueQ output,
the third on the top of propTarg output; (b) lay-
ers 4 and 5 are affected by information regarding
the output of vagueQ and propTarg, and thus up-
dated twice; (c) layers 6 and 7 are updated once,
on the top of the output of propTarg. Importantly,
the three lower layers in Figure 3 (concatenation,
ReLU, softmax) are not shared between the tasks,
but specialized to output each a specific prediction.
As can be noted, the order of the tasks reflects their
complexity, since the last task in the pipeline has
2 more layers than the preceding one and 4 more
than the first one.

5 Results

Table 2 reports the performance of each model
in the various tasks (note that the lowest row
and the rightmost column report results described
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Figure 3: Architecture of the multi-task-prop model jointly performing (a) set comparison, (b) vague quan-
tification, and (c) proportional estimation. Given a 203*203-pixel image as input, the model extracts a 25*2048
representation from the last Convolutional layer of the Inception v3. Subsequently, the vectors are reduced twice
via ReLU hidden layers to 1024 and 512 dimensions. The 512-d vectors are concatenated and reduced, then a
softmax layer is applied to output a 3-d vector with probability distributions for task (a). The same structure (i.e.,
2 hidden layers, concatenation, reduction, and softmax) is repeated for tasks (b) and (c). All the tasks are trained
with cross-entropy. To evaluate tasks (a) and (c), in testing, we extract the highest-probability class and compute
accuracy, whereas task (b) is evaluated via Pearson’s correlation against the 9-d ground-truth probability vector.

in § 6.1). In setComp, all the models are neatly
above chance/majority level (0.47). In particular,
the one-task-end2end model achieves a re-
markable 0.90 acc., which is more than 10% bet-
ter compared to the simple one-task-frozen
model (0.78). The same pattern of results can be
observed for vagueQ, where the Pearson’s correla-
tion (r) between the ground-truth and the predicted
probability vector is around 0.96, that is more than
30% over the simpler model (0.62). This gap in-
creases even more in propTarg, where the accuracy
of the frozen model is more than 40 points below
the one achieved by the one-task-end2end
model (0.21 against 0.66). These results firmly in-
dicate that, on the one hand, the frozen representa-
tion of the visual scene encodes little information
about the proportion of targets (likely due to the
the different task for which they were pretrained,

i.e. object classification). On the other hand, com-
puting the visual features in an end-to-end fashion
leads to a significant improvement, suggesting that
the network learns to pay attention to features that
are helpful for specific tasks.

The most interesting results, however, are those
achieved by the multi-task model, which turns out
to be the best in all the tasks. As reported in
Table 2, sharing the weights between the various
tasks is especially beneficial for propTarg, where
the accuracy reaches 0.92, that is, more than 25
points over the end-to-end, one-task model. An
almost perfect performance of the model in this
task can be observed in Figure 4, which reports
the confusion matrix with the errors made by the
model. As can be seen, the few errors are between
‘touching’ classes, e.g. between ratio 3:4 (43% of
targets) and ratio 2:3 (40%). Since these classes
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model setComp vagueQ propTarg nTarg
accuracy Pearson r accuracy accuracy

chance/majority 0.470 0.320 0.058 0.132
one-task-frozen 0.783 0.622 0.210 0.312

one-task-end2end 0.902 0.964 0.659 0.966
multi-task-prop 0.995 0.982 0.918 –

multi-task-number 0.854 0.807 – 0.478

Table 2: Performance of the models in the tasks of set comparison (setComp), vague quantification (vagueQ),
proportional estimation (propTarg), and absolute number of targets (nTarg). Values in bold are the highest.

differ by a very small percentage, we gain indirect
evidence that the model is learning some kind of
proportional information rather than trivial associ-
ations between scenes and orthogonal classes.

To further explore this point, one way is to in-
spect the last layer of the proportional task (i.e.
the 32-d turquoise vector in Figure 3). If the
vectors contain information regarding the propor-
tion of targets, we should expect scenes depicting
the same proportion to have a similar representa-
tion. Also, scenes with similar proportions (e.g.
40% and 43%) would be closer to each other than
are scenes with different proportions (e.g. 25%
and 75%). Figure 5 depicts the results of a two-
dimensional PCA analysis performed on the vec-
tors of the last layer of the proportional task (the
32-d vectors).4 As can be noted, scenes depict-
ing the same proportion clearly cluster together,
thus indicating that using these representations in
a retrieval task would lead to a very high preci-
sion. Crucially, the clusters are perfectly ordered
with respect to proportion. Starting from the pur-
ple cluster on the left side (90%) and proceeding
clockwise, we find 83% (green), 80% (turquoise),

4We used https://projector.tensorflow.org/

Figure 4: PropTarg. Heatmap reporting the errors made
by the multi-task-prop model. Note that labels
refer to ratios, i.e. 14 stands for ratio 1:4 (20% targets).

75% (brown), and so on, until reaching 10% (light
blue). Proportions 0% (blue) and 100% (yellow)
are neatly separated from the other clusters, being
at the extremes of the ‘clock’.

An improvement in the results can be also ob-
served for setComp and vaqueQ, where the model
achieves 0.99 acc. and 0.98 r, respectively. Fig-
ure 6 reports, for each quantifier, the probabil-
ity values predicted by the model against the
ground-truth ones. As can be seen, the red lines
(model) approximate very closely the green ones
(humans). In the following section, we perform
further experiments to provide a deeper evaluation
of the results.

6 In-Depth Evaluation

6.1 Absolute Numbers in the Loop
As discussed in § 1, the cognitive operation under-
lying setComp, vagueQ, and propTarg is different
compared to that of estimating the absolute num-
ber of objects included in one set. To investigate
whether such dissociation emerges at the compu-
tational level, we tested a modified version of our
proposed multi-task model where propTarg task

Figure 5: PCA visualization of the last layer (before
softmax) of the proportional task in the MTL model.
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Figure 6: VagueQ. Probability values predicted by
the multi-task-prop model against ground-truth
probability distributions for each quantifier.

has been replaced with nTarg, namely the task of
predicting the absolute number of targets. One-
task models were also tested to evaluate the dif-
ficulty of the task when performed in isolation.
Since the number of targets in the scenes ranges
from 0 to 20, nTarg is evaluated as a 21-class clas-
sification task (majority class 0.13).

As reported in Table 2, the accuracy achieved
by the one-task-end2endmodel is extremely
high, i.e. around 0.97. This suggests that, when
learned in isolation, the task is fairly easy, but only
if the features are computed within the model. In
fact, using frozen features results in a quite low ac-
curacy, namely 0.31. This pattern of results is even
more interesting if compared against the results
of the multi-task-number model. When in-
cluded in the multi-task pipeline, in fact, nTarg has
a huge, 50-point accuracy drop (0.48). Moreover,
both setComp and vagueQ turn out to be signif-
icantly hurt by the highest-level task, and expe-
rience a drop of around 14 and 17 points com-
pared to the one-task-end2end model, re-
spectively. These findings seem to corroborate the
incompatibility of the operations needed for solv-
ing the tasks.

6.2 Reversing the Architecture

Previous work exploring MTL suggested that
defining a hierarchy of increasingly-complex tasks
is beneficial for jointly learning related tasks
(see § 2.2). In the present work, the order of
the tasks was inspired by cognitive and linguis-
tic abilities (see § 1). Though cognitively implau-

model setComp vagueQ propTarg
accuracy Pearson r accuracy

chance/majority 0.470 0.320 0.058
one-task-frozen 0.763 0.548 0.068

one-task-end2end 0.793 0.922 0.059
multi-task-prop 0.943 0.960 0.539

Table 3: Unseen dataset. Performance of the models in
each task. Values in bold are the highest.

sible, it might still be the case that the model is
able to learn even when reversing the order of the
tasks, i.e. from the conjectured highest-level to
the lowest-level one. To shed light on this issue,
we tested the multi-task-prop model after
reversing its architecture. That is, propTarg is now
the first task, followed by vagueQ, and setComp.

In contrast with the pattern of results obtained
by the original pipeline, no benefits are observed
for this version of MTL model compared to
one-task networks. In particular, both vagueQ
(0.32 r) and propTarg (0.08 acc.) performance
are around chance level, with setComp reach-
ing just 0.65 acc., i.e. 25 point lower than the
one-task-end2end model. The pipeline of
increasing complexity motivated theoretically is
thus confirmed at the computational level.

6.3 Does MTL Generalize?

As discussed in § 2.2, MTL is usually claimed to
allow a higher generalization power. To investi-
gate whether our proposed multi-task-prop
model genuinely learns to quantify from visual
scenes, and not just associations between patterns
and classes, we tested it with unseen combinations
of targets/non-targets. The motivation is that, even
in the most challenging propTarg task, the model
might learn to match a given combination, e.g.
3:12, to a given proportion, i.e. 20%. If this is the
case, the model would solve the task by learning
“just” to assign a class to each of the 97 possible
combinations included in the dataset. If it learns
a more abstract representation of the proportion of
targets depicted in the scene, in contrast, it should
be able to generalize to unseen combinations.

We built an additional dataset using the exact
same pipeline described in § 3.2. This time, how-
ever, we randomly selected one combination per
ratio (17 combinations in total) to be used only for
validation and testing. The remaining 80 combina-
tions were used for training. A balanced number
of datapoints for each combination were gener-
ated in val/test, whereas datapoints in training set
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were balanced with respect to ratios, by randomly
selecting scenes among the remaining combina-
tions. The unseen dataset included around 14K
datapoints (80% train, 10% val, 10% test). Table
3 reports the results of the models on the unseen
dataset. Starting from setComp, we note a simi-
lar and fairly high accuracy achieved by the two
one-task models (0.76 and 0.79, respectively). In
vagueQ, in contrast, the one-task-end2end
model neatly outperforms the simpler model (0.92
vs. 0.55 r). Finally, in propTarg both models are
at chance level, with an accuracy that is lower than
0.07. Overall, this pattern of results suggests that
propTarg is an extremely hard task for the sepa-
rate models, which are not able to generalize to
unseen combinations. The multi-task-prop
model, in contrast, shows a fairly high generaliza-
tion power. In particular, it achieves 0.54 acc. in
propTarg, that is, almost 10 times chance level.
The overall good performance in predicting the
correct proportion can be appreciated in Figure 7,
where the errors are represented by means of a
heatmap. The error analysis reveals that end-of-
the-scale proportions (0% and 100%) are the easi-
est, followed by proportions 75% (3:1), 67% (2:1),
50% (1:1), and 60% (3:2). More in general, neg-
ative ratios (targets < 50%) are mispredicted to a
much greater extent than are positive ones. More-
over, the model shows a bias toward some propor-
tions, that the model seems ‘to see everywhere’.
However, the fact that the errors are found among
the adjacent ratios (similar proportions) seems to
be a convincing evidence that the model learns
representations encoding genuine proportional in-
formation. Finally, it is worth mentioning that
in setComp and vagueQ the model achieves very
high results, 0.94 acc. and 0.96 r, respectively.

7 Discussion

In the present study, we investigated whether
ratio-based quantification mechanisms, expressed
in language by comparatives, quantifiers, and pro-
portions, can be computationally modeled in vi-
sion exploiting MTL. We proved that sharing a
common core turned out to boost the performance
in all the tasks, supporting evidence from linguis-
tics, language acquisition, and cognition. More-
over, we showed (a) the increasing complexity of
the tasks, (b) the interference of absolute number,
and (c) the high generalization power of MTL.
These results lead to many additional questions.

Figure 7: PropTarg. Heatmap with the errors made by
the multi-task-prop model in the unseen dataset.

For instance, can these methods be successfully
applied to datasets of real scenes? We firmly be-
lieve this to be the case, though the results might
be affected by the natural biases contained in those
images. Also, is this pipeline of increasing com-
plexity specific to vision (non-symbolic level),
or is it shared across modalities, in primis lan-
guage? Since linguistic expressions of quantity are
grounded on a non-symbolic system, we might ex-
pect that a model trained on one modality can be
applied to another, at least to some extent. Even
further, jointly learning representations from both
modalities might represent an even more natural,
human-like way to learn and refer to quantities.
Further work is needed to explore all these issues.
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