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Abstract

Morphological segmentation for polysynthetic
languages is challenging, because a word may
consist of many individual morphemes and
training data can be extremely scarce. Since
neural sequence-to-sequence (seq2seq) mod-
els define the state of the art for morpho-
logical segmentation in high-resource settings
and for (mostly) European languages, we first
show that they also obtain competitive perfor-
mance for Mexican polysynthetic languages in
minimal-resource settings. We then propose
two novel multi-task training approaches—
one with, one without need for external un-
labeled resources—, and two corresponding
data augmentation methods, improving over
the neural baseline for all languages. Finally,
we explore cross-lingual transfer as a third
way to fortify our neural model and show that
we can train one single multi-lingual model for
related languages while maintaining compara-
ble or even improved performance, thus reduc-
ing the amount of parameters by close to 75%.
We provide our morphological segmentation
datasets for Mexicanero, Nahuatl, Wixarika
and Yorem Nokki for future research.

1 Introduction

Due to the advent of computing technologies
to indigenous communities all over the world,
natural language processing (NLP) applications

∗*The first two authors contributed equally.

for languages with limited computer-readable
textual data are getting increasingly important.
This contrasts with current research, which fo-
cuses strongly on approaches which require large
amounts of training data, e.g., deep neural net-
works. Those are not trivially applicable to
minimal-resource settings with less than 1, 000
available training examples. We aim at closing this
gap for morphological surface segmentation, the
task of splitting a word into the surface forms of its
smallest meaning-bearing units, its morphemes.

Recovering morphemes provides information
about unknown words and is thus especially im-
portant for polysynthetic languages with a high
morpheme-to-word ratio and a consequently large
overall number of words. To illustrate how seg-
mentation helps understanding unknown multiple-
morpheme words, consider an example in this pa-
per’s language of writing: even if the word uncon-
ditionally did not appear in a given training corpus,
its meaning could still be derived from a combina-
tion of its morphs un, condition, al and ly.

Due to its importance for down-stream tasks
(Creutz et al., 2007; Dyer et al., 2008), segmenta-
tion has been tackled in many different ways, con-
sidering unsupervised (Creutz and Lagus, 2002),
supervised (Ruokolainen et al., 2013) and semi-
supervised settings (Ruokolainen et al., 2014).
Here, we add three new questions to this line of re-
search: (i) Are data-hungry neural network models
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applicable to segmentation of polysynthetic lan-
guages in minimal-resource settings? (ii) How can
the performance of neural networks for surface
segmentation be improved if we have only unla-
beled or no external data at hand? (iii) Is cross-
lingual transfer for this task possible between re-
lated languages? The last two questions are cru-
cial: While for many languages it is difficult to
obtain the number of annotated examples used in
earlier work on (semi-)supervised methods, a lim-
ited amount might still be obtainable.

We experiment on four polysynthetic Mexican
languages: Mexicanero, Nahuatl, Wixarika and
Yorem Nokki (details in §2). The datasets we use
are, as far as we know, the first computer-readable
datasets annotated for morphological segmenta-
tion in those languages.

Our experiments show that neural seq2seq mod-
els perform on par with or better than other strong
baselines for our polysynthetic languages in a
minimal-resource setting. However, we further
propose two novel multi-task approaches and two
new data augmentation methods. Combining them
with our neural model yields up to 5.05% abso-
lute accuracy or 3.40% F1 improvements over our
strongest baseline.

Finally, following earlier work on cross-lingual
knowledge transfer for seq2seq tasks (Johnson
et al., 2017; Kann et al., 2017), we investigate
training one single model for all languages, while
sharing parameters. The resulting model performs
comparably to or better than the individual mod-
els, but requires only roughly as many parameters
as one single model.

Contributions. To sum up, we make the follow-
ing contributions: (i) we confirm the applicability
of neural seq2seq models to morphological seg-
mentation of polysynthetic languages in minimal-
resource settings; (ii) we propose two novel
multi-task training approaches and two novel data
augmentation methods for neural segmentation
models; (iii) we investigate the effectiveness of
cross-lingual transfer between related languages;
and (iv) we provide morphological segmentation
datasets for Mexicanero, Nahuatl, Wixarika and
Yorem Nokki.

2 Polysynthetic Languages

Polysynthetic languages are morphologically rich
languages which are highly synthetic, i.e., sin-
gle words can be composed of many individual

Mexicanero Nahuatl Wixarika Yorem N.
frq. m. frq. m. frq. m. frq. m.
136 ni 155 o 327 p+ 102 k
128 ki 99 ni 230 ne 88 m
114 ti 84 ti 173 p 87 ne
105 u 81 k 169 ti 83 ka
70 s 61 tl 167 ka 79 ta
44 mo 59 mo 98 u 54 po
42 ka 55 s 97 ta 50 e’
39 a 52 ki 95 a 36 ye
31 nich 48 i 92 pe 36 su
31 $i 43 tla 91 e 36 ri
24 ta 39 ’ke 80 r 34 a
24 l 34 nech 74 wa 31 me
22 tahtanili 31 no 69 me 30 wa
21 no 27 ya 68 ni 30 re
17 ya 27 tli 68 ke 27 na
17 t 24 x 66 eu 24 wi
17 ke 23 tlanilia 58 ye 24 a
17 ita 23 e 57 ri 23 te
16 piya 21 tika 52 tsi 20 si
15 an 21 n 52 te 16 ’wi

Table 1: The most frequent morphs (m.) together with
their frequencies (frq.) in our datasets.

morphemes. In extreme cases, entire sentences
consist of only one single token, whereupon “ev-
ery argument of a predicate must be expressed
by morphology on the word that contains that as-
signer” (Baker, 2006). This property makes sur-
face segmentation of polysynthetic languages at
the same time complex and particularly relevant
for further linguistic analysis.

In this paper, we experiment on four polysyn-
thetic languages of the Yuto-Aztecan family
(Baker, 1997), with the goal of improving the
performance of neural seq2seq models. The lan-
guages will be described in the rest of this section.

Mexicanero is a Western Peripheral Nahuatl
variant, spoken in the Mexican state of Durango
by approximately one thousand people. This di-
alect is isolated from the rest of the other branches
and has a strong process of Spanish stem incorpo-
ration, while also having borrowed some suffixes
from that language (Vanhove et al., 2012). It is
common to see Spanish words mixed with Nahu-
atl agglutinations. In the following example we
can see an intrasentencial mixing of Spanish (in
uppercases) and Mexicanero:

u|ni|ye MALO – I was sick
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Nahuatl is a large subgroup of the Yuto-
Aztecan language family, and, including all of its
variants, the most spoken native language in Mex-
ico. Its almost two million native speakers live
mainly in Puebla, Guerrero, Hidalgo, Veracruz,
and San Luis Potosi, but also in Oaxaca, Durango,
Modelos, Mexico City, Tlaxcala, Michoacan, Na-
yarit and the State of Mexico. Three dialectical
groups are known: Central Nahuatl, Occidental
Nahuatl and Oriental Nahuatl. The data collected
for this work belongs to the Oriental branch spo-
ken by 70 thousand people in Northern Puebla.

Like all languages of the Yuto-Aztecan family,
Nahuatl is agglutinative and one word can consist
of a combination of many different morphemes.
Usually, the verb functions as the stem and gets
extended by morphemes specifying, e.g., subject,
patient, object or indirect object. The most com-
mon syntax sequence for Nahuatl is SOV. An ex-
ample word is:

o|ne|mo|kokowa|ya – I was sick

Wixarika is a language spoken in the states of
Jalisco, Nayarit, Durango and Zacatecas in Cen-
tral West Mexico by approximately fifty thousand
people. It belongs to the Coracholan group of lan-
guages within the Yuto-Aztecan family. Wixarika
has five vowels {a,e,i,+1,u} with long and short
variants. An example for a word in the language
is:

ne|p+|ti|kuye|kai – I was sick

Like Nahuatl, it has an SOV syntax, with heavy
agglutination on the verb. Wixarika is morpholog-
ically more complex than other languages from the
same family, because it incorporates more infor-
mation into the verb (Leza and López, 2006). This
leads to a higher number of morphemes per word
as can also be seen in Table 3.

Yorem Nokki is part of Taracachita subgroup of
the Yuto-Aztecan language family. Its Southern
dialect is spoken by close to forty thousand people
in the Mexican states of Sinaloa and Sonora, while
its Northern dialect has about twenty thousand
speakers. In this work, we consider the South-
ern dialect. The nominal morphology of Yorem

1While linguists often use a dashed i (i) to denote this
vowel, in practice almost all native speakers use a plus sym-
bol (+). In this work, we choose to use the latter.

Mexicanero Nahuatl Wixarika Yorem N.
train 427 540 665 511
dev 106 134 176 127
test 355 449 553 425
total 888 1123 1394 1063

Table 2: Number of examples in the final data splits for
all languages.

Nokki is rather simple, but, like in the other Yuto-
Aztecan languages, the verb is highly complex. Its
alphabet consists of 28 characters and contains 8
different vowels. An example verb is:

ko’kore|ye|ne – I was sick

3 Morphological Segmentation Datasets

To create our datasets, we make use of both seg-
mentable (i.e., consisting of multiple morphemes)
and non-segmentable (i.e., consisting of one single
morpheme) words described in books of the col-
lection Archive of Indigenous Languages in Mexi-
canero (Canger, 2001), Nahuatl (Lastra de Suárez,
1980), Wixarika (Gómez and López, 1999), and
Yorem Nokki (Freeze, 1989). Statistics about the
data in the four languages are displayed in Ta-
bles 1, 2 and 3. We include segmentable as well
as non-segmentable words into our datasets in or-
der to ensure that our methods can correctly de-
cide against splitting up single morphemes. The
phrases in all languages are mostly parallel, such
that the corpora are roughly equivalent. There-
fore, we can compare the morphology of trans-
lated words (cf. Table 3), noticing that the lan-
guage with most agglutination is Wixarika, with
an average rate of 3.25 morphemes per word; the
other languages have an average of close to 2.2
morphemes per word. This higher morphological
complexity naturally produces data sparsity at the
token level. Also, we can notice that Wixarika has
more unique words than the rest of our studied lan-
guages. However, Nahuatl has with 810 the high-
est number of unique morphemes.

Final splits. In order to make follow-up work
on minimal-resource settings for morphological
segmentation easily comparable, we provide pre-
defined splits of our datasets2. 40% of the data
constitute the test sets. Of the remaining data, we

2Our datasets can be found to-
gether with the code of our models at
http://turing.iimas.unam.mx/wix/MexSeg
.
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Mex. Nahuatl Wixarika Yorem N.
Words 888 1123 1385 1063
SegWords 539 746 1131 774
Morphs 1889 2467 4502 2266
UniMorphs 602 810 653 662
Seg/W 0.606 0.664 0.816 0.728
Morphs/W 2.127 2.196 3.250 2.131
MaxMorphs 7 6 10 10

Table 3: Number of words, segmentable words (Seg-
Words), total morphs (Morphs), and unique morphs
(UniMorphs) in our datasets. Seg/W: proportion
of words consisting or more than one morpheme;
Morphs/W: morphemes per word; MaxMorphs: maxi-
mum number of morphemes found in one word.

use 20% for development and the rest for training.
The final numbers of words per dataset and lan-
guage are shown in Table 2.

4 Neural Seq2seq Models for
Segmentation

In the beginning of this section, we will introduce
our neural architecture for segmentation. Subse-
quently, we will first describe our two proposed
multi-task training approaches and second our
data augmentation methods. Finally, we will elab-
orate on expected differences between the two.

4.1 Character-Based Encoder-Decoder RNN

Following work on segmentation by Kann et al.
(2016) for high-resource settings, our approach is
based on the neural seq2seq model introduced by
Bahdanau et al. (2015) for machine translation.

Encoder. The first part of our model is a bidi-
rectional recurrent neural network (RNN) which
encodes the input sequence, i.e., the sequence of
characters of a given word w = w1, w2, . . . , wTv ,
represented by the corresponding embedding vec-
tors vw1 , ..., vwTv

. In particular, our encoder con-
sists of one gated recurrent neural network (GRU)
which processes the input in forward direction and
a second GRU which processes the input from the
opposite side.

Encoding with this bidirectional GRU yields the
forward hidden state

−→
h i = f

(−→
h i−1, vi

)
and the

backward hidden state
←−
h i = f

(←−
h i+1, vi

)
, for a

non-linear activation function f . Their concatena-
tion hi =

[−→
hi ;
←−
hi

]
is passed on to the decoder.

Decoder. The second part of our network, the
decoder, is a single GRU, defining a probability
distribution over strings in (Σ ∪ S)∗, for an alpha-
bet Σ and a separation symbol S:

pED(c | w) =

Tc∏

t=1

p(ct | c1, . . . , ct−1, w). (1)

where p(ct | c1, . . . , ct−1, w) is computed us-
ing an attention mechanism and an output softmax
layer over Σ ∪ S.

A more detailed description of the general
attention-based encoder-decoder architecture can
be found in the original paper by Bahdanau et al.
(2015).

5 Improving Neural Models for
Segmentation

5.1 Multi-Task Training
In order to leverage unlabeled data or even random
strings during training, we define an autoencoding
auxiliary task, which consists of encoding the in-
put and decoding an output which is identical to
the original string.

Then, our multi-task training objective is to
maximize the joint log-likelihood of this auxiliary
task and our segmentation main task:

L(θ)=
∑

(w,c)∈T
log pθ (c | e(w)) (2)

+
∑

a∈A
log pθ(a | e(a))

T denotes the segmentation training data with
examples consisting of a word w and its segmen-
tation c. A denotes either a set of words in the lan-
guage of the system or a set of random strings. The
function e describes the encoder and depends on
the model parameters θ, which are shared across
the two tasks. For training, we use data from both
sets at the same time and mark each example with
an additional, task-specific input symbol.

We treat the size of A as a hyperparameter
which we optimize on the development set sepa-
rately for each language. Values we experiment
with are m times the amount of instances in the
original training set, with m ∈ {1, 2, 4, 8}.3

3An exception is Yorem Nokki, for which we do not have
enough unlabeled data available, such that we experiment
only with m ∈ {1, 2}.
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There are multiple reasons why we expect
multi-task training to improve the performance of
the final model. First, multi-task training should
act as a regularizer. Second, for our models, the
segmentation task consists in large parts of learn-
ing to copy the input character sequence to the
output. This, however, can be learned from any
string and does not require annotated segmenta-
tion boundaries. Third, in the case of unlabeled
data (i.e., not for random strings), we expect the
character language model in the decoder to im-
prove, since it is trained on additional data.

We denote models trained with multi-task train-
ing using unlabeled corpus data as MTT-U and
models trained with multi-task training using ran-
dom strings as MTT-R.

5.2 Data Augmentation

A second option to make use of unlabeled data or
random strings is to extend the available training
data with new examples made from those. The
main question to answer here is how to include the
new data into the existing datasets. We do this by
building new training examples in a fashion sim-
ilar to the multi-task setup. All newly created in-
stances are of the form

w 7→ w (3)

where either w ∈ V with V being the observed
vocabulary of the language, e.g., words in a given
unlabeled corpus, or w ∈ R with R being a set of
sequences of random characters from the alphabet
Σ of the language.

Again, we treat the amount of additional train-
ing examples as a hyperparameter which we opti-
mize on the development set separately for each
language. We explore m times the amount of
instances in the original training set, with m ∈
{1, 2, 4, 8}.

The reasons why we expect our data augmenta-
tion methods to lead to better segmentation models
are similar to those for multi-task training.

We call models trained on datasets augmented
with unlabeled corpus data or random strings DA-
U or DA-R, respectively.

5.3 Differences Between Multi-task Training
and Data Augmentation

The difference between MTT-U (resp. MTT-R)
and DA-U (resp. MTT-U) is a single element in
the input sequence (the one representing the task).

However, this information enables the model to
handle each given instance correctly at inference
time. As a result, it gets more robust against noisy
data, which seems crucial for our way of using un-
labeled corpora. Consider, for example, the Nahu-
atl word onemokokowaya. Training on

onemokokowaya 7→ onemokokowaya

will make the model learn not to seg-
ment words which consist of the morphemes
o, ne,mo, kokowa, ya, which should ultimately
hurt performance. The multi-task approach, in
contrast, mitigates this problem.

As a conclusion, we expect the data augmen-
tation approach with unlabeled data to not obtain
outstanding performance, but rather consider it an
important and informative baseline for the cor-
responding multi-task approach. Using random
strings, the difference between the multi-task and
the data augmentation approaches is less obvious:
Real morphemes should appear rarely enough in
the created random character sequences to avoid
the negative effect which we expect for corpus
words. We thus assume that the performances of
MTT-R and DA-R should be similar.

6 Experiments

6.1 Data

We apply our models to the datasets described
in §3. For the multi-task training and data aug-
mentation using unlabeled data, we use (unseg-
mented) words from a parallel corpus collected by
Gutierrez-Vasques et al. (2016) for Nahuatl and
the closely related Mexicanero. For Wixarika we
use data from Mager et al. (2018) and for Yorem
Nokki we use text from Maldonado Martı́nez et al.
(2010).

6.2 Baselines

Now, we will describe the baselines we use to eval-
uate the overall performance of our approaches.

Supervised seq2seq RNN (S2S). As a first
baseline, we employ a fully supervised neural
model without data augmentation or multi-task
training, i.e., an attention-based encoder-decoder
RNN (Bahdanau et al., 2015) which has been
trained only on the available annotated data.

Semi-supervised MORFESSOR (MORF). We
further compare to the semi-supervised version
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of MORFESSOR (Kohonen et al., 2010), a well-
known morphological segmentation system. Dur-
ing training, we tune the hyperparameters for each
language on the respective development set. The
best performing model is applied to the test set.

FlatCat (FC). Our next baseline is FlatCat
(Grönroos et al., 2014), a variant of MORFES-
SOR. It consists of a hidden Markov model for
segmentation. The states of the model correspond
either to a word boundary and one of the four
morph categories stem, prefix, suffix, and non-
morpheme. It can work in an unsupervised way,
but, similar to the previous baseline, can make ef-
fective use of small amounts of labeled data.

CRF. We further compare to a conditional ran-
dom fields (CRF) (Lafferty et al., 2001) model, in
particular a strong discriminative model for seg-
mentation by Ruokolainen et al. (2014). It re-
duces the task to a classification problem with
four classes: beginning of a morph, middle of
a morph, end of a morph and single character
morph. Training is again semi-supervised and the
model was previously reported to obtain good re-
sults for small amounts of unlabeled data (Ruoko-
lainen et al., 2014), which makes it very suitable
for our minimal-resource setting.

6.3 Hyperparameters

Neural network parameters. All GRUs in
both the encoder and the decoder have 100-
dimensional hidden states. All embeddings are
300-dimensional.

For training, we use ADADELTA (Zeiler, 2012)
with a minibatch size of 20. We initialize all
weights to the identity matrix and biases to zero
(Le et al., 2015). All models are trained for a max-
imum of 200 epochs, but we evaluate after every
5 epochs and apply the best performing model at
test time. Our final reported results are averaged
accuracies over 5 single training runs.

Optimizing the amount of auxiliary task data.
The performance of our neural segmentation
model in dependence of the amount of auxiliary
task training data can be seen in Figure 1. As
a general tendency across all languages, adding
more data seems better, particularly for the autoen-
coding task with random strings. The only excep-
tion is Wixarika.

The final configurations we choose for m (cf.
§5.1) in the case of multi-task training with the

auxiliary task of autoencoding corpus data are
m = 4 for Mexicanero, Nahuatl and Wixarika and
m = 1 for Yorem Nokki. For multi-task train-
ing with autoencoding of random strings we select
m = 8 for Mexicanero, Nahuatl and Yorem Nokki
and m = 4 for Wixarika.

Optimizing the amount of artificial training
data for data augmentation. Figure 2 shows
the performance of the encoder-decoder depend-
ing on the amount of added artificial training data.
In the case of random strings, again, adding more
training data seems to help more. However, us-
ing corpus data seems to hurt performance and the
more such examples we use, the worse accuracy
we obtain. Thus, we conclude that (as expected)
data augmentation with corpus data is not a good
way to improve the model’s performance. We will
discuss this in more detail in §6.5.

Even though the final conclusion should be to
not add much corpus data, we apply what gives
best results on the development set. The final con-
figurations we thus choose for DA-U are m = 1
for Mexicanero, Wixarika and Yorem Nokki and
m = 2 for Nahuatl. For DA-R, we select m = 4
for Mexicanero, Wixarika and Yorem Nokki and
m = 8 for Nahuatl.

6.4 Evaluation Metrics

Accuracy. First, we evaluate using accuracy on
the token level. Thus, an example counts as correct
if and only if the output of the system matches the
reference solution exactly, i.e., if all output sym-
bols are predicted correctly.

F1. Our second evaluation metric is border F1,
which measures how many segment boundaries
are predicted correctly by the model. While we
use this metric because it is common for segmenta-
tion tasks, it is not ideal for our models since those
are not guaranteed to preserve the input character
sequence. We handle this problem as follows: In
order to compare borders, we identify them by the
position of their preceding letter, i.e., if in both the
model’s guess and the gold solution a segment bor-
der appears after the second character, it counts as
correct. Wrong characters are ignored. Note that
this comes with the disadvantage of erroneously
inserted characters leading to all subsequent seg-
ment borders being counted as incorrect.
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Figure 1: Accuracy on the development set in dependence of the amount of auxiliary task training data for multi-
task learning.

1 2 4 8

50

60

70

80

90

times labeled data

% accuracy

DA - corpus data

Mexicanero
Yorem Nokki

Nahuatl
Wixarika

1 2 4 8

50

60

70

80

90

times labeled data

% accuracy

DA - random strings

Mexicanero
Yorem Nokki

Nahuatl
Wixarika

Figure 2: Accuracy on the development set in dependence of the amount of additional training data.

6.5 Test Results and Discussion

Table 4 shows that accuracy and F1 seem to be
highly correlated for our task. The test results also
give an answer to our first research question: The
neural model S2S performs on par with CRF, the
strongest baseline, for all languages but Nahuatl.
Further, S2S and CRF both outperform MORF and
FC by a wide margin. We may thus conclude that
neural models are indeed applicable to segmenta-
tion of polysynthetic languages in a low-resource
setting.

Second, we can see that all our proposed
methods except for DA-U improve over S2S,
the neural baseline: The accuracy of MTT-U is
between 0.0141 (Wixarika) and 0.0547 (Mexi-
canero) higher than S2S’s. MTT-R improves
between 0.0380 (Wixarika) and 0.0532 (Yorem

Nokki). Finally, DA-R outperforms S2S by
0.0367 to 0.0479 accuracy for Yorem Nokki and
Mexicanero, respectively. The overall picture
when considering F1 looks similar. Comparing
our approaches to each other, there is no clear win-
ner. This might be due to differences in the unla-
beled data we use: the corpus we use for Mexi-
canero and Nahuatl is from dialects different from
both respective test sets. Assuming that the effect
of training a language model using unlabeled data
and erroneously learning to not segment words are
working against each other for MTT-U, this might
explain why MTT-U is best for Mexicanero and
the gap between MTT-U and MTT-R is smaller for
Nahuatl than for Yorem Nokki and Wixarika.

As mentioned before (cf. §5.3), a simple data
augmentation method using unlabeled data should
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Accuracy F1
MTT-U MTT-R DA-U DA-R S2S MORF CRF FC MTT-U MTT-R DA-U DA-R S2S MORF CRF FC

Mex. .8051 .7955 .7611 .7983 .7504 .3364 .7837 .5420 .8786 .8694 .6715 .8683 .8618 .5121 .8639 .5621
Nahuatl .6004 .6027 .5541 .6018 .5585 .4044 .6444 .4888 .7388 .7367 .6865 .7328 .7266 .4154 .7487 .5185
Wixarika .5895 .6134 .5425 .6188 .5754 .3989 .5866 .4523 .7949 .8024 .7109 .8161 .7961 .4426 .7932 .5568
Yorem N. .6856 .7101 .6212 .6936 .6569 .4812 .6596 .5781 .7887 .8076 .7133 .7923 .7730 .3528 .7736 .6139

Table 4: Performances of our multi-task and data augmentation approaches compared to all baselines described in
the text. The reported results for neural models are averages over 5 training runs. Best results per language and
metric are in bold.

hurt performance. This is indeed the result of our
experiments: DA-U performs worse than S2S for
all languages except for Mexicanero, where the
unlabeled corpus is from another language: the
closely related Nahuatl. We thus conclude that
multi-task training (instead of simple data aug-
mentation) is crucial for the use of unlabeled data.

Finally, our methods compare favorably to all
baselines, with the exception of CRF for Nahu-
atl. While CRF is overall the strongest baseline
for our considered languages, our methods out-
perform it by up to 0.0214 accuracy or 0.0147 F1
for Mexicanero, 0.0322 accuracy or 0.0229 F1 for
Wixarika and 0.0505 accuracy or 0.0340 F1 for
Yorem Nokki. This shows the effectiveness of our
fortified neural models for minimal-resource mor-
phological segmentation.

7 Cross-Lingual Transfer Learning

We now want to investigate the performance of
one single model trained on all languages at once.
This is done in analogy to the multi-task training
described in §5.1. We treat segmentation in each
language as a separate task and train an attention-
based encoder-decoder model on maximizing the
joint log-likelihood:

L(θ)=
∑

Li∈L

∑

(w,c)∈TLi

log pθ (c | e(w))

(4)

TLi denotes the segmentation training data in lan-
guage Li and L is the set of our languages. As
before, each training example consists of a word
w and its segmentation c.

7.1 Experimental Setup
We keep all model parameters and the training
regime as described in §6.3. However, our training
data now consists of a combination of all available
training data for all 4 languages. In order to en-
able the model to differentiate between the tasks,

M-Lang S-Lang BestMTT BestDA
Mex. .6858 .7504 .8051 .7983
Nahuatl .5955 .5585 .6027 .6018
Wixarika .6021 .5754 .6134 .6188
Yorem N. .6223 .6569 .7101 .6936

Table 5: Accuracies of our model trained on all lan-
guages (M-Lang) and the models trained on single lan-
guages (S-Lang). The highest multi-task and data aug-
mentation accuracies are repeated for an easy compar-
ison.

we prepend one language-specific input symbol to
each instance. This corresponds to having one em-
bedding in the input which marks the task. An ex-
ample training instance for Yorem Nokki is

L=YN ko′koreyene 7→ ko′kore|ye|ne,

where L=YN indicates the language.
Due to the previous high correlation between

accuracy and F1 we only use accuracy on the word
level as the evaluation metric for this experiment.

7.2 Results and Discussion

In Table 5, we show the results of the multi-lingual
model, which was trained on all languages, com-
pared to all individual models, as well as each re-
spective best multi-task approach and data aug-
mentation method. The results differ among lan-
guages: Most remarkably, for both Wixarika and
Nahuatl, the accuracy of the multi-lingual model is
higher than the one of the single-language model.
This might be related to them being the languages
with most training data available (cf. Table 3).

Note, however, that even for the remaining
two languages—Mexicanero and Yorem Nokki—
we hardly lose accuracy when comparing the
multi-lingual to the individual models. Since we
only use one model (instead of four), without in-
creasing its size significantly, we thus reduce the
amount of parameters by nearly 75%.
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8 Related Work

Work on morphological segmentation was started
more than 6 decades ago (Harris, 1951). Since
then, many approaches have been developed: In
the realm of unsupervised methods, two important
systems are LINGUISTICS (Goldsmith, 2001)
and MORFESSOR (Creutz and Lagus, 2002). The
latter was later extended to a semi-supervised ver-
sion (Kohonen et al., 2010) in order to make use of
the abundance of unlabeled data which is available
for many languages.

Ruokolainen et al. (2013) focused explicitly
on low-resource scenarios and applied CRFs to
morphological segmentation in several languages.
They reported better results than earlier work, in-
cluding semi-supervised approaches. In the fol-
lowing year, they extended their approach to be
able to use unlabeled data as well, further improv-
ing performance (Ruokolainen et al., 2014).

Cotterell et al. (2015) trained a semi-Markov
CRF (semi-CRF) (Sarawagi and Cohen, 2005)
jointly on morphological segmentation, stemming
and tagging. For the similar problem of Chi-
nese word segmentation, Zhang and Clark (2008)
trained a model jointly on part-of-speech tagging.
However, we are not aware of any prior work on
multi-task training or data augmentation for neural
segmentation models.

In fact, the two only neural seq2seq approaches
for morphological segmentation we know of fo-
cused on canonical segmentation (Cotterell et al.,
2016) which differs from the surface segmentation
task considered here in that it restores changes to
the surface form of morphemes which occurred
during word formation. Kann et al. (2016) also
used an encoder-decoder RNN and combined it
with a neural reranker. While our model archi-
tecture was inspired by them, their model was
purely supervised. Additionally, they did not in-
vestigate the applicability of their neural seq2seq
model in low-resource settings or for polysyn-
thetic languages. Ruzsics and Samardzic (2017)
extended the standard encoder-decoder architec-
ture for canonical segmentation to contain a lan-
guage model over segments and improved results.
However, a big difference to our work is that they
still used more than ten times as much training
data as we have available for the indigenous Mex-
ican languages we are working on here.

Another neural approach—this time for sur-
face segmentation—was presented by Wang et al.

(2016). The authors, instead of using seq2seq
models, treat the task as a sequence labeling prob-
lem and use LSTMs to classify every character
either as the beginning, middle or end of a mor-
pheme, or as a single-character morpheme.

Cross-lingual knowledge transfer via language
tags was proposed for neural seq2seq models be-
fore, both for tasks that handle sequences of words
(Johnson et al., 2017) and tasks that work on se-
quences of characters (Kann et al., 2017). How-
ever, to the best of our knowledge, we are the
first to try such an approach for a morphological
segmentation task. In many other areas of NLP,
cross-lingual transfer has been applied success-
fully, e.g., in entity recognition (Wang and Man-
ning, 2014), language modeling (Tsvetkov et al.,
2016), or parsing (Cohen et al., 2011; Søgaard,
2011; Ammar et al., 2016).

9 Conclusion and Future Work

We first investigated the applicability of neural
seq2seq models to morphological surface segmen-
tation for polysynthetic languages in minimal-
resource settings, i.e., for considerably less than
1, 000 training instances. Although they are gen-
erally thought to require large amounts of training
data, neural networks obtained an accuracy com-
parable to or higher than several strong baselines.

Subsequently, we proposed two novel multi-
task training approaches and two novel data aug-
mentation methods to further increase the perfor-
mance of our neural models. Adding those, we im-
proved over the neural baseline for all languages,
and for Mexicanero, Wixarika and Yorem Nokki
our final models outperformed all baselines by up
to 5.05% absolute accuracy or 3.40% F1. Further-
more, we explored cross-lingual transfer between
our languages and reduced the amount of neces-
sary model parameters by about 75%, while im-
proving performance for some of the languages.

We publically release our datasets for morpho-
logical surface segmentation of the polysynthetic
minimal-resource languages Mexicanero, Nahu-
atl, Wixarika and Norem Yokki.
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dreas Stolcke. 2007. Morph-based speech recog-
nition and modeling of out-of-vocabulary words
across languages. TSLP 5(1):3:1–3:29.

Mathias Creutz and Krista Lagus. 2002. Unsupervised
discovery of morphemes. In Workshop on Morpho-
logical and Phonological Learning.

Christopher Dyer, Smaranda Muresan, and Philip
Resnik. 2008. Generalizing word lattice translation.
In ACL-HLT .

Ray A Freeze. 1989. Mayo de Los Capomos, Sinaloa.
El Colegio de México.
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José Luis Iturrioz Leza and Paula Gómez López. 2006.
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