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Abstract

Machine Learning has been the quintessen-
tial solution for many AI problems, but learn-
ing models are heavily dependent on spe-
cific training data. Some learning models can
be incorporated with prior knowledge using
a Bayesian setup, but these learning models
do not have the ability to access any orga-
nized world knowledge on demand. In this
work, we propose to enhance learning models
with world knowledge in the form of Knowl-
edge Graph (KG) fact triples for Natural Lan-
guage Processing (NLP) tasks. Our aim is to
develop a deep learning model that can ex-
tract relevant prior support facts from knowl-
edge graphs depending on the task using atten-
tion mechanism. We introduce a convolution-
based model for learning representations of
knowledge graph entity and relation clusters in
order to reduce the attention space. We show
that the proposed method is highly scalable to
the amount of prior information that has to be
processed and can be applied to any generic
NLP task. Using this method we show sig-
nificant improvement in performance for text
classification with 20Newsgroups (News20) &
DBPedia datasets, and natural language infer-
ence with Stanford Natural Language Infer-
ence (SNLI) dataset. We also demonstrate that
a deep learning model can be trained with sub-
stantially less amount of labeled training data,
when it has access to organized world knowl-
edge in the form of a knowledge base.

1 Introduction

Today, machine learning is centered around al-
gorithms that can be trained on available task-
specific labeled and unlabeled training samples.
Although learning paradigms like Transfer Learn-
ing (Pan and Yang, 2010) attempt to incorporate
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knowledge from one task into another, these tech-
niques are limited in scalability and are specific to
the task at hand. On the other hand, humans have
the intrinsic ability to elicit required past knowl-
edge from the world on demand and infuse it with
newly learned concepts to solve problems.

The question that we address in this paper is the
following: Is it possible to develop learning mod-
els that can be trained in a way that it is able to
infuse a general body of world knowledge for pre-
diction apart from learning based on training data?
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Figure 1: The Basic Idea: X is the feature input and Y
is the prediction. The relevant world knowledge for the
task Xw, is retrieved and augmented with the feature
input before making the final prediction

By world knowledge, we mean structured gen-
eral purpose knowledge that need not be domain
specific. Knowledge Graphs (Nickel et al., 2016a)
are a popular source of such structured world
knowledge. Knowledge Graphs represent infor-
mation in the form of fact triplets, consisting of
a subject entity, relation and object entity (exam-
ple: <Italy, capital, Rome>). The entities rep-
resent the nodes of the graph and their relations
act as edges. A fact triple (subject entity, re-
lation, object relation) is represented as (h, r, t).
Practical knowledge bases congregate information
from secondary databases or extract facts from
unstructured text using various statistical learn-
ing mechanisms, examples of such systems are
NELL (Mitchell et al., 2015) and DeepDive (Niu
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et al., 2012). There are human created knowledge
bases as well, like Freebase (FB15k) (Bollacker
et al., 2008) and WordNet (Miller et al., 1990).
The knowledge present in these knowledge bases
includes common knowledge and partially cov-
ers common-sense knowledge and domain knowl-
edge (Song and Roth, 2017). Knowledge Graphs
and Knowledge Bases are conceptually equivalent
for our purpose and we will use the name inter-
changeably in this paper.

We illustrate the significance of world knowl-
edge using a few examples. For the example
of a Natural Language Inference (NLI) prob-
lem (MacCartney, 2009), consider the two follow-
ing statements, A: The couple is walking
on the sea shore and B: The man and
woman are wide awake. Here, for a learn-
ing model to infer B from A, it should have ac-
cess to the common knowledge that “The man and
woman and The couple means the same” since this
information may not be specific for a particular
inference. Further, it is not possible for a model
to learn all such correlations from just the labeled
training data available for the task.

Consider another example of classifying the
news snippet, Donald Trump offered his
condolences towards the hurricane
victims and their families in
Texas. We cannot classify it as a political
news unless we know the facts <Donald Trump,
president, United States> and <Texas, state,
United States>. We posit that machine learning
models, apart from training them on data with the
ground-truth can also be trained to fetch relevant
information from structured knowledge bases in
order to enhance their performance.

In this work, we propose a deep learning model
that can extract relevant support facts on demand
from a knowledge base (Mitchell et al., 2015) and
incorporate it in the feature space along with the
features learned from the training data (shown in
Figure 1). This is a challenging task, as knowledge
bases typically have millions of fact triples. Our
proposed model involves a deep learning mecha-
nism to jointly model this look-up scheme along
with the task specific training of the model. The
look-up mechanism and model is generic enough
so that it can be augmented to any task specific
learning model to boost the learning performance.
In this paper, we have established superior per-
formance of the proposed KG-augmented models

over vanilla model on text classification and natu-
ral language inference.

Although there is a plethora of work on
knowledge graph representation (Nickel et al.,
2016a) (Mitchell et al., 2015) (Niu et al., 2012)
from natural language text, no attempt to augment
learning models with knowledge graph informa-
tion have been done. To the best of our knowledge
this is the first attempt to incorporate world knowl-
edge from a knowledge base for learning models.

2 Knowledge Graph Representations

Knowledge Graph entities/relations need to be en-
coded into a numerical representation for process-
ing. Before describing the model, we provide a
brief overview of graph encoding techniques. Var-
ious KG embedding techniques can be classified
at a high level into: Structure-based embeddings
and Semantically-enriched embeddings.

Structure-based embeddings: TransE (Bordes
et al., 2013) is the introductory work on knowl-
edge graph representation, which translated sub-
ject entity to object entity using one-dimensional
relation vector (h + r = t). Variants of the
TransE (Bordes et al., 2013) model uses transla-
tion of the entity vectors over relation specific sub-
spaces. TransH (Wang et al., 2014b) introduced
the relation-specific hyperplane to translate the en-
tities. Similar work utilizing only the structure of
the graph include ManifoldE (Xiao et al., 2015b),
TransG (Xiao et al., 2015a), TransD (Ji et al.,
2015), TransM (Fan et al., 2014), HolE (Nickel
et al., 2016b) and ProjE (Shi and Weninger, 2017).

Semantically-enriched embeddings: These
embedding techniques learn to represent enti-
ties/relations of the KG along with its semantic in-
formation. Neural Tensor Network(NTN) (Socher
et al., 2013) was the pioneering work in this field
which initialized entity vectors with the average
word embeddings followed by tensor-based op-
erations. Recent works involving this idea are
“Joint Alignment” (Zhong et al., 2015) and SSP
(Xiao et al., 2017). DKRL (Xie et al., 2016) is
a KG representation technique which also takes
into account the descriptive nature of text keep-
ing the simple structure of TransE model. Pre-
trained word2vec (Mikolov et al., 2013) is used to
form the entity representation by passing through
a Convolutional Neural Network (CNN) (Kim,
2014) architecture constraining the relationships
to hold.
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In our experiments we have used the DKRL
(Xie et al., 2016) encoding scheme as it em-
phasizes on the semantic description of the text.
Moreover, DKRL fundamentally uses TransE
(Bordes et al., 2013) method for encoding struc-
tural information. Therefore, we can retrieve rele-
vant entities & relation and obtain the complete the
fact using t = h+ r. This reduces the complexity
of fact retrieval as the number of entities/relations
is much less compared to the number of facts, thus
making the retrieval process faster.

3 The Proposed Model

Conventional supervised learning models with pa-
rameters Θ, given training data x and label y, tries
to maximize the following function

max
Θ

P (y|x,Θ)

The optimized parameters Θ are given as,

Θ = argmax
Θ

logP (y|x,Θ)

In this work, we propose to augment the super-
vised learning process by incorporation of world
knowledge features xw. The world knowledge fea-
tures are retrieved using the data x, using a sepa-
rate model where, xw = F (x,Θ(2)). Thus, our
modified objective function can be expressed as

max
Θ

P (y|x, xw,Θ(1))

where, Θ = {Θ(1),Θ(2)}. The optimized pa-
rameters can be obtained using the equation

Θ = argmax
Θ

logP (y|x, F (x,Θ(2)),Θ(1))

The subsequent sections focus on the formula-
tion of the function F which is responsible for fact
triple retrieval using the data sample x. Here it is
important to note that, we are not assuming any
structural form for P based on F . So the method
is generic and applicable to augment any super-
vised learning setting with any form for P , only
constraint being P should be such that the error
gradient can be computed with respect to F . In
the experiments we have used softmax using the
LSTM (Greff et al., 2015) encodings of the input
as the form for P . As for F , we use soft atten-
tion (Luong et al., 2015; Bahdanau et al., 2014)
using the LSTM encodings of the input and appro-
priate representations of the fact(s). Based on the

representation used for the facts, we propose two
models (a) Vanilla Model (b) Convolution-based
entity/relation cluster representation, for fact re-
trieval in the subsequent sections.

3.1 Vanilla Model
The entities and relationships of KG are encoded
using DKRL, explained earlier. Let ei ∈ Rm stand
for the encoding of the entity i and rj ∈ Rm

stands for jth relationship in the KG. The input
text in the form of concatenated word vectors,
x = (x1, x2, . . . , xT ) is first encoded using an
LSTM (Greff et al., 2015) module as follows,

ht = f(xt, ht−1)

and

o =
1

T

T∑

t=1

ht,

ht ∈ Rn is the hidden state of the LSTM at time
t, f is a non-linear function and T is the sequence
length. Then a context vector is formed from o as
follows,

C = ReLU(oTW ),

where, W ∈ Rn×m represent the weight parame-
ters. The same procedure is duplicated with sepa-
rate LSTMs to form two seperate context vectors,
one for entity retrieval (CE) and one for relation-
ship retrieval (CR).

As the number of fact triples in a KG is in the
order of millions in the vanilla model, we resort
to generating attention over the entity and relation
space separately. The fact is then formed using the
retrieved entity and relation. The attention for the
entity, ei using entity context vector is given by

αei =
exp(CT

Eei)
|E|∑
j=0

exp(CT
Eej)

where |E| is the number of entities in the KG.
Similarly the attention for a relation vector ri is

computed as

αri =
exp(CT

Rri)
|R|∑
j=0

exp(CT
Rrj)

where |R| is the number of relations in the KG.
The final entity and relation vector retrieval is
computed by the weighted sum with the attention
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Figure 2: Vanilla Entity/Relationship Retrieval Block Diagram

values of individual retrieved entity/relation vec-
tors.

e =

|E|∑

i=0

αeiei r =

|R|∑

i=0

αriri

Figure 2 shows the schematic diagram for en-
tity/relation retrieval. After the final entity and
relation vectors are computed, we look forward
to completion of the fact triple. The KG embed-
ding technique used for the experiment is DKRL
which inherently uses the TransE model assump-
tion (h+r ≈ t). Therefore, using the subject entity
and relation we form the object entity as t = e+r.
Thus the fact triplet retrieved is F = [e, r, e + r],
where F ∈ R3m. This retrieved fact information
is concatenated along with the context vector (C)
of input x obtained using LSTM module. The final
classification label y is computed as follows,

F ′ = ReLU(FTV )

y = softmax([F ′ : C]TU)

where, V ∈ R3m×u and U ∈ R2u×u are model
parameters to be learned. y is used to compute
the cross entropy loss. We minimize this loss av-
eraged across the training samples, to learn the
various model parameters using stochastic gradi-
ent descent (Bottou, 2012). The final prediction y,
now includes information from both dataset spe-
cific samples and world knowledge to aid in en-

hanced performance. While jointly training the at-
tention mechanism tunes itself to retrieve relevant
facts that are required to do the final classification.

3.2 Pre-training KG Retrieval

The vanilla model attends over the entire en-
tity/relation space which is not a good approach
as we observe that the gradient for each attention
value gets saturated easily. While training the clas-
sification and retrieval module together, the model
tends to ignore the KG part and gradient propa-
gates only through the classification module. This
is expected to an extent as the most pertinent infor-
mation for the task at hand comes from the train-
ing samples, only background aiding information
comes from KG. After few epochs of training, the
KG retrieved fact always converged to a fixed vec-
tor. To overcome this problem, we attempted pre-
training KG retrieval part separately. A pre-trained
KG model is used to retrieve the facts and then
concatenate with the classification module, while
we allow error to be propagate through the pre-
trained model, at the time of joint training. We
infer that KG doesn’t return noise and has essen-
tial information for the task as the separate KG
part alone shows significant performance (59% for
News20 & 66% for SNLI). Figure 3 depicts the
entire training scheme. This procedure solved the
issue of gradient saturation in the KG retrieval part
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Figure 3: Separately Training Knowledge Graph Retrieval and Jointly Training the Full Model

at the time of joint training. However, the key
problem of attention mechanism having to cover
a large span of entities/relation, remained.

3.3 Convolution-based Entity and Relation
Cluster Representation

In this section, we propose a mechanism to re-
duce the large number of entities/relationships
over which attention has to be generated in the
knowledge graph. We propose to reduce the atten-
tion space by learning the representation of similar
entity/relation vectors and attending over them.

Figure 4: Convolution model cluster representation

In order to cluster similar entity/relation vec-
tors, we used k-means clustering (Bishop, 2006)
and formed l clusters with equal number of en-
tity/relation vectors in each cluster. Each of
the clusters were then encoded using convolu-
tional filters. The output of the k-means clus-
tering is a sequence of entity/relation vectors
{eT1 , eT2 , · · · , eTq }, where ei ∈ Rm. For each clus-
ter these vectors were stacked to form E as the 2-
D input to the CNN encoder, where E ∈ Rm×q.
During experimentation for finding a suitable fil-

ter shape, it was observed that using 2-D filters
the model failed to converge at all. Therefore, we
inferred that the latent representation of two dif-
ferent indices in the vector ei, should not be tam-
pered using convolution. We then resorted to use
1-D convolution filters which slide along only the
columns of E , as shown Figure 4. The stride length
along y-axis is the window length k. The output of
the convolution layer is expressed as,

E ′(i, j) = W T [ei,j , ei+1,j , . . . , ei+k−1,j ]
T

where, E ′(i, j) is the (i, j)th element of the output
matrix E ′ and W ∈ Rk is the convolution weight
filter. A pooling layer followed the convolution
layer in order to reduce the parameter space, we
used 1-D window only along the y-axis similar
to the convolutional kernel mentioned above. We
used a two layered convolution network with the
stride length k & max-pool windows n is adjusted
to obtain output Ei ∈ Rm, where i is the cluster
index. Similar procedure of clustering followed
by the encoding of the cluster entities is done for
relations as well. Thus both the entity and rela-
tion space were reduced to contain fewer elements,
one each for each cluster. After the compact entity
space E and relation space R is formed, we fol-
lowed the same steps as earlier for forming the at-
tention, but now the training was more effective as
the gradient was propagating effectively and was
not choked by the large space. As the convolu-
tion architecture is also simultaneously trained, at-
tention mechanism was not burdened as before, to
learn over the large space of entities and relations.

Another point that needs to be mentioned here
is regarding ranking/ordering items in the clus-
ters, we have done experiments to verify the
ordering does not affect the final result. We
have verified this by randomly shuffling the en-
tities/relationships in every clusters and the ac-
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curacy output remained within an error bound of
±0.5%. In various permutations, the representa-
tions learned by the convolution operator for clus-
ters varies, but it does not affect the overall re-
sults. Regarding the interpretation of what con-
volution operator learns, the operator is applied
along each dimension of the entity/relationship
vector, to learn a representation of the clusters.
This representation includes information from rel-
evant entities in the cluster, as the relevant entities
varies across tasks, the representation learned us-
ing convolution also adapts accordingly. It is anal-
ogous to learning relevant features from an im-
age, in our case the convolution layer learns the
features focusing on relevant entities/relations in a
cluster pertaining to the task.

4 Experiments and Evaluations

Our experiments were designed to analyze
whether a deep learning model is being improved
when it has access to KG facts from a relevant
source. The selection of knowledge graph has to
be pertinent to the task at hand, as currently there
is no single knowledge base that contains multi-
ple kinds of information and can cater to all tasks.
We illustrate with results that the performance of
a deep learning model improves when it has ac-
cess to relevant facts. We also illustrate that as
the model learns faster with access to knowledge
bases, we can train deep learning models with
substantially less training data, without compro-
mising on the accuracy. In the subsequent sec-
tion we briefly describe the datasets and associated
Knowledge Bases used.

Datasets and Relevant Knowledge Graphs

In our experiments, we have mainly used the
popular text classification dataset 20Newsgroups
(Lichman, 2013) and the Natural Language In-
ference dataset, Stanford Natural Language Infer-
ence (SNLI) corpus (Bowman et al., 2015). We
have also done experiments on DBPedia ontology
classification dataset1, with a very strong base-
line. These datasets are chosen as they share do-
main knowledge with two most popular knowl-
edge bases, Freebase (FB15k) (Bollacker et al.,
2008) and WordNet (WN18) (Bordes et al., 2013).
The training and test size of the datasets are men-
tioned in Table 1.

1http://wiki.dbpedia.org/
services-resources/dbpedia-data-set-2014

Dataset Train Size Test Size # Classes
News20 16000 2000 20

SNLI 549367 9824 3
DBPedia 553,000 70,000 14

Table 1: Dataset Specifications

Freebase (FB15k) (Bollacker et al., 2008) con-
tains facts about people, places and things (con-
tains 14904 entities, 1345 relations & 4.9M fact
triples), which is useful for text classification in
20Newsgroups (Lichman, 2013) dataset. On the
other hand, WordNet (WN18) (Bordes et al., 2013)
(has 40943 entities, 18 relations & 1.5M fact
triples) contains facts about common day-to-day
things (example: furniture includes bed), which
can help in inference tasks like SNLI. Both the
knowledge bases are directed graphs, due to fewer
number of relations WN18 the entities are more
likely to be connected using the same type of
relations. For experiments relating to both the
datasets 20Newsgroups & SNLI we used the stan-
dard LSTM as the classification module. As iter-
ated earlier, our KG based fact retrieval is indepen-
dent of the base model used. We show improve-
ment in performance using the proposed models
by KG fact retrieval. We use classification accu-
racy of the test set as our evaluation metric.

4.1 Experimental Setup

All experiments were carried on a Dell Precision
Tower 7910 server with Quadro M5000 GPU with
8 GB of memory. The models were trained using
the Adam’s Optimizer (Kingma and Ba, 2014) in
a stochastic gradient descent (Bottou, 2012) fash-
ion. The models were implemented using Ten-
sorFlow (Abadi et al., 2015). The relevant hyper-
parameters are listed in Table 2. The word embed-
dings for the experiments were obtained using the
pre-trained GloVe (Pennington et al., 2014)2 vec-
tors. For words missing in the pre-trained vectors,
the local GloVe vectors which was trained on the
corresponding dataset was used.

4.2 Results & Discussion

Table 3 shows the results of test accuracy of the
various methods proposed on the datasets News20
& SNLI. We observe that incorporation of KG
facts using the basic vanilla model improves the
performance slightly, as the retrieval model was

2http://nlp.stanford.edu/data/glove.840B.300d.zip
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Hyper-parameter News20 SNLI

Batch size 256 1024
Learning rate 0.05 0.05

Word Vector Dimension 300 300
Sequence Length 300 85

LSTM hidden-state Dimension 200 200
KG Embedding Dimension 50 50

# Clusters 20 20
# Epochs 20 20

Table 2: Hyper-parameters which were used in experi-
ments for News20 & SNLI datasets

not getting trained effectively. The convolution-
based model shows significant improvement over
the normal LSTM classification. While tuning the
parameters of the convolution for clustered enti-
ties/relations it was observed that smaller stride
length and longer max-pool window improved
performance. For News20 dataset we show an
improvement of almost 3% and for SNLI an im-
provement of almost 5%.

The work is motivated more from the perspec-
tive of whether incorporation of world knowl-
edge will improve any deep learning model rather
than beating the state-of-the-art performance. Al-
though LSTM is used to encode the input for the
model as well as the retrieval vector, as mentioned
earlier, these two modules need not be same. For
encoding the input any complex state-of-the-art
model can be used. LSTM has also been used to
generate the retrieval vector. For DBPedia ontol-
ogy classification dataset, we have used a strong
baseline of 98.6%, and after augmenting it with
KG (Freebase) using convolution based model we
saw an improvement of ∼0.2%. As the baseline is
stronger, the improvement quantum has decreased.
This is quite intuitive as complex models are self-
sufficient in learning from the data by itself and
therefore the room available for further improve-
ment is relatively less. The improvement as ob-
served in the experiments is significant in weaker
learning models, however it is also capable of im-
proving stronger baselines as is evident from the
results of DBPedia dataset.

4.3 Reducing Dataset Size Requirements for
Training Deep Learning Models

We hypothesized that as Knowledge Graph is
feeding more information to the model, we can
achieve better performance with less training data.

Model Accuracy
News20 SNLI

Plain LSTM 66.75% 68.73%
Vanilla KG Retrieval 67.30% 69.20%
Convolution-based KG 69.34% 73.10%

Table 3: Test accuracy of approaches in News20 using
FB15K & SNLI datasets using WN18

To verify this we have performed experiments
on varying dataset fractions for 20Newsgroups
dataset as shown in Figure 5. From the plot, we
observe that KG augmented LSTM with 70% data
outperforms the baseline model with full dataset
support, thereby reducing the dependency on la-
beled data by 30%.
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Figure 5: Accuracy Plot over dataset fractions for base-
line and KG augmented model for News20

We also designed an experiment to compare
the accuracy of the baseline model trained on full
training data and compared it with the accuracy of
the KG augmented model trained with just 70%
of the training data for 20Newsgroups and SNLI
datasets. The accuracy and training loss plots
across training epochs is given in Figure 6. Even
with just 70% of the data, KG augmented model
is able to achieve better accuracy compared to the
vanilla LSTM model trained on the full data. This
clearly indicates that relevant information pertain-
ing to the task is retrieved from the knowledge
graph and the training loss reduction is not due to
lesser data only. Also note that training loss is sub-
stantially less for KG LSTM compared to normal
LSTM when the dataset size is reduced. This re-
sult is very promising, to reduce the large labeled
training data requirement of large deep learning
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Figure 6: (a) Accuracy Plot over training epochs for LSTM (using full & 70% dataset) and KG augmented LSTM
(using 70% dataset ) for News20 task (b) Corresponding Training Loss plots for the aforementioned methods using
News20 dataset (c) Accuracy Plot over training epochs for LSTM (using full & 70% dataset) and KG augmented
LSTM (using 70% dataset ) for SNLI task (d) Corresponding Training Loss plots for the aforementioned methods
using SNLI dataset

models, which is hard to come by.

5 Relevant Previous Work

The basic idea of infusing general world knowl-
edge for learning tasks, especially for natural lan-
guage processing, has not been attempted before.
For multi-label image classification, the use of
KGs has been pursued recently by (Marino et al.,
2016). In this work, they first obtain labels of the
input data (using a different model), use these la-
bels to populate features from the KG and in turn
use these features back for the final classification.
For NLP tasks the information needed may not
necessarily depend on the final class, and we are
directly using all the information available in the
input for populating the relevant information from
the knowledge graphs. Our attempt is very differ-
ent from Transfer Learning (Pan and Yang, 2010).

In Transfer Learning the focus is on training the
model for one task and tuning the trained model
to use it for another task. This is heavily depen-
dent on the alignment between source task and
destination task and transferred information is in
the model. In our case, general world knowledge
is being infused into the learning model for any
given task. By the same logic, our work is differ-
ent from domain adaptation (Glorot et al., 2011) as
well. There has been attempts to use world knowl-
edge (Song and Roth, 2017) for creating more la-
beled training data and providing distant supervi-
sion etc. Incorporating Inductive Biases (Ridge-
way, 2016) based on the known information about
a domain onto the structure of the learned models,
is an active area of research. However our motiva-
tion and approach is fundamentally different from
these works.
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6 Conclusion & Future Work

In this work we have illustrated the need for in-
corporating world knowledge in training task spe-
cific models. We presented a novel convolution-
based architecture to reduce the attention space
over entities and relations that outperformed other
models. With significant improvements over the
vanilla baselines for two well known datasets, we
have illustrated the efficacy of our proposed meth-
ods in enhancing the performance of deep learning
models. We showcased that the proposed method
can be used to reduce labeled training data re-
quirements of deep learning models. Although
in this work we focused only on NLP tasks and
using LSTM as the baseline model, the proposed
approach is applicable for other domain tasks as
well, with more complicated deep learning mod-
els as baseline. To the best of our knowledge
this is the first attempt at infusing general world
knowledge for task specific training of deep learn-
ing models.
Being the first work of its kind, there is a lot
of scope for improvement. A more sophisticated
model which is able to retrieve facts more ef-
ficiently from millions of entries can be formu-
lated. Currently we have focused only on a flat
attention structure, a hierarchical attention mech-
anism would be more suitable. The model uses
soft attention to enable training by simple stochas-
tic gradient descent. Hard attention over facts
using reinforcement learning can be pursued fur-
ther. This will further help in selection of multi-
facts, that are not of similar type but relevant to
the task. The convolution based model, helped
to reduce the space over entities and relationships
over which attention had to be generated. How-
ever more sophisticated techniques using similar-
ity based search (Wang et al., 2014a; Mu and Liu,
2017) can be pursued towards this purpose. The
results from the initial experiments illustrates the
effectiveness of our proposed approach, advocat-
ing further investigations in these directions.
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