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Abstract

Natural language generation lies at the core
of generative dialogue systems and conversa-
tional agents. We describe an ensemble neural
language generator, and present several novel
methods for data representation and augmen-
tation that yield improved results in our model.
We test the model on three datasets in the
restaurant, TV and laptop domains, and re-
port both objective and subjective evaluations
of our best model. Using a range of automatic
metrics, as well as human evaluators, we show
that our approach achieves better results than
state-of-the-art models on the same datasets.

1 Introduction

There has recently been a substantial amount of
research in natural language processing (NLP) in
the context of personal assistants, such as Cortana
or Alexa. The capabilities of these conversational
agents are still fairly limited and lacking in vari-
ous aspects, one of the most challenging of which
is the ability to produce utterances with human-
like coherence and naturalness for many different
kinds of content. This is the responsibility of the
natural language generation (NLG) component.

Our work focuses on language generators
whose inputs are structured meaning representa-
tions (MRs). An MR describes a single dialogue
act with a list of key concepts which need to be
conveyed to the human user during the dialogue.
Each piece of information is represented by a slot-
value pair, where the slot identifies the type of in-
formation and the value is the corresponding con-
tent. Dialogue act (DA) types vary depending on
the dialogue manager, ranging from simple ones,
such as a goodbye DA with no slots at all, to com-
plex ones, such as an inform DA containing multi-
ple slots with various types of values (see example
in Table 1).

MR
inform (name [The Golden Curry], food
[Japanese], priceRange [moderate], fami-
lyFriendly [yes], near [The Bakers])

Utt.
Located near The Bakers, kid-friendly restau-
rant, The Golden Curry, offers Japanese cui-
sine with a moderate price range.

Table 1: An example of an MR and a corresponding
reference utterance.

A natural language generator must produce a
syntactically and semantically correct utterance
from a given MR. The utterance should express
all the information contained in the MR, in a natu-
ral and conversational way. In traditional language
generator architectures, the assembling of an utter-
ance from an MR is performed in two stages: sen-
tence planning, which enforces semantic correct-
ness and determines the structure of the utterance,
and surface realization, which enforces syntactic
correctness and produces the final utterance form.

Earlier work on statistical NLG approaches
were typically hybrids of a handcrafted compo-
nent and a statistical training method (Langkilde
and Knight, 1998; Stent et al., 2004; Rieser and
Lemon, 2010). The handcrafted aspects, how-
ever, lead to decreased portability and potentially
limit the variability of the outputs. New corpus-
based approaches emerged that used semantically
aligned data to train language models that out-
put utterances directly from their MRs (Mairesse
et al., 2010; Mairesse and Young, 2014). The
alignment provides valuable information during
training, but the semantic annotation is costly.

The most recent methods do not require aligned
data and use an end-to-end approach to training,
performing sentence planning and surface realiza-
tion simultaneously (Konstas and Lapata, 2013).
The most successful systems trained on unaligned
data use recurrent neural networks (RNNs) paired
with an encoder-decoder system design (Mei et al.,
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2016; Dušek and Jurčı́ček, 2016), but also other
concepts, such as imitation learning (Lampouras
and Vlachos, 2016). These NLG models, however,
typically require greater amount of data for train-
ing due to the lack of semantic alignment, and they
still have problems producing syntactically and se-
mantically correct output, as well as being limited
in naturalness (Nayak et al., 2017).

Here we present a neural ensemble natural lan-
guage generator, which we train and test on three
large unaligned datasets in the restaurant, televi-
sion, and laptop domains. We explore novel ways
to represent the MR inputs, including novel meth-
ods for delexicalizing slots and their values, auto-
matic slot alignment, as well as the use of a seman-
tic reranker. We use automatic evaluation metrics
to show that these methods appreciably improve
the performance of our model. On the largest
of the datasets, the E2E dataset (Novikova et al.,
2017b) with nearly 50K samples, we also demon-
strate that our model significantly outperforms the
baseline E2E NLG Challenge1 system in human
evaluation. Finally, after augmenting our model
with stylistic data selection, subjective evaluations
reveal that it can still produce overall better results
despite a significantly reduced training set.

2 Related Work

NLG is closely related to machine translation and
has similarly benefited from recent rapid develop-
ment of deep learning methods. State-of-the-art
NLG systems build thus on deep neural sequence-
to-sequence models (Sutskever et al., 2014) with
an encoder-decoder architecture (Cho et al., 2014)
equipped with an attention mechanism (Bahdanau
et al., 2015). They typically also rely on slot
delexicalization (Mairesse et al., 2010; Hender-
son et al., 2014), which allows the model to bet-
ter generalize to unseen inputs, as exemplified
by TGen (Dušek and Jurčı́ček, 2016). However,
Nayak et al. (2017) point out that there are fre-
quent scenarios where delexicalization behaves
inadequately (see Section 5.1 for more details),
and Agarwal and Dymetman (2017) show that a
character-level approach to NLG may avoid the
need for delexicalization, at the potential cost of
making more semantic omission errors.

The end-to-end approach to NLG typically re-
quires a mechanism for aligning slots on the out-
put utterances: this allows the model to generate

1http://www.macs.hw.ac.uk/InteractionLab/E2E/

E2E TV Laptop

|training set| 42061 4221 7944
|validation set| 4672 1407 2649

|test set| 630 1407 2649
total 47363 7035 13242

DA types 1 14 14
slot types 8 16 20

Table 2: Overview of the number of samples, as well
as different DA and slot types, in each dataset .

utterances with fewer missing or redundant slots.
Cuayáhuitl et al. (2014) perform automatic slot la-
beling using a Bayesian network trained on a la-
beled dataset, and show that a method using spec-
tral clustering can be extended to unlabeled data
with high accuracy. In one of the first success-
ful neural approaches to language generation, Wen
et al. (2015a) augment the generator’s inputs with
a control vector indicating which slots still need to
be realized at each step. Wen et al. (2015b) take
the idea further by embedding a new sigmoid gate
into their LSTM cells, which directly conditions
the generator on the DA. More recently, Dušek and
Jurčı́ček (2016) supplement their encoder-decoder
model with a trainable classifier which they use to
rerank the beam search candidates based on miss-
ing and redundant slot mentions.

Our work builds upon the successful atten-
tional encoder-decoder framework for sequence-
to-sequence learning and expands it through en-
sembling. We explore the feasibility of a domain-
independent slot aligner that could be applied to
any dataset, regardless of its size, and beyond the
reranking task. We also tackle some challenges
caused by delexicalization in order to improve the
quality of surface realizations, while retaining the
ability of the neural model to generalize.

3 Datasets

We evaluated the models on three datasets from
different domains. The primary one is the recently
released E2E restaurant dataset (Novikova et al.,
2017b) with 48K samples. For benchmarking we
use the TV dataset and the Laptop dataset (Wen
et al., 2016) with 7K and 13K samples, respec-
tively. Table 2 summarizes the proportions of the
training, validation, and test sets for each dataset.

3.1 E2E Dataset
The E2E dataset is by far the largest one avail-
able for task-oriented language generation in the
restaurant domain. The human references were
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Figure 1: Proportion of unique MRs in the datasets.
Note that the number of MRs in the E2E dataset was
cut off at 10K for the sake of visibility of the small
differences between other column pairs.

collected using pictures as the source of informa-
tion, which was shown to inspire more informa-
tive and natural utterances (Novikova et al., 2016).
With nearly 50K samples, it offers almost 10
times more data than the San Francisco restaurant
dataset introduced in Wen et al. (2015b), which
has frequently been used for benchmarks. The
reference utterances in the E2E dataset exhibit su-
perior lexical richness and syntactic variation, in-
cluding more complex discourse phenomena. It
aims to provide higher-quality training data for
end-to-end NLG systems to learn to produce more
naturally sounding utterances. The dataset was re-
leased as a part of the E2E NLG Challenge.

Although the E2E dataset contains a large num-
ber of samples, each MR is associated on aver-
age with 8.65 different reference utterances, ef-
fectively offering less than 5K unique MRs in
the training set (Fig. 1). Explicitly providing the
model with multiple ground truths, it offers multi-
ple alternative utterance structures the model can
learn to apply for the same type of MR. The delex-
icalization, as detailed later in Section 5.1, im-
proves the ability of the model to share the con-
cepts across different MRs.

The dataset contains only 8 different slot types,
which are fairly equally distributed. The number
of slots in each MR ranges between 3 and 8, but
the majority of MRs consist of 5 or 6 slots. Even
though most of the MRs contain many slots, the
majority of the corresponding human utterances,
however, consist of one or two sentences only (Ta-
ble 3), suggesting a reasonably high level of sen-
tence complexity in the references.

3.2 TV and Laptop Datasets

The reference utterances in the TV and the Laptop
datasets were collected using Amazon Mechani-

slots 3 4 5 6 7 8

sent. 1.09 1.23 1.41 1.65 1.84 1.92
prop. 5% 18% 32% 28% 14% 3%

Table 3: Average number of sentences in the reference
utterance for a given number of slots in the correspond-
ing MR, along with the proportion of MRs with specific
slot counts.

Figure 2: Proportion of DAs in the Laptop dataset.

cal Turk (AMT), one utterance per MR. These two
datasets are similar in structure, both using the
same 14 DA types.2 The Laptop dataset, however,
is almost twice as large and contains 25% more
slot types.

Although both of these datasets contain more
than a dozen different DA types, the vast majority
(68% and 80% respectively) of the MRs describe
a DA of either type inform or recommend
(Fig. 2), which in most cases have very simi-
larly structured realizations, comparable to those
in the E2E dataset. DAs such as suggest,
?request, or goodbye are represented by less
than a dozen samples, but are significantly easier
to learn to generate an utterance from because the
corresponding MRs contain three slots at the most.

4 Ensemble Neural Language Generator

4.1 Encoder-Decoder with Attention
Our model uses the standard encoder-decoder ar-
chitecture with attention, as defined in Bahdanau
et al. (2015). Encoding the input into a sequence
of context vectors instead of a single vector en-
ables the decoder to learn what specific parts of the

2We noticed the MRs with the ?request DA type in the
TV dataset have no slots provided, as opposed to the Laptop
dataset, so we imputed these in order to obtain valid MRs.
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Figure 3: Standard architecture of a single-layer
encoder-decoder LSTM model with attention. For each
time step t in the output sequence, the attention scores
αt,1, . . . , αt,L are calculated. This diagram shows the
attention scores only for t = 2.

input sequence to pay attention to, given the out-
put generated so far. In this attentional encoder-
decoder architecture, the probability of the output
at each time step t of the decoder depends on a
distinct context vector qt in the following way:

P (ut|u1, . . . , ut−1,w) = g(ut−1, st, qt) ,

where in the place of function g we use the soft-
max function over the size of the vocabulary, and
st is a hidden state of the decoder RNN at time
step t, calculated as:

st = f(st−1, ut−1, qt) .

The context vector qt is obtained as a weighted
sum of all the hidden states h1, . . . , hL of the en-
coder:

qt =
L∑

i=1

αt,ihi ,

where αt,i corresponds to the attention score the
t-th word in the target sentence assigns to the i-th
item in the input MR.

We compute the attention score αt,i using a
multi-layer perceptron (MLP) jointly trained with
the entire system (Bahdanau et al., 2015). The en-
coder’s and decoder’s hidden states at time i and t,
respectively, are concatenated and used as the in-
put to the MLP, namely:

αt,i = softmax
(
wT tanh (W [hi; st])

)
,

whereW and w are the weight matrix and the vec-
tor of the first and the second layer of the MLP, re-
spectively. The learned weights indicate the level

of influence of the individual words in the input se-
quence on the prediction of the word at time step t
of the decoder. The model thus learns a soft align-
ment between the source and the target sequence.

4.2 Ensembling

In order to enhance the quality of the predicted ut-
terances, we create three neural models with dif-
ferent encoders. Two of the models use a bidirec-
tional LSTM (Hochreiter and Schmidhuber, 1997)
encoder, whereas the third model has a CNN (Le-
Cun et al., 1998) encoder. We train these models
individually for a different number of epochs and
then combine their predictions.

Initially, we attempted to combine the pre-
dictions of the models by averaging the log-
probability at each time step and then selecting the
word with the maximum log-probability. We no-
ticed that the quality, as well as the BLEU score
of our utterances, decreased significantly. We be-
lieve that this is due to the fact that different mod-
els learn different sentence structures and, hence,
combining predictions at the probability level re-
sults in incoherent utterances.

Therefore, instead of combining the models at
the log-probability level, we accumulate the top 10
predicted utterances from each model type us-
ing beam search and allow the reranker (see Sec-
tion 4.4) to rank all candidate utterances taking the
proportion of slots they successfully realized into
consideration. Finally, our system predicts the ut-
terance that received the highest score.

4.3 Slot Alignment

Our training data is inherently unaligned, meaning
our model is not certain which sentence in a multi-
sentence utterance contains a given slot, which
limits the model’s robustness. To accommodate
this, we create a heuristic-based slot aligner which
automatically preprocesses the data. Its primary
goal is to align chunks of text from the reference
utterances with an expected value from the MR.
Applications of our slot aligner are described in
subsequent sections and in Table 4.

In our task, we have a finite set of slot mentions
which must be detected in the corresponding utter-
ance. Moreover, from our training data we can see
that most slots are realized by inserting a specific
set of phrases into an utterance. Using this insight,
we construct a gazetteer, which primarily searches
for overlapping content between the MR and each
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sentence in an utterance, by associating all pos-
sible slot realizations with their appropriate slot
type. We additionally augment the gazetteer us-
ing a small set of handcrafted rules which capture
cases not easily encapsulated by the above pro-
cess, for example, associating the priceRange
slot with a chunk of text using currency symbols
or relevant lexemes, such as “cheap” or “high-
end”. While handcrafted, these rules are transfer-
able across domains, as they target the slots, not
the domains, and mostly serve to counteract the
noise in the E2E dataset. Finally, we use Word-
Net (Fellbaum, 1998) to further augment the size
of our gazetteer by accounting for synonyms and
other semantic relationships, such as associating
“pasta” with the food[Italian] slot.

4.4 Reranker
As discussed in Section 4.2, our model uses beam
search to produce a pool of the most likely utter-
ances for a given MR. While these results have a
probability score provided by the model, we found
that relying entirely on this score often results in
the system picking a candidate which is objec-
tively worse than a lower scoring utterance (i.e.
one missing more slots and/or realizing slots in-
correctly). We therefore augment that score by
multiplying it by the following score which takes
the slot alignment into consideration:

salign =
N

(Nu + 1) · (No + 1)
,

where N is the number of all slots in the given
MR, and Nu and No represent the number of
unaligned slots (those not observed by our slot
aligner) and over-generated slots (those which
have been realized but were not present in the orig-
inal MR), respectively.

5 Data Preprocessing

5.1 Delexicalization
We enhance the ability of our model to general-
ize the learned concepts to unseen MRs by delex-
icalizing the training data. Moreover, it reduces
the amount of data required to train the model.
We identify the categorical slots whose values al-
ways propagate verbatim to the utterance, and re-
place the corresponding values in the utterance
with placeholder tokens. The placeholders are
eventually replaced in the output utterance in post-
processing by copying the values from the input

MR. Examples of such slots would be name or
near in the E2E dataset, and screensize or
processor in the TV and the Laptop dataset.

Previous work identifies categorical slots as
good delexicalization candidates that improve the
performance of the model (Wen et al., 2015b;
Nayak et al., 2017). However, we chose not to
delexicalize those categorical slots whose values
can be expressed in alternative ways, such as “less
than $20” and “cheap”, or “on the riverside” and
“by the river”. Excluding these from delexical-
ization may lead to an increased number of incor-
rect realizations, but it encourages diversity of the
model’s outputs by giving it a freedom to choose
among alternative ways of expressing a slot-value
in different contexts. This, however, assumes that
the training set contains a sufficient number of
samples displaying this type of alternation so that
the model can learn that certain phrases are syn-
onymous. With its multiple human references for
each MR, the E2E dataset has this property.

As Nayak et al. (2017) point out, delex-
icalization affects the sentence planning and
the lexical choice around the delexicalized slot
value. For example, the realization of the
slot food[Italian] in the phrase “serves
Italian food” is valid, while the realization of
food[fast food] in “serves fast food food”
is clearly undesired. Similarly, a naive delexical-
ization can result in “a Italian restaurant”, whereas
the article should be “an”. Another problem with
articles is singular versus plural nouns in the slot
value. For example, the slot accessories in
the TV dataset, can take on values such as “remote
control”, as well as “3D glasses”, where only the
former requires an article before the value.

We tackle this issue by defining different
placeholder tokens for values requiring differ-
ent treatment in the realization. For instance,
the value “Italian” of the food slot is re-
placed by slot vow cuisine food, indicat-
ing that the value starts with a vowel and rep-
resents a cuisine, while “fast food” is replaced
by slot con food, indicating that the value
starts with a consonant and cannot be used as a
term for cuisine. The model thus learns to gen-
erate “a” before slot con food and “an” be-
fore slot vow cuisine foodwhen appropri-
ate, as well as to avoid generating the word “food”
after food-slot placeholders that do not contain
the word “cuisine”. All these rules are general and
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can automatically be applied across different slots
and domains.

5.2 Data Expansion
Slot Permutation
In our initial experiments, we tried expanding the
training set by permuting the slot ordering in the
MRs as suggested in Nayak et al. (2017). From
different slot orderings of every MR we sampled
five random permutations (in addition to the orig-
inal MR), and created new pseudo-samples with
the same reference utterance. The training set thus
increased six times in size.

Using such an augmented training set might add
to the model’s robustness, nevertheless it did not
prove to be helpful with the E2E dataset. In this
dataset, we observed the slot order to be fixed
across all the MRs, both in the training and the
test set. As a result, for the majority of the time,
the model was training on MRs with slot orders it
would never encounter in the test set, which ulti-
mately led to a decreased performance in predic-
tion on the test set.

Utterance/MR Splitting
Taking a more utterance-oriented approach, we
augment the training set with single-sentence ut-
terances paired with their corresponding MRs.
These new pseudo-samples are generated by split-
ting the existing reference utterances into single
sentences and using the slot aligner introduced in
Section 4.3 to identify the slots that correspond to
each sentence. The MRs of the new samples are
created as the corresponding subsets of slots and,
whenever the sentence contains the name (of the
restaurant/TV/etc.) or a pronoun referring to it
(such as “it” or “its”), the name slot is included
too. Finally, a new position slot is appended
to every new MR, indicating whether it represents
the first sentence or a subsequent sentence in the
original utterance. An example of this splitting
technique can be seen in Table 4. The training set
almost doubled in size through this process.

Since the slot aligner works heuristically, not
all utterances are successfully aligned with the
MR. The vast majority of such cases, however,
is caused by reference utterances in the datasets
having incorrect or entirely missing slot mentions.
There is a noticeable proportion of those, so we
leave them in the training set with the unaligned
slots removed from the MR so as to avoid confus-
ing the model when learning from such samples.

MR
name [The Waterman], food [English],
priceRange [cheap], customer rating [average],
area [city centre], familyFriendly [yes]

Utt.

There is a family-friendly, cheap restaurant in
the city centre, called The Waterman. It serves
English food and has an average rating by cus-
tomers.

New
MR #1

name [The Waterman], priceRange [cheap],
area [city centre], familyFriendly [yes], posi-
tion [outer]

New
MR #2

name [The Waterman], food [English], cus-
tomer rating [average], position [inner]

Table 4: An example of the utterance/MR splitting.

MR
name [Wildwood], eatType [coffee shop],
food [English], priceRange [moderate], cus-
tomer rating [1 out of 5], near [Ranch]

Simple
utt.

Wildwood provides English food for a mod-
erate price. It has a low customer rating and
is located near Ranch. It is a coffee shop.

Elegant
utt.

A low-rated English style coffee shop around
Ranch, called Wildwood, has moderately
priced food.

Table 5: Contrastive example of a simple and a more
elegant reference utterance style for the same MR in
the E2E dataset.

5.3 Sentence Planning via Data Selection

The quality of the training data inherently im-
poses an upper bound on the quality of the predic-
tions of our model. Therefore, in order to bring
our model to produce more sophisticated utter-
ances, we experimented with filtering the train-
ing data to contain only the most natural sounding
and structurally complex utterances for each MR.
For instance, we prefer having an elegant, single-
sentence utterance with an apposition as the refer-
ence for an MR, rather than an utterance composed
of three simple sentences, two of which begin with
“it” (see the examples in Table 5).

We assess the complexity and naturalness of
each utterance by the use of discourse phenomena,
such as contrastive cues, subordinate clauses, or
aggregation. We identify these in the utterance’s
parse-tree produced by the Stanford CoreNLP
toolkit (Manning et al., 2014) by defining a set
of rules for extracting the discourse phenomena.
Furthermore, we consider the number of sentences
used to convey all the information in the corre-
sponding MR, as longer sentences tend to exhibit
more advanced discourse phenomena. Penalizing
utterances for too many sentences contributes to
reducing the proportion of generic reference utter-
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ances, such as the “simple” example in the above
table, in the filtered training set.

6 Evaluation

Researchers in NLG have generally used both au-
tomatic and human evaluation. Our results report
the standard automatic evaluation metrics: BLEU
(Papineni et al., 2002), NIST (Przybocki et al.,
2009), METEOR (Lavie and Agarwal, 2007), and
ROUGE-L (Lin, 2004). For the E2E dataset ex-
periments, we additionally report the results of the
human evaluation carried out on the CrowdFlower
platform as a part of the E2E NLG Challenge.

6.1 Experimental Setup
We built our ensemble model using the seq2seq
framework (Britz et al., 2017) for TensorFlow.
Our individual LSTM models use a bidirectional
LSTM encoder with 512 cells per layer, and the
CNN models use a pooling encoder as in Gehring
et al. (2017). The decoder in all models was a
4-layer RNN decoder with 512 LSTM cells per
layer and with attention. The hyperparameters
were determined empirically. After experiment-
ing with different beam search parameters, we set-
tled on the beam width of 10. Moreover, we em-
ployed the length normalization of the beams as
defined in Wu et al. (2016), in order to encour-
age the decoder to favor longer sequences. The
length penalty providing the best results on the
E2E dataset was 0.6, whereas for the TV and Lap-
top datasets it was 0.9 and 1.0, respectively.

6.2 Experiments on the E2E Dataset
We start by evaluating our system on the E2E
dataset. Since the reference utterances in the test
set were kept secret for the E2E NLG Challenge,
we carried out the metric evaluation using the vali-
dation set. This was necessary to narrow down the
models that perform well compared to the base-
line. The final model selection was done based on
a human evaluation of the models’ outputs on the
test set.

6.2.1 Automatic Metric Evaluation
In the first experiment, we assess what effect the
augmenting of the training set via utterance split-
ting has on the performance of different models.
The results in Table 6 show that both the LSTM
and the CNN models clearly benefit from addi-
tional pseudo-samples in the training set. This can
likely be attributed to the model having access to

BLEU NIST METEOR ROUGE

LSTM s 0.6664 8.0150 0.4420 0.7062
s 0.6930‡ 8.4198 0.4379 0.7099

CNN s 0.6599 7.8520 0.4333 0.7018
s 0.6760† 8.0440 0.4448 0.7055

Table 6: Automatic metric scores of different mod-
els tested on the E2E dataset, both unmodified (s) and
augmented (s) through the utterance splitting. The
symbols † and ‡ indicate statistically significant im-
provement over the s counterpart with p < 0.05 and
p < 0.01, respectively, based on the paired t-test.

more granular information about which parts of
the utterance correspond to which slots in the MR.
This may assist the model in sentence planning
and building a stronger association between parts
of the utterance and certain slots, such as that “it”
is a substitute for the name.

Testing our ensembling approach reveals that
reranking predictions pooled from different mod-
els produces an ensemble model that is overall
more robust than the individual submodels. The
submodels fail to perform well in all four met-
rics at once, whereas the ensembling creates a new
model that is more consistent across the differ-
ent metric types (Table 7).3 While the ensemble
model decreases the proportion of incorrectly re-
alized slots compared to its individual submodels
on the validation set, on the test set it only out-
performs two of the submodels in this aspect (Ta-
ble 8). Analyzing the outputs, we also observed
that the CNN model surpassed the two LSTM
models in the ability to realize the “fast food” and
“pub” values reliably, both of which were hardly
present in the validation set but very frequent in
the test set. On the official E2E test set, our en-
semble model performs comparably to the base-
line model, TGen (Dušek and Jurčı́ček, 2016), in
terms of automatic metrics (Table 9).

6.2.2 Human Evaluation
It is known that automatic metrics function only as
a general and vague indication of the quality of an
utterance in a dialogue (Liu et al., 2016; Novikova
et al., 2017a). Systems which score similarly ac-
cording to these metrics could produce utterances
that are significantly different because automatic

3The scores here correspond to the model submitted to
the E2E NLG Challenge. Subsequently, we found better per-
forming models according to some metrics: see Table 6.
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BLEU NIST METEOR ROUGE

LSTM1 0.6661 8.1626 0.4644 0.7018
LSTM2 0.6493 7.9996 0.4649 0.6995
CNN 0.6636 7.9617 0.4700 0.7107

Ensem. 0.6576 8.0761 0.4675 0.7029

Table 7: Automatic metric scores of three different
models and their ensemble, tested on the validation set
of the E2E dataset. LSTM2 differs from LSTM1 in that
it was trained longer.

Validation set Test set

LSTM1 0.116% 0.988%
LSTM2 0.145% 1.241%
CNN 0.232% 0.253%

Ensem. 0.087% 0.965%

Table 8: Error rate of the ensemble model compared to
its individual submodels.

metrics fail to capture many of the characteris-
tics of natural sounding utterances. Therefore, to
better assess the structural complexity of the pre-
dictions of our model, we present the results of a
human evaluation of the models’ outputs in terms
of both naturalness and quality, carried out by the
E2E NLG Challenge organizers.

Quality examines the grammatical correctness
and adequacy of an utterance given an MR,
whereas naturalness assesses whether a predicted
utterance could have been produced by a native
speaker, irrespective of the MR. To obtain these
scores, crowd workers ranked the outputs of 5 ran-
domly selected systems from worst to best. The
final scores were produced using the TrueSkill
algorithm (Sakaguchi et al., 2014) through pair-
wise comparisons of the human evaluation scores
among the 20 competing systems.

Our system, trained on the E2E dataset without
stylistic selection (Section 5.3), achieved the high-
est quality score in the E2E NLG Challenge, and
was ranked second in naturalness.4 The system’s
performance in quality (the primary metric) was
significantly better than the competition according
to the TrueSkill evaluation, which used bootstrap
resampling with a p-level of p ≤ 0.05. Comparing
these results with the scores achieved by the base-
line model in quality and naturalness (5th and 6th

4The system that surpassed ours in naturalness was ranked
the last according to the quality metric.

BLEU NIST METEOR ROUGE

TGen 0.6593 8.6094 0.4483 0.6850

Ensem. 0.6619 8.6130 0.4454 0.6772

Table 9: Automatic metric scores of our ensemble
model compared against TGen (the baseline model),
tested on the test set of the E2E dataset.

Ex.
#1

The Cricketers is a cheap Chinese restaurant near
All Bar One in the riverside area, but it has an av-
erage customer rating and is not family friendly.

Ex.
#2

If you are looking for a coffee shop near The Rice
Boat, try Giraffe.

Table 10: Examples of generated utterances that con-
tain more advanced discourse phenomena.

place, respectively) reinforces our belief that mod-
els that perform similarly on the automatic metrics
(Table 9) can exhibit vast differences in the struc-
tural complexity of their generated utterances.

6.2.3 Experiments with Data Selection
After filtering the E2E training set as described in
Section 5.3, the new training set consisted of ap-
proximately 20K pairs of MRs and utterances. In-
terestingly, despite this drastic reduction in train-
ing samples, the model was able to learn more
complex utterances that contained the natural vari-
ations of the human language. The generated ut-
terances exhibited discourse phenomena such as
contrastive cues (see Example #1 in Table 10), as
well as a more conversational style (Example #2).
Nevertheless, the model also failed to realize slots
more frequently.

In order to observe the effect of stylistic data se-
lection, we conducted a human evaluation where
we assessed the utterances based on error rate and
naturalness. The error rate is calculated as the per-
centage of slots the model failed to realize divided
by the total number of slots present among all sam-
ples. The annotators ranked samples of utterance
triples – corresponding to three different ensemble
models – by naturalness from 1 to 3 (3 being the
most natural, with possible ties). The conservative
model combines three submodels all trained on the
full training set, the progressive one combines sub-
models solely trained on the filtered dataset, and
finally, the hybrid is an ensemble of three models
only one of which is trained on the full training
set, so as to serve as a fallback.

The impact of the reduction of the number of
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Ensemble model Error rate Naturalness

Conservative 0.40% 2.196
Progressive 1.60% 2.118

Hybrid 0.40% 2.435

Table 11: Average error rate and naturalness metrics
obtained from six annotators for different ensemble
models.

training samples becomes evident by looking at
the score of the progressive model (Table 11),
where this model trained solely on the reduced
dataset had the highest error rate. We observe,
however, that a hybrid ensemble model manages
to perform the best in terms of the error rate, as
well as the naturalness.

These results suggest that filtering the dataset
through careful data selection can help to achieve
better and more natural sounding utterances. It
significantly improves the model’s ability to pro-
duce more elegant utterances beyond the “[name]
is... It is/has...” format, which is only too common
in neural language generators in this domain.

6.3 Experiments on TV and Laptop Datasets

In order to provide a better frame of reference for
the performance of our proposed model, we uti-
lize the RNNLG benchmark toolkit5 to evaluate
our system on two additional, widely used datasets
in NLG, and compare our results with those of
a state-of-the-art model, SCLSTM (Wen et al.,
2015b). As Table 12 shows, our ensemble model
performs competitively with the baseline on the
TV dataset, and it outperforms it on the Laptop
dataset by a wide margin. We believe the higher
error rate of our model can be explained by the sig-
nificantly less aggressive slot delexicalization than
the one used in SCLSTM. That, however, gives
our model a greater lexical freedom and, with it,
the ability to produce more natural utterances.

The model trained on the Laptop dataset is also
a prime example of how an ensemble model is ca-
pable of extracting the best learned concepts from
each individual submodel. By combining their
knowledge and compensating thus for each other’s
weaknesses, the ensemble model can achieve a
lower error rate, as well as a better overall qual-
ity, than any of the submodels individually.

5https://github.com/shawnwun/RNNLG

TV Laptop
BLEU ERR BLEU ERR

SCLSTM 0.5265 2.31% 0.5116 0.79%

LSTM 0.5012 3.86% 0.5083 4.43%
CNN 0.5287 1.87% 0.5231 2.25%

Ensem. 0.5226 1.67% 0.5238 1.55%

Table 12: Automatic metric scores of our ensemble
model evaluated on the test sets of the TV and Lap-
top datasets, and compared against SCLSTM. The ERR
column indicates the slot error rate, as computed by
the RNNLG toolkit (for our models calculated in post-
processing).

7 Conclusion and Future Work

In this paper we presented our ensemble atten-
tional encoder-decoder model for generating natu-
ral utterances from MRs. Moreover, we presented
novel methods of representing the MRs to improve
performance. Our results indicate that the pro-
posed utterance splitting applied to the training
set greatly improves the neural model’s accuracy
and ability to generalize. The ensembling method
paired with the reranking based on slot alignment
also contributed to the increase in quality of the
generated utterances, while minimizing the num-
ber of slots that are not realized during the genera-
tion. This also enables the use of a less aggressive
delexicalization, which in turn stimulates diversity
in the produced utterances.

We showed that automatic slot alignment can be
utilized for expanding the training data, as well as
for utterance reranking. Our alignment currently
relies in part on empirically observed heuristics,
and a more robust aligner would allow for more
flexible expansion into new domains. Since the
stylistic data selection noticeably improved the di-
versity of our system’s outputs, we believe this is
a method with future potential, which we intend to
further explore. Finally, it is clear that current au-
tomatic evaluation metrics in NLG are only suffi-
cient for providing a vague idea as to the system’s
performance; we postulate that leveraging the ref-
erence data to train a classifier will result in a more
conclusive automatic evaluation metric.
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