ILLINOIS MATH SOLVER: Math Reasoning on the Web

Subhro Roy

and Dan Roth

University of Illinois, Urbana Champaign
{sroy9, danr}@illinois.edu

Abstract

There has been a recent interest in understand-
ing text to perform mathematical reasoning.
In particular, most of these efforts have fo-
cussed on automatically solving school level
math word problems. In order to make ad-
vancements in this area accessible to people,
as well as to facilitate this line of research,
we release the ILLINOIS MATH SOLVER, a
web based tool that supports performing math-
ematical reasoning. ILLINOIS MATH SOLVER
can answer a wide range of mathematics ques-
tions, ranging from compositional operation
questions like “What is the result when 6 is
divided by the sum of 7 and 5 ?” to el-
ementary school level math word problems,
like “I bought 6 apples. I ate 3 of them.
How many do I have left ?”. The web based
demo can be used as a tutoring tool for el-
ementary school students, since it not only
outputs the final result, but also the mathe-
matical expression to compute it. The tool
will allow researchers to understand the ca-
pabilities and limitations of a state of the art
arithmetic problem solver, and also enable
crowd based data acquisition for mathemati-
cal reasoning. The system is currently online
at https://cogcomp.cs.illinois.
edu/page/demo_view/Math.

1 Motivation

There has been a lot of interest in understanding text
for the purpose of quantitative reasoning. In particu-
lar, there has been multiple recent efforts to automat-
ically solve math word problems (Kushman et al.,
2014; Hosseini et al., 2014; Roy et al., 2015; Roy

52

and Roth, 2015; Shi et al., 2015; Koncel-Kedziorski
et al.,, 2016). Advancement in this area has great
potential to be used as automatic tutoring service
for school students. However till date, all the ad-
vances in this area are not easily accessible to the
general population. ILLINOIS MATH SOLVER ad-
dresses this issue by providing a web based plat-
form, where users can type in their math word prob-
lem and get the answer. It also outputs the mathe-
matical expression generating the answer, allowing
students to understand how to solve the problem.
Fig 1 shows a screenshot of the web interface of the
ILLINOIS MATH SOLVER.

All systems for math word problem solving are
trained and evaluated on datasets created from tu-
toring websites and textbooks. However the prob-
lems from the aforementioned sources tend to have
limited variety in problem types and vocabulary. Of-
ten these systems are brittle, and make mistakes with
slight variation of text. As a result, there is a need
for an easy way to analyze the robustness of these
systems, as well as extract a wider variety of math
word problems not available from textbooks and tu-
toring websites. ILLINOIS MATH SOLVER solves
both these purposes, providing users an easy way
to test the robustness of the system, and a tool for
crowd based data acquisition. We expect people to
query with small edits to math word problem text,
to make our system get the wrong answer. This al-
lows for adverserial data acquisition, which can help
identify intricacies of mathematical reasoning.

Proceedings of NAACL-HLT 2016 (Demonstrations), pages 52-56,
San Diego, California, June 12-17, 2016. (©2016 Association for Computational Linguistics

books did she have in total ?

(9.03.0+5.0)) = 72.0

Gwen was organizing her book case making sure each of the shelves had exactly 9 books
on it. If she had 3 shelves of mystery books and 5 shelves of picture books, how many

Figure 1: Screen Shot of ILLINOIS MATH SOLVER

2 System Description

The ILLINOIS MATH SOLVER consists of two main
modules - a context-free grammar (CFG) based se-
mantic parser, and an arithmetic problem solver. We
describe each component below.

2.1 CFG Parser

We use a CFG based semantic parser to handle
queries asking for operations between numbers. Ex-
amples of such queries include “What is the differ-
ence of 22 and 5 ?” and “What is the result when 6
is divided by the sum of 7 and 5 ?”. We refer to such
queries as “number queries”.

Our parser recognizes the mathematical terms in
a number query like “added”, “difference”, “frac-
tion”, etc. It then creates a list of the numbers and
math terms mentioned in the query, maintaining the
order in which they appear in the query. For the
example “What is the result when 6 is divided by
the sum of 7 and 5 ?”, the parser creates the list
{6, divided, sum, 7,5}.

Next, it tries to parse the list of numbers and the
math terms into a mathematical expression, using a
list of derivation rules. An example of a derivation
rule is as follows:

FE — FE; divided FEj
val(E) — val(Ey)/val(Es)

where E, F1 and E» are non-terminals of our CFG
representing mathematical expressions. For each
such non-terminal, we have an associated function

53

val(+), which computes the numeric value of the
mathematical expression represented by that non-
terminal. The above rule states that whenever we see
the word “divided” between two expressions, we can
parse them into a new expression. The value of the
new expression will be obtained by dividing the first
expression value with the second one. Overall, we
have 26 such derivation rules, and we will be aug-
menting it as we come across more varied number
queries. We use CKY algorithm for parsing. The
derivation rules naturally capture composition. In
the above example, it will first parse { “sum, 7, 5}
into an expression E, and next parse {6, divided,

2.2 General Arithmetic Problem Solver

The second component of our system is the arith-
metic word problem solver developed in our previ-
ous work (Roy and Roth, 2015). The solver tackles
a general class of arithemetic word problems, and
achieves state of the art results on several benchmark
datasets of arithmetic word problems.

2.2.1 Technical Details

The solver decomposes an input arithmetic prob-
lem into several decision problems, and learns pre-
dictors for these decision problems. Finally the pre-
dictions for the decomposed problems are combined
to generate a binary expression tree for the solution
mathematical expression. Fig 2 gives an example of
an arithmetic word problem coupled with the binary
expression tree of the solution.

Problem

Gwen was organizing her book case making sure each
of the shelves had exactly 9 books on it. She has 2 types
of books - mystery books and picture books. If she had 3
shelves of mystery books and 5 shelves of picture books,
how many books did she have total?

Solution Expression Tree of Solution

Figure 2: An arithmetic word problem, solution expression and

(3+5)x9="12

the corresponding expression tree

The arithmetic solver learns classifiers for the fol-
lowing two prediction problems:

1. For every pair of quantities ¢;, g; in a problem
P, a classifier is learnt to predict a math oper-
ation (one of addition, subtraction, multiplica-
tion, division) along with the order of operation
(applicable for subtraction and division). This
operation is expected to denote the operation at
the lowest common ancestor (LCA) node of ¢;
and g; in the solution tree. For example, in fig
2, the operation between 3 and 5 is addition,
and that between 5 and 9 is multiplication. A
multi-class classifier is trained for this predic-
tion task.

Finally, we define PAIR(g;, g;, op) to denote the
likelihood score of op to be the operation at the
LCA node of g; and ¢; in the solution expres-
sion tree of P. The aforementioned classifier is
used to obtain these scores.

2. We also train a classifier to predict whether a
quantity ¢ mentioned in a problem P is irrel-
evant for the solution. For example, in fig 2,
the number “2” is irrelevant, whereas all other
numbers are relevant. A binary classifier is
trained to predict this.

We define IRR(q) to denote the likelihood score
of quantity ¢ being an irrelevant quantity in P,
that is, ¢ is not used in creating the solution.
The aforementioned binary classifier is used to
obtain these scores.

54

For an expression FE, let Z(E) be the set of all
quantities in P which are not used in expression
E. Let 7 be an expression tree for . We define
Score(E) of an expression E in terms of the above
scoring functions and a scaling parameter wigg as
follows:

Score(E) =wre » , IRR(q)+
q€Z(E)

> PaIR(gi, g5, Orca(ai 45, T))
9i,9; £Z(E)
where ©rc4(¢i,q;,7T) is the operation at the LCA
node of ¢; and g; in the expression tree 7.
Our search for solution expression tree is also
constrained by legitimacy and background knowl-
edge constraints, detailed below.

1. Positive Answer: Most arithmetic problems
asking for amounts or number of objects usu-
ally have a positive number as an answer.
Therefore, while searching for the best scor-
ing expression, we reject expressions generat-
ing negative answer.

2. Integral Answer: Problems with questions
such as ‘how many” usually expect integral so-
lutions. We only consider integral solutions as
legitimate outputs for such problems.

Let C be the set of valid expressions that can be
formed using the quantities in a problem P, and
which satisfy the above constraints. The inference
algorithm now becomes the following:

S E
arg max core(E)

2.2.2 Evaluation

We evaluated our arithmetic word problem solver
on three publicly available datasets — addition sub-
traction problems from AI2 dataset (AI2) (Hosseini
et al., 2014), single operation problems from Illi-
nois dataset (IL)(Roy et al., 2015), and multi-step
problems from commoncore dataset (CC)(Roy and
Roth, 2015). We compare against systems which
had achieved previously known best scores on these
datasets, and show that our system achieves state of
the art performance on all the above datasets. Table
1 shows the comparison. Finally, the models of the
ILLINOIS MATH SOLVER are trained on the union
of the aforementioned datasets.

No Arithmetic Word
Input query =1 CFG Parser Parsed 7, Problem Solver % Answer
Yes
Answer

Figure 3: Pipeline of ILLINOIS MATH SOLVER

| | AR [IL | CC |

Our system 78.0 | 73.9 | 45.2
(Hosseini et al., 2014) || 77.7 - -
(Roy et al., 2015) - 52.7 -
(Kushman et al., 2014) || 64.0 | 73.7 | 2.3

Table 1: Accuracy in correctly solving arithmetic problems.

We achieve state of the art results in all three datasets.

2.3 Illinois Math Solver pipeline

The pipeline of the ILLINOIS MATH SOLVER is
shown in Fig 3. Given input text, we first run the
CFG parser, to check whether it is a number query.
If our CFG parser can make sense of the query and
can generate a mathematical expression from the
query, we immediately output it as the answer. Oth-
erwise, the query is fed to the arithmetic problem
solver. The output of the solver is then displayed as
the result.

3 Related Work

The interface of Wolfram Alpha is probably the clos-
est to ours. However their system is limited to han-
dling mostly number queries, and very simple arith-
metic problems. In contrast, our system can solve
complicated arithmetic problems described by mul-
tiple sentences and requiring multiple operations.
There has also been a lot of work in quantitative rea-
soning. Roy et al. (2015) looks at understanding en-
tailment relations among expressions of quantities
in text. There has also been efforts to automatically
solve school level math word problems. Hosseini et
al. (2014) looks at solving elementary addition sub-
traction problems, Roy et al. (2015) aims to solve
single operation problems and Koncel-Kedziorski et
al. (2016) solves single equation problems. The
system of Shi et al. (2015) tackles number word

55

problems by semi-automatically generated parsing
rules, and is similar to our CFG parsing approach
for tackling number queries. Kushman et al. (2014)
proposes a template based approach for solving al-
gebra word problems and finally, our system pro-
posed in Roy and Roth (2015) solves a general class
of arithmetic word problems, and achieves state of
the art results on multiple arithmetic word problem
datasets. This is the solver we use for handling arith-
metic problems in ILLINOIS MATH SOLVER.

4 Conclusion and Future Directions

We release ILLINOIS MATH SOLVER, an online
tool to automatically solve number queries and
arithemtic word problems. It will help elementary
school students to self-tutor. In addition, it will be
a source of highly varied math queries, which might
reveal difficulties of mathematical reasoning, and as-
sist future advancement in the area.

There are various fronts on which we will be
improving the system in future. Currently, the
arithemetic solver assumes the final solution can be
generated by combining the numbers mentioned in
the text, and hence, cannot introduce new numbers
for the solution. . For example, “I eat I apple each
day. How many apples will I eat in 1 week ?” is
currently not handled since it requires knowing that
1 week has 7 days. This will require leveraging a
knowledge base to bring in the additional informa-
tion. We will also try to handle algebra word prob-
lems, which involve generating multiple equations
with one or more variables, and then solving these
equations to generate the answer.

References

[Hosseini et al.2014] M. J. Hosseini, H. Hajishirzi, O. Et-
zioni, and N. Kushman. 2014. Learning to solve arith-
metic word problems with verb categorization. In Pro-
ceedings of the 2014 Conference on Empirical Meth-
ods in Natural Language Processing, EMNLP 2014.

[Koncel-Kedziorski et al.2016] R. Koncel-Kedziorski,
H. Hajishirzi, A. Sabharwal, O. Etzioni, and S. Dumas
Ang. 2016. Parsing algebraic word problems into
equations. In TACL.

[Kushman et al.2014] N. Kushman, L. Zettlemoyer,
R. Barzilay, and Y. Artzi. 2014. Learning to
automatically solve algebra word problems. In ACL.

[Roy and Roth2015] S. Roy and D. Roth. 2015. Solv-
ing general arithmetic word problems. In Proc. of
the Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP).

[Roy et al.2015] S. Roy, T. Vieira, and D. Roth. 2015.
Reasoning about quantities in natural language. Trans-
actions of the Association for Computational Linguis-
tics, 3.

[Shi et al.2015] Shuming Shi, Yuehui Wang, Chin-Yew
Lin, Xiaojiang Liu, and Yong Rui. 2015. Automati-
cally solving number word problems by semantic pars-
ing and reasoning. In Proceedings of the 2015 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing.

56

