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Abstract

Building a taxonomy from the ground up in-
volves several sub-tasks: selecting terms to in-
clude, predicting semantic relations between
terms, and selecting a subset of relational in-
stances to keep, given constraints on the tax-
onomy graph. Methods for this final step —
taxonomic organization — vary both in terms of
the constraints they impose, and whether they
enable discovery of synonymous terms. It is
hard to isolate the impact of these factors on
the quality of the resulting taxonomy because
organization methods are rarely compared di-
rectly. In this paper, we present a head-to-head
comparison of six taxonomic organization al-
gorithms that vary with respect to their struc-
tural and transitivity constraints, and treatment
of synonymy. We find that while transitive
algorithms out-perform their non-transitive
counterparts, the top-performing transitive al-
gorithm is prohibitively slow for taxonomies
with as few as 50 entities. We propose a
simple modification to a non-transitive opti-
mum branching algorithm to explicitly incor-
porate synonymy, resulting in a method that is
substantially faster than the best transitive al-
gorithm while giving complementary perfor-
mance.

1 Introduction

Many words and phrases fit within a natural se-
mantic hierarchy: a mobile is a type of telephone,
which in turn is a communications device and an
object. Taxonomies, which encode this knowl-
edge, are important resources for natural language
understanding systems.

There is ongoing interest in developing methods
to build taxonomic resources automatically (Bor-
dea et al., 2015, 2016). Although several widely-
used general ontologies (e.g. WordNet (Miller,
1995)) and domain-specific ontologies (e.g. Uni-
fied Medical Language System (UMLS) (Boden-
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Figure 1: In this study we compare algorithms for tax-
onomic organization. We first (a) run entity extraction
and pairwise relation prediction as a common initial-
ization; we then (b) feed the resulting graphs as identi-
cal input to six taxonomic organization algorithms. We
evaluate the impact of varied structural constraints be-
tween algorithms.
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reider, 2004)) exist, these resources are hand-
crafted and therefore expensive to update or ex-
pand. Automatic taxonomy induction enables the
construction of taxonomic resources at scale in
new languages and domains. Further, there is evi-
dence that it is useful to build dynamic or context-
specific taxonomies extemporaneously for some
applications (Do and Roth, 2010).
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Taxonomy induction involves three sub-tasks:
entity extraction, relation prediction, and taxo-
nomic organization. In many cases these subtasks
are undertaken sequentially to build a taxonomy
from the ground up. While many works directly
compare methods for relation prediction (e.g. Tur-
ney and Mohammad (2015), Shwartz et al. (2017)
and others), none directly compare methods for
the final taxonomic organization step with varying
constraints. Each paper that proposes a taxonomic
organization method starts with its own set of pre-
dicted relations, making it impossible to determine
— even with benchmark datasets — the extent to
which improvements in identifying ground-truth
relations are due to (a) better relation prediction,
or (b) better taxonomic organization.

In this work, we present an empirical apples-
to-apples comparison of six algorithms for unsu-
pervised taxonomic organization. The algorithms
vary along three axes: whether they impose transi-
tivity constraints on the taxonomic graph, whether
they specify that the final graph structure be a
directed acyclic graph (DAG) or tree/forest, and
whether they identify ‘clusters’ of synonymous
terms. In each case we begin with the same sets of
terms and predicted relations (see Figure 1). This
makes it possible to address several research ques-
tions. First, which combination of these factors
produces a taxonomy that most closely mirrors a
set of ground-truth taxonomic relations? Second,
which algorithms are efficient enough in practice
to run on large term sets? And third, how robust is
each algorithm to noise in the predicted relations
used as input?

We find that while transitive algorithms per-
form better than non-transitive algorithms given
the same constraints on graph structure, the best-
performing transitive algorithm is prohibitively
slow to use on input with as few as 50 nodes. By
modifying a commonly-used optimum branching
algorithm to consolidate clusters of predicted syn-
onyms into a single graph node, we show that it
is possible to achieve complementary performance
levels with an average runtime that is faster by or-
ders of magnitude.

2 General Framework for Taxonomy
Induction

The problem of taxonomy induction can be sum-
marized via three core sub-tasks. While all sys-
tems that build taxonomies automatically must ad-
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dress each of these tasks, the sequence and man-
ner in which they are addressed varies. In the most
straightforward case, the core tasks are viewed as
orthogonal and carried out sequentially. They are:

1. Entity Extraction: Identify a set of entities
F (i.e. word types, synsets, etc) that will be-
come nodes in the eventual taxonomy graph.

Relation Prediction: Predict the presence or
absence of a directed semantic relation (hy-
pernymy or entailment) between each pair of
nodes, (e;,e;) € £ x E. The outputs are (a)
a set of potential edges R C E x F, where
we use the notation r;; € R to signify the
relational instance, or edge, (e;, e;), and (b)
relation scores s(r;;) for each edge derived
from the classifier’s predicted likelihood that
the relational instance exists.

. Taxonomic Organization: Select a subset of
the predicted edges, R C R, that produces a
high sum of scores, >z s(ri;), subject to
structural constraints. The final output is the
graph G(E, R).

Structural constraints dictate what can be con-
sidered a valid or invalid combination of edges in a
taxonomic graph (Do and Roth, 2010). Two struc-
tural constraints frequently imposed are that the fi-
nal graph be a DAG, or that the final graph be a
tree/forest.! Examples of algorithms that produce
DAG structures are the longest-path algorithm of
Kozareva and Hovy (2010), the ContrastMedium
approach of Faralli et al. (2017), and the random
cycle-breaking method used in (Panchenko et al.,
2016) and Faralli et al. (2015). We experiment
with a variation of the last one here, which we call
NoCyc. To produce tree-structured taxonomies,
most researchers (including us) use algorithms for
finding the maximally-weighted rooted tree span-
ning a directed graph (DMST). Examples of prior
work following this approach are Navigli et al.
(2011) and Bansal et al. (2014).

Another dimension along which taxonomy or-
ganization approaches differ is whether they ex-
plicitly require the set of chosen relational in-
stances R to be fully transitive. The transitivity
constraint dictates that if (beetle 1S-A insect) is se-
lected as part of R, and (insect 15-A organism) is

'"WLOG, the tree and forest constraints are identical, as a
dummy root node can be attached to the root of each compo-
nent in a forest to produce a tree.



selected as part of R, then (beetle 15-A organism)
must also be selected. Two methods that impose
such transitivity constraints are the MAXTRANS-
GRAPH and MAXTRANSFOREST methods of Be-
rant et al. (2015), both of which we experiment
with here.

A final consideration when choosing a taxon-
omy organization algorithm is whether the method
should enable the consolidation of synonyms into
a single taxonomic entity. Synonym sets, or
synsets, are present as nodes in the WordNet
graph (Miller, 1995). Potential advantages to us-
ing synonym sets, rather than individual terms,
as nodes include the ability to model polysemy
(horse means one thing when grouped with its syn-
onym cavalry and another entirely when grouped
with sawhorse), and the ability to be more pre-
cise in defining relations. A few early taxonomy
induction approaches incorporated synonym clus-
tering (e.g. Lin and Pantel (2002) and Pantel and
Ravichandran (2004)). The two transitive algo-
rithms that we analyze here, MAXTRANSGRAPH
and MAXTRANSFOREST, also consolidate equiv-
alent terms into a single node.

3 Taxonomic Organization Algorithms

The six algorithms that we compare differ along
the three dimensions just described, namely, the
structural constraints imposed (DAG or tree),
whether transitivity is required, and whether syn-
onyms are combined into a single taxonomy node
(Figure 2). Here we provide a short description of
each.

No
Transitivity Transitivity
NoCyc
DAG MAXTRANSGRAPH
NoCyC+CLUS
T / DMST*
ree MAXTRANSFOREST
Forest|  pysT+CcLUS

Figure 2: Classification of the algorithms compared in
our study. The starred DMST algorithm is the only
one that does not support consolidation of synonyms
into clusters.
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3.1 NoCyc: Organizing a DAG

The no-cycles method, which we abbreviate as
NoCyc, is a simple method for constructing a
DAG with high score from a set of predicted re-
lational edges. It is not transitive.

The algorithm works as follows. From the set
R of all predicted hypernym relations, we first fil-
ter out of the graph G(FE, R) any edges with score
s(ri;) less than a tunable threshold 7. Next, we
break any cycles by finding strongly connected
components (SCC) in the graph (i.e. a subset of
nodes such that each node in the subset has a path
to every other node in the subset), and iteratively
removing the lowest-scoring edge from each SCC
until all cycles are broken. This implementation is
slightly different from that of Faralli et al. (2015)
and Panchenko et al. (2016), where cycles were
broken by removing cycle edges randomly. The
search for SCCs in each iteration is linear using
Tarjan’s algorithm (Tarjan, 1972).

The NOCYC algorithm does not explicitly clus-
ter synonyms, but we can find synonyms in the re-
sulting graph implicitly as follows. If we assume
all synonymous terms share the same direct hyper-
nyms and direct hyponyms, we can find such pairs
by taking the transitive reduction® of the resulting
graph G= (E, JA%), and grouping all pairs of terms
that have identical sets of direct hypernyms and
hyponyms in the transitive reduction.

While NoCyc itself does support finding syn-
onyms within the graph implicitly, we also experi-
ment with an explicit synonym-clustering version,
NoCyc+cLus. We modify NOoCycC by collaps-
ing into a single node all subsets of nodes pre-
dicted to be synonym clusters, using a method de-
scribed in Section 4.2.2, prior to executing the cy-
cle breaking algorithm.

3.2 DMST: Organizing a Tree

Our second method selects hypernym edges for
the taxonomy by using the Chu-Liu-Edmonds op-
timum branching algorithm (Chu and Liu, 1965;
Edmonds, 1967) to solve the directed analog of
the maximum spanning tree problem (DMST). It
constrains the final graph to be a tree and is not
transitive.

In the transitive closure of a graph, each node e; is di-
rectly connected by a single edge to every node e; to which
it has a path. The transitive reduction can be obtained for a
graph G by removing all edges from G that do not change
its transitive closure. The transitive reduction of a DAG is
unique (Aho et al., 1972).
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Figure 3: An example transitive taxonomy graph as output by MAXTRANSGRAPH or MAXTRANSFOREST is
given in 3a. Its strongly-connected component (SCC) is collapsed into a single node of synonyms to create the
DAG in 3b. Finally, its transitive reduction is in 3c. Because flipping edges in the result produces a tree rooted at

organism, the graph in 3a is called forest-reducible.

The algorithm works by adding a dummy root
node erpoor to E, and an edge from erpoor to
every other node e; in the graph. We then use
Chu-Liu-Edmonds to find the directed tree rooted
at eroor that spans all nodes in /' and has the
maximal sum of scores. Note that until now
we have considered edges in taxonomy graphs to
point from hyponyms to hypernyms; in this case
we must switch the order, so that the spanning
tree starts at the most general level of the hier-
archy and reaches down to the leaves. Chu-Liu-
Edmonds finds the DMST efficiently in polyno-
mial time (Tarjan, 1977).

Because DMST requires the final graph to
be a tree, there is no implicit way to find syn-
onyms within the taxonomy graphs it generates.
As with NoCycC, we test a modification called
DMST+cLUs that collapses predicted synonym
clusters into a single graph node prior to running
the DMST algorithm (see Section 4.2.2).

3.3 MAXTRANSGRAPH: Organizing a
Transitive DAG

The first transitive algorithm we evaluate is
MAXTRANSGRAPH (Berant et al., 2012, 2015),
which constrains the graph structure to be a
DAG. MAXTRANSGRAPH was originally de-
signed for building taxonomies of entailment re-
lations (which can be subclassified as either syn-
onyms or hypernyms) and is solved using inte-
ger linear programming (ILP). Rather than using
classifier scores directly as input, MAXTRANS-
GRAPH first computes a weight between each term
pair (e;,e;) that is equal to the classifier score
minus a tunable parameter: w;; = s(r5;) — A
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The purpose of modifying scores this way is ef-
ficiency; MAXTRANSGRAPH solves its optimiza-
tion on each connected component of the graph
independently, where components are constructed
by considering only positively-weighted edges in
the graph. Increasing A increases sparsity and de-
creases runtime.

The objective of the ILP is to maximize the
weights of selected relations, while requiring that
the graph respects transitivity. Berant et al. (2012)
proved this problem is NP-hard and provided an
ILP formulation for it as follows. Let x;; be a bi-
nary variable that indicates whether edge (e;, ;)
is in the subset of selected edges, R.

max Z Wi T
x
i#j
st. Ve ejep €E, xjj+xj —xi < 1

Vei,ej €k, Ti5 € {0, 1}

()
The objective maximizes the sum of edge weights
where the edge is ‘turned on’ (i.e. x;; = 1). The
first constraint enforces transitivity, i.e. for every
triple of nodes (e;, e, ey, ), if edge (e;, ¢;) € Rand
edge (ej,e) € R, then edge (e;,e,) € R. The
second constraint specifies that all x;; are binary.
The number of variables is O(|E|?) and number
of constraints is O(|E|?).

MAXTRANSGRAPH assumes that cycles of en-
tailment relations in the resulting graph G(E, R)
comprise cycles of synonyms, and that the remain-
ing edges which are not part of a cycle are hy-
pernym edges. Because the resulting graph must
be transitive, all cycles of three or more nodes are



cliques, in which each node is directly connected
to every other. Once every SCC is collapsed into a
single synonym cluster node, the transitive reduc-
tion of the resulting graph is a DAG (Figure 3b).

3.4 MAXTRANSFOREST: Organizing a
Transitive Forest

The final algorithm we evaluate is MAXTRANS-
FOREST (Berant et al., 2012, 2015), which like
MAXTRANSGRAPH is transitive, but produces a
forest/tree structure.

MAXTRANSFOREST is nearly identical to
MAXTRANSGRAPH, with the addition of one
constraint that imposes its forest structure. More
specifically, the graphs produced by MAXTRANS-
FOREST are forest reducible. A forest reducible
graph is one where, after collapsing every SCC
into a single node, the transitive reduction of the
result is a forest (see Figure 3).

In practice, the forest reducibility constraint is
enforced by applying one additional constraint to
the ILP in Equation 1:

Veij,ejep € B xyj + g — x5 — a5 <1 (2)

This constraint says that each node e; can have
only a single parent. If relations 7;; and 7
are in f%, then either e; is the parent of e or
vice versa; e; may not have two parents that are
not related via a hypernym relationship. Like
MAXTRANSGRAPH, the number of variables is
O(|E|?) and number of constraints is O(|E[?).
Also like MAXTRANSGRAPH, cycles in the re-
sulting graph are assumed to constitute clusters of
synonymous terms.

4 Experimental Setup

In order to directly compare the organization al-
gorithms described, we organize our experiments
as follows. We first run entity extraction (Sec-
tion 4.1) and relation prediction (Section 4.2) as
a common initialization for all algorithms. Then,
we take the edge scores output by the relation pre-
diction step and feed them to each taxonomic orga-
nization algorithm (Section 4.3). Finally, we com-
pare the output from each algorithm. Here we de-
scribe the initialization steps in more detail.

4.1 Entity Extraction

We extract sets of entities from the Paraphrase
Database (PPDB) (Ganitkevitch et al., 2013;
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Pavlick et al., 2015). Our goal is to construct lo-
cal taxonomies, where each entity set E consists
of terms sharing a common target paraphrase. For
example, a local taxonomy centered around the
target coach might contain entities bus, vehicle,
trainer, person, car, and railcar. The local taxon-
omy for a target word does not contain the target
word itself.

We build a dataset for constructing local tax-
onomies centered around 50 target nouns drawn
from the 2010 SemEval word sense induction
dataset (Manandhar et al., 2010). For each tar-
get noun, we extract as taxonomy terms the set
of PPDB paraphrases having a PPDB2.0SCORE
of at least 2.0 with the target.’ The number of
entities in each local taxonomy ranges from 13
to 126, with a median of 40 entities per set. We
hold out 5 local taxonomies to tune parameters for
NoCyc, MAXTRANSGRAPH, and MAXTRANS-
FOREST, and use the remaining 45 as our test set.

Because they consist of related terms centered
around a common paraphrase, there are several se-
mantic relations present among these entity sets in
addition to hypernymy and synonymy. We ana-
lyze the overlap between all pairs of terms appear-
ing in our local taxonomies and in WordNet, and
find that the distribution of relation types among
the overlapping pairs is 6.0% hypernym/hyponym,
1.3% synonym, 0.1% meronym/holonym, 3.1%
coordinate terms (sharing a common direct hyper-
nym), and 89.5% none of these.

4.2 Relation Prediction

Having extracted a set of entities, the next step in
our initialization process is to make pairwise rela-
tion predictions for each pair of terms (e;, ;) that
exist within an entity set F. The different organi-
zation algorithms we compare take predicted syn-
onym and/or hypernym edge scores as input. Here
we describe the methods we use to generate these
scores.

4.2.1 Hypernym Prediction

For hypernym prediction, we adopt the state-of-
the-art HypeNET method of Shwartz et al. (2016).
HypeNET integrates distributional (Lin and Pan-
tel, 2002; Roller et al., 2014; Levy et al., 2015;
Benotto, 2015) and path-based (Hearst, 1992;
Snow et al., 2004; Nakashole et al., 2012) ap-

3The PPDB2.0SCORE is a supervised metric designed
to correlate with human judgements of paraphrase quality
(Pavlick et al., 2015).



proaches to hypernym prediction. It uses a re-
current neural network to represent the set of
observed dependency paths connecting an input
word pair, and concatenates this representation
with distributional word embeddings to produce a
set of features for predicting hypernymy.

We create a dataset of noun pairs for train-
ing and evaluating the HypeNET model. It com-
bines noun pairs from four benchmark relation
prediction datasets (BLESS (Baroni and Lenci,
2011), ROOTO09 (Santus et al., 2016), EVALution
(Santus et al., 2015), and K&H+N (Necsulescu
et al., 2015)) with a set of related and unrelated
noun pairs extracted from PPDB. Since each of
these is a multi-class dataset, we binarize the data
by labeling noun pairs with a hypernym relation
as positive instances, and all others as negative.
The combined benchmark+PPDB training set con-
tains 76,152 noun pairs with a 1:4 hypernym:non-
hypernym ratio, and the evaluation set contains
29,051 pairs. We ensure lexical separation from
our taxonomy induction dataset; no terms in the
classifier training set appear in any of the local tax-
onomies. We train HypeNET using our 76K-pair
test set, and provide the results of evaluation on
the 29K-pair test set in Table 1. The trained model
achieves an overall average Fl-score of 0.93 on
the entire benchmark+PPDB test set. The full de-
tails of our dataset creation and classifier training
are provided in the supplementary material.

Finally, we use the trained model to predict hy-
pernym likelihoods for each potential edge r;; in
one of our local taxonomies, corresponding to an
ordered pair of terms (e;, e;) that appear together
in one of the 50 entity sets. We assign a hypernym
score s (755) to each potential directed edge that
equals the HypeNET predicted likelihood for that
pair of terms.

4.2.2 Synonym Prediction and Cluster
Formation

We predict synonymy between noun pairs using
distributional similarity, operationalized as the co-
sine similarity of PARAGRAM (Wieting et al.,
2015) word embeddings.* We use PARAGRAM
vectors because they perform well in semantic
similarity tasks, and because they were originally
extracted from PPDB and thus have 100% cover-
age of our entity sets. The synonym score s,(7;;)
for a potential edge r;; between entities (e;, e;)

*We also tried using HypeNET to predict synonym rela-
tions, but results were significantly worse.
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Dataset # Test % Hyp. Avg % Syn. Avg
Inst. F1 F1
(hyp.) (syn.)
PPDB 3,000 20.1 J77 247 707
BLESS 6,637 53 978 0 -
EVALution 1,846 24.5 763 15.1 197
K&H+N 14,377 1.3 988 0 -
ROOT09 3,191 263 .808 0 -

Table 1: Evaluation of the HypeNET hypernym clas-
sifier and the PARAGRAM synonym classifier on the
PPDB test set and four benchmark test sets. We report
micro-averaged F1-scores for positive and negative in-
stances in the test sets.

is simply the cosine similarity of their PARA-
GRAM embeddings.

We also tune a synonymy threshold for the
purpose of consolidating clusters of synonymous
terms into a single node for DMST+CLUS and
NoOCYC+CLUS (see Section 4.3). We tune thresh-
old 7 = (.76 over the benchmark+PPDB train-
ing set (binarized for synonymy) such that we
predict a term pair (e;, e;) to be synonymous if
ss(rij) > 7. When evaluated over the test sets,
this method achieves weighted average F1-scores
of 0.707 and 0.797 for predicting synonyms in the
PPDB and EVALution test sets respectively (Table

1).

Target word Clustered Entities
field

[(topic, issue, subject matter), (respect, re-
gard), (battlefield, battleground), (outside,
exterior), (territory, land), (domain, purview,
sphere, ambit, realm, area, fields)]
[(directorate, direction), (administration,
management), (answer, response), (dis-
course, speech), (treat, handling), (domicile,
residence)]

[(novelty, imagination, creativity, newness),
(modernization, modernisation), (regenera-
tion, renewal, renovation, rejuvenation)]

address

innovation

Table 2: Examples of clustered entities produced using
the PARAGRAM vector cosine similarity threshold of
0.76.

4.3 Input to organization algorithms

Finally, we use the calculated hypernym and syn-
onym scores sp,(r;;) and s4(r;;) to initialize each
organization algorithm as follows.

NoCycCc and DMST: We use the hypernym
scores as input, setting s(r;;) = sp(ri;) for all



. . Hypernyms Synonyms Combined

Algorithm Constraint p R F p R F p R F

Baseline Methods
RANDOM (none) 036 .235 .061 .013 .034 .018 .033 .173 .054
MAXTRANSFOREST** Tree/Forest .214 .758 .325 .707 .585 .586 .255 .708 .366
DMST** Tree/Forest 411 .661 .470 0. 0. 0. 411 469 418

Basic Methods

T o MAXTRANSGRAPH DAG 123 529 193 727 .028 .040 .126 .375 .182
ransiive MAXTRANSFOREST ~ Tree/Forest .147 473 217 353 .091 .121 .155 .365 .210
Non-Transitive NoCyc DAG 104 596 .172 .119 .013 .014 .101 .415 .158
DMST Tree/Forest .192 .195 .178 0.0 0.0 0.0 .192 .131 .147

Clustering Variations
Non-Transitive NoCycC+CLUS DAG 081 .562 .138 .232 .368 .234 .091 .520 .149
DMST+CLUS Tree/Forest .165 204 .168 .304 .364 .266 .199 .265 .201

Table 3: Precision, recall, and F1 of hypernym, synonym, and all (relation-specific) edges for each method. Metrics
are weighted averages over the 45 local taxonomies in the test set, where each taxonomy’s result is weighted by its
number of nodes. Starred methods indicate an oracle, where the weight of edges appearing in WordNet is set to 1

at input.

potential edges.

NoCyc+cLuS and DMST+CLUS: Initializa-
tion for these algorithms requires two steps. First,
we collapse clusters of likely synonyms into a sin-
gle entity as follows. For each local taxonomy, we
create a graph with the extracted terms as nodes,
and add an edge between every pair of terms hav-
ing ss(r;;) > 7 (the threshold tuned on our train-
ing set). We take the resulting connected compo-
nents as the final entity set F. See examples of
synonyms clustered by this method in Table 2.

Next, we calculate scores s(r;;) for each pair
of entities. When e; and e; are single-term entities
(i.e. not synonym clusters), we simply set s(7;) =
sp(ri;). To obtain an edge score when one or both
nodes is a cluster, we simply calculate the average
hypernym score over every pair of terms (,,, ty)
such that ¢,,, € e; and t,, € ¢;:

> Sh(Tmn)

tm€e;tn€e;
les| + ey

s(rij) =

MAXTRANSGRAPH and MAXTRANSFOREST:
Since these algorithms are designed to use en-
tailment relation predictions as input, we set
the score of each edge to be the maximum of
the synonym and hypernym scores: s(r;;) =
max(sp(ri;), ss(ri;)). Intuitively, this reflects the
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idea that entailment can be sub-classified as syn-
onymy or hypernymy.

5 Experiments

We conduct experiments aimed at addressing three
primary research questions: (1) How does each
taxonomic organization algorithm perform? In
particular, how do DAG algorithms compare to
tree-constrained ones, and how do transitive al-
gorithms compare to their non-transitive counter-
parts? (2) Are any algorithms, particularly the ILP
methods, too slow to use on large sets of terms?
(3) Given that hypernym relation prediction is far
from perfect, how robust is each algorithm to noise
in the predicted relations?

5.1 Head-to-head Algorithm Comparison

In our first experiment, we predict PPDB local
taxonomies for the 45 target nouns in our test
set using each of the six algorithms after the ini-
tialization described in Section 4. In keeping
with current work on this topic (Bordea et al.,
2015, 2016), we evaluate the taxonomy organiza-
tion algorithms’ performance by calculating preci-
sion, recall, and F1-score of WordNet 3.0 hyper-
nym and synonym edges for the 93% of PPDB
taxonomy terms that are in WordNet. When
evaluating hypernym edges we consider both di-



rect and transitive hypernym edges. We re-
port hypernym-specific scores — where the set of
ground-truth edges considers just WordNet hyper-
nyms — synonym-specific scores, and combined
scores — where all WordNet hypernym and syn-
onym edges are taken as ground truth, and a pre-
dicted edge must have the correct start node, end
node, and relation type to be correct. Results are
reported in Table 3. We compare the results of
the six algorithms to two types of baselines. As
a lower bound, we implement a random baseline
where edges are selected randomly with likeli-
hood tuned on the benchmark+PPDB training set.
As an upper bound, we run ‘oracle’ versions of
MAXTRANSFOREST and DMST where we set
the score of any edge appearing in WordNet to 1.

The transitive, tree-constrained MAXTRANS-
FOREST algorithm achieves the best average
combined F-score (0.21) over all the local tax-
onomies, followed closely by the non-transitive,
tree-constrained clustering method DMST+CLUS
(0.20). These two methods, which are the only two
tree-constrained methods that incorporate syn-
onymy, outperform all DAG-constrained methods
on this dataset. While they perform similarly in
terms of combined F-score, their results are com-
plementary; MAXTRANSFOREST obtains a rela-
tively high score on hypernym edges and lower
score for synonym edges, while for DMST+CLUS
the results are reversed.

In general, these results suggest that con-
solidating synonyms into a single node helps
tree-constrained methods by improving recall of
both hypernym and synonym edges (DMST vs
DMST+cCLUS), but the same is not true for DAG-
constrained methods. To understand why, we ex-
amine the output taxonomies. The average depth
of the DAG taxonomies is greater than that of the
tree taxonomies. When incorrect hyponym attach-
ments are made in a deep taxonomy, the errors in
transitive hypernym links can be magnified, which
is evident in the low hypernym precision of NO-
Cyc and NoCycC+CLUS. Synonym clustering
prior to NOCYC+CLUS can magnify errors fur-
ther, as synonyms are dragged into the incorrect
hypernym relationships (see the NOCYC+CLUS
example in Figure 4, where telephone is dragged
along with phone into incorrect hypernym rela-
tions with battery and pile). For the shallower tree-
constrained graph outputs, finding correct syn-
onym relations helps the overall accuracy without
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inducing as many incorrect hypernym relations.

WORDNET

unit
VAN

battery  phone | telephone
\ \

pile cellphone

DMST DMST+CLUS

unit

P

battery | pile cellphone phone | telephone

unit

7 AN

battery phone cellphone telephone
|
pile

NoCyc NoCyc+cLus

unit unit

/N \
battery phone battery | pile
PN RN

pile cellphone telephone cellphone  phone | telephone

Figure 4: Examples from a portion of the local tax-
onomy for cell, with the WordNet gold standard com-
pared to four of the algorithms’ output. The bar nota-
tion denotes synonym clusters.

Finally, we note that transitive algorithms con-
sistently out-perform their non-transitive counter-
parts. For the DAG-constrained algorithms, the
transitive version, MAXTRANSGRAPH, improves
precision of hypernym and synonym edges over
its non-transitive counterparts NOCYC and NO-
Cyc+cLUS. For the tree-constrained algorithms,
the transitive MAXTRANSFOREST substantially
improves recall of hypernym edges over its non-
transitive counterparts DM ST and DMST+CLUS.

5.2 Assessing Runtime

Next, we address the question of whether all al-
gorithms are fast enough to be useful in practice.
We record the runtime for each algorithm on each
local taxonomy, and note the number of runs that
timed out at 5 minutes. Results are in Table 4.

Method Avg Runtime % Timeout
MAXTRANSGRAPH 0.31 0.0
MAXTRANSFOREST 136.83 24 .4
NoCyc 2.04 0.0
DMST 0.04 0.0
NoCycC+CLUS 6.41 0.0
DMST+cCLUS 0.02 0.0

Table 4: Average runtime (seconds) over all 45 targets,
and percent of targets for which runtime exceeded 5

minutes, by algorithm.

MAXTRANSFOREST, while most accurate on
hypernyms and overall, is too slow to be use-



ful on large inputs. The average runtime over
all local taxonomies was over two minutes, and
the runtime on local taxonomies with as few as
50 nodes reached the five minute limit. Mean-
while, DMST+cCLUS, which performed best for
synonyms and competitively for hypernyms, has a
runtime that is over 6,000 times faster. In practice,
this simpler algorithm may be preferable to use.

One surprising result is the speed of MAX-
TRANSGRAPH, which theoretically has a num-
ber of variables and constraints on the same or-
der as that of MAXTRANSFOREST. In practice,
we found that the average number of active con-
straints for MAXTRANSGRAPH — those violated
at any point in the course of solving the ILP — was
less than one percent of the average number of ac-
tive constraints in MAXTRANSFOREST.

—&— DMST
—— DMST+clus

—— NoCyc
—k- MaxTransForest

—-=- MaxTransGraph
—%- NoCyc+clus

0.40 -

o

w

o
|

0.30 -

Avg Combined F1-score
o
N
w
|

0.20 -

0.4
Percent Noise

Figure 5: Weighted average combined F1-scores over
the test set, where each algorithm is run in an oracle
setting with noise percentage (p) settings in the range
from 0% to 90%.

5.3 Assessing robustness to noise

Finally, given that hypernym prediction is still an
open problem, we are interested in finding out how
robust each algorithm is to noise in the input hy-
pernym predictions. To test this, we re-run each
taxonomy organization algorithm on the local tax-
onomies in an oracle setting, where the score of
all potential edges that are present as direct or
transitive edges in WordNet is set to 1. In each
iteration, we set a noise probability p, and ran-
domly perturb edge scores (according to a Gaus-
sian distribution with 0 mean and 0.15 standard
deviation) with probability p. We run this ex-
periment with p € [0,90]. The combined F1-
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score is plotted against the noise level in Figure
5. We find that the performance of transitive al-
gorithms MAXTRANSGRAPH and MAXTRANS-
FOREST degrades more quickly than the perfor-
mance of other algorithms at higher noise levels.
DMST performs best in the oracle setting at all
levels of noise. The results are shown in Figure 5.

The performance of the top two perform-
ing algorithms, = MAXTRANSFOREST and
DMST+cLUS, in terms of combined F1-score
degrades most with the introduction of noise. But
even with up to 40% noise, these algorithms still
out-perform all others.

6 Conclusion

In this paper we have conducted a direct compar-
ison of six taxonomy organization algorithms that
vary in terms of their transitivity and graph struc-
ture constraints, and their treatment of synonyms.
Evaluating their performance over a dataset of
local taxonomies drawn from PPDB, we find
that transitive algorithms generally out-perform
their non-transitive counterparts. While the best-
performing algorithm — an ILP approach that con-
strains graphs to be transitive and tree-structured —
is too slow to use on large inputs, a much simpler
maximum spanning tree algorithm that consoli-
dates synonyms into a single taxonomic node has
complementary performance, with a small fraction
of the runtime. Our results suggest that incorporat-
ing synonym detection into tree-constrained tax-
onomy organization algorithms is a promising area
for future research.
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