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Abstract

In this paper, we study the problem of parsing
structured knowledge graphs from textual de-
scriptions. In particular, we consider the scene
graph representation (Johnson et al., 2015)
that considers objects together with their at-
tributes and relations: this representation has
been proved useful across a variety of vision
and language applications. We begin by in-
troducing an alternative but equivalent edge-
centric view of scene graphs that connect to
dependency parses. Together with a careful
redesign of label and action space, we com-
bine the two-stage pipeline used in prior work
(generic dependency parsing followed by sim-
ple post-processing) into one, enabling end-to-
end training. The scene graphs generated by
our learned neural dependency parser achieve
an F-score similarity of 49.67% to ground
truth graphs on our evaluation set, surpassing
best previous approaches by 5%. We further
demonstrate the effectiveness of our learned
parser on image retrieval applications.1

1 Introduction

Recent years have witnessed the rise of interest in
many tasks at the intersection of computer vision
and natural language processing, including seman-
tic image retrieval (Johnson et al., 2015; Vendrov
et al., 2015), image captioning (Mao et al., 2014;
Karpathy and Li, 2015; Donahue et al., 2015; Liu
et al., 2017b), visual question answering (Antol
et al., 2015; Zhu et al., 2016; Andreas et al., 2016),
and referring expressions (Hu et al., 2016; Mao
et al., 2016; Liu et al., 2017a). The pursuit for
these tasks is in line with people’s desire for high
level understanding of visual content, in particu-
lar, using textual descriptions or questions to help
understand or express images and scenes.

1Code is available at https://github.com/
Yusics/bist-parser/tree/sgparser

What is shared among all these tasks is the need
for a common representation to establish connec-
tion between the two different modalities. The ma-
jority of recent works handle the vision side with
convolutional neural networks, and the language
side with recurrent neural networks (Hochreiter
and Schmidhuber, 1997; Cho et al., 2014) or word
embeddings (Mikolov et al., 2013; Pennington
et al., 2014). In either case, neural networks map
original sources into a semantically meaningful
(Donahue et al., 2014; Mikolov et al., 2013) vector
representation that can be aligned through end-to-
end training (Frome et al., 2013). This suggests
that the vector embedding space is an appropriate
choice as the common representation connecting
different modalities (see e.g. Kaiser et al. (2017)).

While the dense vector representation yields
impressive performance, it has an unfortunate lim-
itation of being less intuitive and hard to interpret.
Scene graphs (Johnson et al., 2015), on the other
hand, proposed a type of directed graph to encode
information in terms of objects, attributes of ob-
jects, and relationships between objects (see Fig-
ure 1 for visualization). This is a more structured
and explainable way of expressing the knowledge
from either modality, and is able to serve as an al-
ternative form of common representation. In fact,
the value of scene graph representation has already
been proven in a wide range of visual tasks, in-
cluding semantic image retrieval (Johnson et al.,
2015), caption quality evaluation (Anderson et al.,
2016), etc. In this paper, we focus on scene graph
generation from textual descriptions.

Previous attempts at this problem (Schuster
et al., 2015; Anderson et al., 2016) follow the same
spirit. They first use a dependency parser to obtain
the dependency relationship for all words in a sen-
tence, and then use either a rule-based or a learned
classifier as post-processing to generate the scene
graph. However, the rule-based classifier cannot
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a young boy in front of a soccer goal
a soccer ball in the air
a man standing with hands behind back
a woman wearing a purple shirt
a young boy wearing a black uniform
the roof is brown
the ball is white
a soccer ball on the ground
a man wearing a red and white shirt
people behind the net
goal keeper watching the ball
a white ball on the ground
goal keeper is wearing gloves
a kid is sitting on the ground
the man is standing
the uniform is black
a red and black backpack sitting on the ground
trees outside the fence
blue and white soccer ball

young boy

wear

uniformblack

backpack

sit on

ground

black

red

Figure 1: Each image in the Visual Genome (Krishna
et al., 2017) dataset contains tens of region descriptions
and the region scene graphs associated with them. In
this paper, we study how to generate high quality scene
graphs (two such examples are shown in the figure)
from textual descriptions, without using image infor-
mation.

learn from data, and the learned classifier is rather
simple with hand-engineered features. In addition,
the dependency parser was trained on linguistics
data to produce complete dependency trees, some
parts of which may be redundant and hence con-
fuse the scene graph generation process.

Therefore, our model abandons the two-stage
pipeline, and uses a single, customized depen-
dency parser instead. The customization is neces-
sary for two reasons. First is the difference in la-
bel space. Standard dependency parsing has tens
of edge labels to represent rich relationships be-
tween words in a sentence, but in scene graphs we
are only interested in three types, namely objects,
attributes, and relations. Second is whether every
word needs a head. In some sense, the scene graph
represents the “skeleton” of the sentence, which
suggests that empty words are unlikely to be in-
cluded in the scene graph. We argue that in scene
graph generation, it is unnecessary to require a
parent word for every single word.

We build our model on top of a neural depen-

dency parser implementation (Kiperwasser and
Goldberg, 2016) that is among the state-of-the-
art. We show that our carefully customized de-
pendency parser is able to generate high quality
scene graphs by learning from data. Specifically,
we use the Visual Genome dataset (Krishna et al.,
2017), which provides rich amounts of region de-
scription - region graph pairs. We first align nodes
in region graphs with words in the region descrip-
tions using simple rules, and then use this align-
ment to train our customized dependency parser.
We evaluate our parser by computing the F-score
between the parsed scene graphs and ground truth
scene graphs. We also apply our approach to im-
age retrieval to show its effectiveness.

2 Related Works

2.1 Scene Graphs

The scene graph representation was proposed in
Johnson et al. (2015) as a way to represent the rich,
structured knowledge within an image. The nodes
in a scene graph represent either an object, an at-
tribute for an object, or a relationship between two
objects. The edges depict the connection and as-
sociation between two nodes. This representation
is later adopted in the Visual Genome dataset (Kr-
ishna et al., 2017), where a large number of scene
graphs are annotated through crowd-sourcing.

The scene graph representation has been proved
useful in various problems including semantic im-
age retrieval (Johnson et al., 2015), visual question
answering (Teney et al., 2016), 3D scene synthe-
sis (Chang et al., 2014), and visual relationship de-
tection (Lu et al., 2016). Excluding Johnson et al.
(2015) which used ground truth, scene graphs are
obtained either from images (Dai et al., 2017; Xu
et al., 2017; Li et al., 2017) or from textual de-
scriptions (Schuster et al., 2015; Anderson et al.,
2016). In this paper we focus on the latter.

In particular, parsed scene graphs are used in
Schuster et al. (2015) for image retrieval. We show
that with our more accurate scene graph parser,
performance on this task can be further improved.

2.2 Parsing to Graph Representations

The goal of dependency parsing (Kübler et al.,
2009) is to assign a parent word to every word in a
sentence, and every such connection is associated
with a label. Dependency parsing is particularly
suitable for scene graph generation because it di-
rectly models the relationship between individual
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words without introducing extra nonterminals. In
fact, all previous work (Schuster et al., 2015; An-
derson et al., 2016) on scene graph generation run
dependency parsing on the textual description as
a first step, followed by either heuristic rules or
simple classifiers. Instead of running two separate
stages, our work proposed to use a single depen-
dency parser that is end-to-end. In other words,
our customized dependency parser generates the
scene graph in an online fashion as it reads the tex-
tual description once from left to right.

In recent years, dependency parsing with neu-
ral network features (Chen and Manning, 2014;
Dyer et al., 2015; Cross and Huang, 2016; Kiper-
wasser and Goldberg, 2016; Dozat and Manning,
2016; Shi et al., 2017) has shown impressive per-
formance. In particular, Kiperwasser and Gold-
berg (2016) used bidirectional LSTMs to generate
features for individual words, which are then used
to predict parsing actions. We base our model on
Kiperwasser and Goldberg (2016) for both its sim-
plicity and good performance.

Apart from dependency parsing, Abstract
Meaning Representation (AMR) parsing (Flani-
gan et al., 2014; Werling et al., 2015; Wang et al.,
2015; Konstas et al., 2017) may also benefit scene
graph generation. However, as first pointed out
in Anderson et al. (2016), the use of dependency
trees still appears to be a common theme in the
literature, and we leave the exploration of AMR
parsing for scene graph generation as future work.

More broadly, our task also relates to entity
and relation extraction, e.g. Katiyar and Cardie
(2017), but there object attributes are not han-
dled. Neural module networks (Andreas et al.,
2016) also use dependency parses, but they trans-
late questions into a series of actions, whereas
we parse descriptions into their graph form. Fi-
nally, Krishnamurthy and Kollar (2013) connected
parsing and grounding by training the parser in a
weakly supervised fashion.

3 Task Description

In this section, we begin by reviewing the scene
graph representation, and show how its nodes and
edges relate to the words and arcs in dependency
parsing. We then describe simple yet reliable
rules to align nodes in scene graphs with words in
textual descriptions, such that customized depen-
dency parsing, described in the next section, may
be trained and applied.

3.1 Scene Graph Definition
There are three types of nodes in a scene graph:
object, attribute, and relation. Let O be the set of
object classes, A be the set of attribute types, and
R be the set of relation types. Given a sentence
s, our goal in this paper is to parse s into a scene
graph:

G(s) = 〈O(s), A(s), R(s)〉 (1)

where O(s) = {o1(s), . . . , om(s)}, oi(s) ∈ O is
the set of object instances mentioned in s, A(s) ⊆
O(s) × A is the set of attributes associated with
object instances, and R(s) ⊆ O(s)×R×O(s) is
the set of relations between object instances.
G(s) is a graph because we can first create an

object node for every element inO(s); then for ev-
ery (o, a) pair in A(s), we create an attribute node
and add an unlabeled edge o→ a; finally for every
(o1, r, o2) triplet inR(s), we create a relation node
and add two unlabeled edges o1 → r and r → o2.
The resulting directed graph exactly encodes in-
formation in G(s). We call this the node-centric
graph representation of a scene graph.

We realize that a scene graph can be equiva-
lently represented by no longer distinguishing be-
tween the three types of nodes, yet assigning la-
bels to the edges instead. Concretely, this means
there is now only one type of node, but we assign
a ATTR label for every o→ a edge, a SUBJ label
for every o1 → r edge, and a OBJT label for every
r → o2 edge. We call this the edge-centric graph
representation of a scene graph.

We can now establish a connection between
scene graphs and dependency trees. Here we only
consider scene graphs that are acyclic2. The edge-
centric view of a scene graph is very similar to
a dependency tree: they are both directed acyclic
graphs where the edges/arcs have labels. The dif-
ference is that in a scene graph, the nodes are the
objects/attributes/relations and the edges have la-
bel space {ATTR, SUBJ, OBJT}, whereas in a de-
pendency tree, the nodes are individual words in
a sentence and the edges have a much larger label
space.

3.2 Sentence-Graph Alignment
We have shown the connection between nodes
in scene graphs and words in dependency pars-
ing. With alignment between nodes in scene

2In Visual Genome, only 4.8% region graphs have cyclic
structures.

399



graphs and words in the textual description, scene
graph generation and dependency parsing be-
comes equivalent: we can construct the gener-
ated scene graph from the set of labeled edges re-
turned by the dependency parser. Unfortunately,
such alignment is not provided between the re-
gion graphs and region descriptions in the Visual
Genome (Krishna et al., 2017) dataset. Here we
describe how we use simple yet reliable rules to
do sentence-graph (word-node) alignment.

There are two strategies that we could use in
deciding whether to align a scene graph node
d (whose label space is O ∪ A ∪ R) with a
word/phrase w in the sentence:

• Word-by-word match (WBW): d ↔ w only
when d’s label and w match word-for-word.

• Synonym match (SYN)3: d ↔ w when the
wordnet synonyms of d’s label contain w.

Obviously WBW is a more conservative strategy
than SYN.

We propose to use two cycles and each cy-
cle further consists of three steps, where we try
to align objects, attributes, relations in that or-
der. The pseudocode for the first cycle is in Al-
gorithm 1. The second cycle repeats line 4-15
immediately afterwards, except that in line 6 we
also allow SYN. Intuitively, in the first cycle we
use a conservative strategy to find “safe” objects,
and then scan for their attributes and relations. In
the second cycle we relax and allow synonyms in
aligning object nodes, also followed by the align-
ment of attribute and relation nodes.

The ablation study of the alignment procedure
is reported in the experimental section.

4 Customized Dependency Parsing

In the previous section, we have established the
connection between scene graph generation and
dependency parsing, which assigns a parent word
for every word in a sentence, as well as a label for
this directed arc. We start by describing our base
dependency parsing model, which is neural net-
work based and performs among the state-of-the-
art. We then show why and how we do customiza-
tion, such that scene graph generation is achieved
with a single, end-to-end model.

3This strategy is also used in (Denkowski and Lavie,
2014) and (Anderson et al., 2016).

Algorithm 1: First cycle of the alignment pro-
cedure.

1 Input: Sentence s; Scene graph G(s)
2 Initialize aligned nodes N as empty set
3 Initialize aligned words W as empty set
4 for o in object nodes of G(s) \N do
5 for w in s \W do
6 if o↔ w according to WBW then
7 Add (o, w); N = N ∪ {o};

W =W ∪ {w}

8 for a in attribute nodes of G(s) \N do
9 for w in s \W do

10 if a↔ w according to WBW or SYN
and a’s object node is in N then

11 Add (a,w); N = N ∪ {a};
W =W ∪ {w}

12 for r in relation nodes of G(s) \N do
13 for w in s \W do
14 if r ↔ w according to WBW or SYN

and r’s subject and object nodes are
both in N then

15 Add (r, w); N = N ∪ {r};
W =W ∪ {w}

4.1 Neural Dependency Parsing Base Model

We base our model on the transition-based parser
of Kiperwasser and Goldberg (2016). Here we de-
scribe its key components: the arc-hybrid system
that defines the transition actions, the neural archi-
tecture for feature extractor and scoring function,
and the loss function.

The Arc-Hybrid System In the arc-hybrid sys-
tem, a configuration consists of a stack σ, a buffer
β, and a set T of dependency arcs. Given a sen-
tence s = w1, . . . , wn, the system is initialized
with an empty stack σ, an empty arc set T , and
β = 1, . . . , n,ROOT, where ROOT is a special in-
dex. The system terminates when σ is empty and β
contains only ROOT. The dependency tree is given
by the arc set T upon termination.

The arc-hybrid system allows three transition
actions, SHIFT, LEFTl, RIGHTl, described in Ta-
ble 1. The SHIFT transition moves the first el-
ement of the buffer to the stack. The LEFT(l)
transition yields an arc from the first element of
the buffer to the top element of the stack, and
then removes the top element from the stack. The
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Stack σt Buffer βt Arc set Tt Action Stack σt+1 Buffer βt+1 Arc set Tt+1

σ b0|β T SHIFT σ|b0 β T
σ|s1|s0 b0|β T LEFT(l) σ|s1 b0|β T ∪ {(b0, s0, l)}
σ|s1|s0 β T RIGHT(l) σ|s1 β T ∪ {(s1, s0, l)}
σ|s0 β T REDUCE σ β T

Table 1: Transition actions under the arc-hybrid system. The first three actions are from dependency parsing; the
last one is introduced for scene graph parsing.

RIGHT(l) transition yields an arc from the second
top element of the stack to the top element of the
stack, and then also removes the top element from
the stack.

The following paragraphs describe how to se-
lect the correct transition action (and label l) in
each step in order to generate a correct dependency
tree.

BiLSTM Feature Extractor Let the word em-
beddings of a sentence s be w1, . . . ,wn. An
LSTM cell is a parameterized function that takes
as input wt, and updates its hidden states:

LSTM cell : (wt,ht−1)→ ht (2)

As a result, an LSTM network, which simply ap-
plies the LSTM cell t times, is a parameterized
function mapping a sequence of input vectors w1:t

to a sequence of output vectors h1:t. In our nota-
tion, we drop the intermediate vectors h1:t−1 and
let LSTM(w1:t) represent ht.

A bidirectional LSTM, or BiLSTM for short,
consists of two LSTMs: LSTMF which reads the
input sequence in the original order, and LSTMB

which reads it in reverse. Then

BILSTM(w1:n, i) =

LSTMF (w1:i) ◦ LSTMB(wn:i) (3)

where ◦ denotes concatenation. Intuitively, the
forward LSTM encodes information from the left
side of the i-th word and the backward LSTM en-
codes information to its right, such that the vector
vi = BILSTM(w1:n, i) has the full sentence as
context.

When predicting the transition action, the fea-
ture function φ(c) that summarizes the current
configuration c = (σ, β, T ) is simply the concate-
nated BiLSTM vectors of the top three elements in
the stack and the first element in the buffer:

φ(c) = vs2 ◦ vs1 ◦ vs0 ◦ vb0 (4)

MLP Scoring Function The score of transition
action y under the current configuration c is deter-
mined by a multi-layer perceptron with one hidden
layer:

f(c, y) =MLP (φ(c))[y] (5)

where

MLP (x) =W2 · tanh(W1 · x+ b1) + b2 (6)

Hinge Loss Function The training objective is
to raise the scores of correct transitions above
scores of incorrect ones. Therefore, at each step,
we use a hinge loss defined as:

L = max(0, 1− max
y+∈Y +

f(c, y+)

+ max
y−∈Y \Y +

f(c, y−)) (7)

where Y is the set of possible transitions and Y +

is the set of correct transitions at the current step.
In each training step, the parser scores all possible
transitions using Eqn. 5, incurs a loss using Eqn. 7,
selects a following transition, and updates the con-
figuration. Losses at individual steps are summed
throughout the parsing of a sentence, and then pa-
rameters are updated using backpropagation.

In test time, we simply choose the transition ac-
tion that yields the highest score at each step.

4.2 Customization
In order to generate scene graphs with dependency
parsing, modification is necessary for at least two
reasons. First, we need to redefine the label space
of arcs so as to reflect the edge-centric representa-
tion of a scene graph. Second, not every word in
the sentence will be (part of) a node in the scene
graph (see Figure 2 for an example). In other
words, some words in the sentence may not have a
parent word, which violates the dependency pars-
ing setting. We tackle these two challenges by re-
designing the edge labels and expanding the set of
transition actions.
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Redesigning Edge Labels We define a total of
five edge labels, so as to faithfully bridge the edge-
centric view of scene graphs with dependency
parsing models:

• CONT: This label is created for nodes whose
label is a phrase. For example, the phrase “in
front of” is a single relation node in the scene
graph. By introducing the CONT label, we
expect the parsing result to be either

in CONT−−−→ front CONT−−−→ of (8)

or
in CONT←−−− front CONT←−−− of (9)

where the direction of the arcs (left or right)
is predefined by hand.

The leftmost word under the right arc rule or
the rightmost word under the left arc rule is
called the head of the phrase. A single-word
node does not need this CONT label, and the
head is itself.

• ATTR: The arc label from the head of an ob-
ject node to the head of an attribute node.

• SUBJ: The arc label from the head of an ob-
ject node (subject) to the head of a relation
node.

• OBJT: The arc label from the head of a rela-
tion node to the head of an object node (ob-
ject).

• BEGN: The arc label from the ROOT index to
all heads of object nodes without a parent.

Expanding Transition Actions With the three
transition actions SHIFT, LEFT(l), RIGHT(l), we
only drop an element (from the top of the stack) af-
ter it has already been associated with an arc. This
design ensures that an arc is associated with ev-
ery word. However, in our setting for scene graph
generation, there may be no arc for some of the
words, especially empty words.

Our solution is to augment the action set with
a REDUCE action, that pops the stack without
adding to the arc set (see Table 1). This ac-
tion is often used in other transition-based de-
pendency parsing systems (e.g. arc-eager (Nivre,
2004)). More recently, Hershcovich et al. (2017)
and Buys and Blunsom (2017) also included this
action when parsing sentences to graph structures.

Parser F-score

Stanford (Schuster et al., 2015) 0.3549
SPICE (Anderson et al., 2016) 0.4469

Ours (left arc rule) 0.4967
Ours (right arc rule) 0.4952
Ours (all SYN) 0.4877
Ours (no SYN) 0.4538

Oracle 0.6985

Table 2: The F-scores (i.e. SPICE metric) between
scene graphs parsed from region descriptions and
ground truth region graphs on the intersection of Vi-
sual Genome (Krishna et al., 2017) and MS COCO (Lin
et al., 2014) validation set.

We still minimize the loss function defined in
Eqn. 7, except that now |Y | increases from 3 to
4. During training, we impose the oracle to select
the REDUCE action when it is in Y +. In terms of
loss function, we increment by 1 the loss incurred
by the other 3 transition actions if REDUCE incurs
zero loss.

5 Experiments

5.1 Implementation Details

We train and evaluate our scene graph parsing
model on (a subset of) the Visual Genome (Kr-
ishna et al., 2017) dataset. Each image in Vi-
sual Genome contains a number of regions, and
each region is annotated with both a region de-
scription and a region scene graph. Our training
set is the intersection of Visual Genome and MS
COCO (Lin et al., 2014) train2014 set, which con-
tains a total of 34027 images/ 1070145 regions.
We evaluate on the intersection of Visual Genome
and MS COCO val2014 set, which contains a total
of 17471 images/ 547795 regions.

In our experiments, the number of hidden units
in BiLSTM is 256; the number of layers in BiL-
STM is 2; the word embedding dimension is 200;
the number of hidden units in MLP is 100. We
use fixed learning rate 0.001 and Adam optimizer
(Kingma and Ba, 2014) with epsilon 0.01. Train-
ing usually converges within 4 epochs.

We will release our code and trained model
upon acceptance.

5.2 Quality of Parsed Scene Graphs

We use a slightly modified version of SPICE score
(Anderson et al., 2016) to evaluate the quality of
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black         barrier         in   front   of         person

Ground truth (node-centric)

black         barrier         in         front

SPICE (node-centric): F-score 0.6

of         person

node-centric

Ours: F-score 1.0

edge-centric

black barrier in front of the person ROOT

BEGN

OBJTSUBJ

ATTR CONT CONT
black         barrier         in   front   of         person

Figure 2: Scene graph parsing result of the sentence “black barrier in front of the person”. In the node-centric
graphs, orange represents object node, green represents attribute node, blue represents relation node.

Stack Buffer Action

0 black barrier in front of the person ROOT SHIFT

1 black barrier in front of the person ROOT LEFT(ATTR)
2 barrier in front of the person ROOT SHIFT

3 barrier in front of the person ROOT SHIFT

4 barrier in front of the person ROOT LEFT(CONT)
5 barrier front of the person ROOT SHIFT

6 barrier front of the person ROOT LEFT(CONT)
7 barrier of the person ROOT SHIFT

8 barrier of the person ROOT SHIFT

9 barrier of the person ROOT REDUCE

10 barrier of person ROOT SHIFT

11 barrier of person ROOT RIGHT(OBJT)
12 barrier of ROOT RIGHT(SUBJ)
13 barrier ROOT LEFT(BEGN)
14 ROOT

Figure 3: Intermediate actions taken by the trained dependency parser when parsing the sentence “black barrier in
front of the person”.

scene graph parsing. Specifically, for every region,
we parse its description using a parser (e.g. the
one used in SPICE or our customized dependency
parser), and then calculate the F-score between the
parsed graph and the ground truth region graph
(see Section 3.2 of Anderson et al. (2016) for more
details). Note that when SPICE calculates the F-
score, a node in one graph could be matched to
several nodes in the other, which is problematic.
We fix this and enforce one-to-one matching when
calculating the F-score. Finally, we report the av-
erage F-score across all regions.

Table 2 summarizes our results. We see that our
customized dependency parsing model achieves

an average F-score of 49.67%, which significantly
outperforms the parser used in SPICE by 5 per-
cent. This result shows that our customized de-
pendency parser is very effective at learning from
data, and generates more accurate scene graphs
than the best previous approach.

Ablation Studies First, we study how the
sentence-graph alignment procedure affects the fi-
nal performance. Recall that our procedure in-
volves two cycles, each with three steps. Of the
six steps, synonym match (SYN) is only not used
in the first step. We tried two more settings, where
SYN is either used in all six steps or none of the
six steps. We can see from Table 2 that the final
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Development set Test set

R@5 R@10 Med. rank R@5 R@10 Med. rank

(Schuster et al., 2015) 33.82% 45.58% 6 34.96% 45.68% 5
Ours 36.69% 49.41% 4 36.70% 49.37% 5

Table 3: Image retrieval results. We follow the same experiment setup as Schuster et al. (2015), except using a
different scoring function when ranking images. Our parser consistently outperforms the Stanford Scene Graph
Parser across evaluation metrics.

F-score drops in both cases, hence supporting the
procedure that we chose.

Second, we study whether changing the direc-
tion of CONT arcs from pointing left to point-
ing right will make much difference. Table 2
shows that the two choices give very similar per-
formance, suggesting that our dependency parser
is robust to this design choice.

Finally, we report the oracle score, which is
the similarity between the aligned graphs that we
use during training and the ground truth graphs.
The F-score is relatively high at 69.85%. This
shows that improving the parser (about 20% mar-
gin) and improving the sentence-graph alignment
(about 30% margin) are both promising directions
for future research.

Qualitative Examples We provide one parsing
example in Figure 2 and Figure 3. This is a sen-
tence that is relatively simple, and the underly-
ing scene graph includes two object nodes, one
attribute node, and one compound word relation
node. In parsing this sentence, all four actions
listed in Table 1 are used (see Figure 3) to pro-
duce the edge-centric scene graph (bottom left
of Figure 2), which is then trivially converted to
the node-centric scene graph (bottom right of Fig-
ure 2).

5.3 Application in Image Retrieval

We test if the advantage of our parser can be
propagated to computer vision tasks, such as im-
age retrieval. We directly compare our parser
with the Stanford Scene Graph Parser (Schuster
et al., 2015) on the development set and test set of
the image retrieval dataset used in Schuster et al.
(2015) (not Visual Genome).

For every region in an image, there is a human-
annotated region description and region scene
graph. The queries are the region descriptions. If
the region graph corresponding to the query is a
subgraph of the complete graph of another image,

then that image is added to the ground truth set for
this query. All these are strictly following Schus-
ter et al. (2015). However, since we did not ob-
tain nor reproduce the CRF model used in John-
son et al. (2015) and Schuster et al. (2015), we
used F-score similarity instead of the likelihood
of the maximum a posteriori CRF solution when
ranking the images based on the region descrip-
tions. Therefore the numbers we report in Table 3
are not directly comparable with those reported in
Schuster et al. (2015).

Our parser delivers better retrieval performance
across all three evaluation metrics: recall@5, re-
call@10, and median rank. We also notice that
the numbers in our retrieval setting are higher
than those (even with oracle) in Schuster et al.
(2015)’s retrieval setting. This strongly suggests
that generating accurate scene graphs from im-
ages is a very promising research direction in im-
age retrieval, and grounding parsed scene graphs
to bounding box proposals without considering vi-
sual attributes/relationships (Johnson et al., 2015)
is suboptimal.

6 Conclusion

In this paper, we offer a new perspective and so-
lution to the task of parsing scene graphs from
textual descriptions. We begin by moving the la-
bels/types from the nodes to the edges and intro-
ducing the edge-centric view of scene graphs. We
further show that the gap between edge-centric
scene graphs and dependency parses can be filled
with a careful redesign of label and action space.
This motivates us to train a single, customized,
end-to-end neural dependency parser for this task,
as opposed to prior approaches that used generic
dependency parsing followed by heuristics or sim-
ple classifier. We directly train our parser on a sub-
set of Visual Genome (Krishna et al., 2017), with-
out transferring any knowledge from Penn Tree-
bank (Marcus et al., 1993) as previous works did.
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The quality of our trained parser is validated in
terms of both SPICE similarity to the ground truth
graphs and recall rate/median rank when perform-
ing image retrieval.

We hope our paper can lead to more thoughts on
the creative uses and extensions of existing NLP
tools to tasks and datasets in other domains. In
the future, we plan to tackle more computer vision
tasks with this improved scene graph parsing tech-
nique in hand, such as image region grounding.
We also plan to investigate parsing scene graph
with cyclic structures, as well as whether/how the
image information can help boost parsing quality.
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