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Abstract

Following up on numerous reports of analogy-
based identification of “linguistic regularities”
in word embeddings, this study applies the
widely used vector offset method to 4 types
of linguistic relations: inflectional and deriva-
tional morphology, and lexicographic and en-
cyclopedic semantics. We present a balanced
test set with 99,200 questions in 40 categories,
and we systematically examine how accuracy
for different categories is affected by window
size and dimensionality of the SVD-based
word embeddings. We also show that GloVe
and SVD yield similar patterns of results for
different categories, offering further evidence
for conceptual similarity between count-based
and neural-net based models.

1 Introduction

The recent boom of research on analogies with word
embedding models is largely due to the striking
demonstration of “linguistic regularities” (Mikolov
et al., 2013b). In the so-called Google analogy test
set (Mikolov et al., 2013a) the task is to solve analo-
gies with vector offsets (a frequently cited example
is king - man + woman = queen). This test is a pop-
ular benchmark for word embeddings, some achiev-
ing 80% accuracy (Pennington et al., 2014).

Analogical reasoning is a promising line of re-
search, since it can be used for morphological anal-
ysis (Lavallée and Langlais, 2010), word sense dis-
ambiguation (Federici et al., 1997), and even for
broad-range detection of both morphological and
semantic features (Lepage and Goh, 2009). How-
ever, it remains to be seen to what extent word em-

beddings capture the “linguistic regularities”. The
Google analogy test set includes only 15 relations,
and Köper et al. (2015) showed that lexicographic
relations such as synonymy are not reliably discov-
ered in the same way.

This study systematically examines how well var-
ious kinds of linguistic relations can be detected
with the vector offset method, and how this pro-
cess is affected by window size and dimensional-
ity of count-based word embeddings. We develop a
new, more balanced test set (BATS) which includes
99,200 questions in 40 morphological and semantic
categories. The results of this study are of practical
use in real-world applications of analogical reason-
ing, and also provide a more accurate estimate of the
degree to which word embeddings capture linguistic
relations.

2 Related work

Current research on analogical reasoning in word
embeddings focuses on the so-called “proportional
analogies” of the a:b::c:d kind. The task is to
detect whether two pairs of words have the same
relation. A recent term is “linguistic regularity”
(Mikolov et al., 2013b), used to refer to any “sim-
ilarities between pairs of words” (Levy et al., 2014).
Analogies have been successfully used for detect-
ing different semantic relations, such as synonymy
and antonymy (Turney, 2008), ConceptNet relations
and selectional preferences (Herdadelen and Baroni,
2009), and also for inducing morphological cate-
gories from unparsed data (Soricut and Och, 2015).

The fact that analogies are so versatile means that
to make any claims about a model being good at
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analogical reasoning, we need to show what types
of analogies it can handle. This can only be de-
termined with a comprehensive test set. However,
the current sets tend to only include a certain type
of relations (semantic-only: SAT (Turney et al.,
2003), SemEval2012-Task2 (Jurgens et al., 2012),
morphology-only: MSR (Mikolov et al., 2013b)).
The Google analogy test (Mikolov et al., 2013a)
contains 9 morphological and 5 semantic categories,
with 20-70 unique word pairs per category which are
combined in all possible ways to yield 8,869 seman-
tic and 10,675 syntactic questions.1

None of the existing tests is balanced across dif-
ferent types of relations (word-formation getting
particularly little attention). With unbalanced sets,
and potentially high variation in performance for
different relations, it is important to evaluate results
on all relations, and not only the average.

Unfortunately, this is not common practice. De-
spite the popularity of the Google test set, the only
study we have found that provides data for indi-
vidual categories is (Levy et al., 2014). In their
experiments, accuracy varied between 10.53% and
99.41%, and much success in the semantic part was
due to the fact that the two categories explore the
same capital:country relation and together consti-
tute 56.72% of all semantic questions. This shows
that a model may be more successful with some re-
lations but not others, and more comprehensive tests
are needed to show what it can and cannot do.

Model parameters can also have a major impact
on performance (Levy et al., 2015; Lai et al., 2015).
So far they have been studied in the context of se-
mantic priming (Lapesa and Evert, 2014), semantic
similarity tasks (Kiela and Clark, 2014), and across
groups of tasks (Bullinaria and Levy, 2012). How-
ever, these results are not necessarily transferable to
different tasks; e.g. dependency-based word embed-
dings perform better on similarity task, but worse on
analogies (Levy and Goldberg, 2014a). Some stud-
ies report effects of changing model parameters on

1For semantic relations there are also generic resources such
as EVALution (Santus et al., 2015), and semantic similarity sets
such as BLESS and WordSim353 (Baroni and Lenci, 2011),
which are sometimes used as sources for compiling analogy
tests. For example, (Vylomova et al., 2015) presents a com-
pilation with 18 relations in total (58 to 3163 word pairs per
relation): 10 semantic, 4 morphological, 2 affix-derived word
relations, animal collective nouns, and verb-object pairs.

general accuracy on Google analogy test (Levy et
al., 2015; Lai et al., 2015), but, to our knowledge,
this is the first study to address the effect of model
parameters on individual linguistic relations in the
context of analogical reasoning task.

3 The Bigger Analogy Test Set (BATS)

We introduce BATS - the Bigger Analogy Test Set.
It covers 40 linguistic relations that are listed in ta-
ble 1. Each relation is represented with 50 unique
word pairs, which yields 2480 questions (99,200 in
all set). BATS is balanced across 4 types of rela-
tions: inflectional and derivational morphology, and
lexicographic and encyclopedic semantics.

A major feature of BATS that is not present in
MSR and Google test sets is that morphological cat-
egories are sampled to reduce homonymy. For ex-
ample, for verb present tense the Google set includes
pairs like walk:walks, which could be both verbs
and nouns. It is impossible to completely elimi-
nate homonymy, as a big corpus will have some cre-
ative uses for almost any word, but we reduce it by
excluding words attributed to more than one part-
of-speech in WordNet (Miller and Fellbaum, 1998).
After generating lists of such pairs, we select 50
pairs by top frequency in our corpus (section 4.2).

The semantic part of BATS does include
homonyms, since semantic categories are overall
smaller than morphological categories, and it is the
more frequently used words that tend to have mul-
tiple functions. For example, both dog and cat are
also listed in WordNet as verbs, and aardvark is not;
an homonym-free list of animals would mostly con-
tain low-frequency words, which in itself decreases
performance. However, we did our best to avoid
clearly ambiguous words; e.g. prophet Muhammad
was not included in the E05 name:occupations sec-
tion, because many people have the same name.

The lexicographic part of BATS is based on
SemEval2012-Task2, extended by the authors with
words similar to those included in SemEval set.
About 15% of extra words came from BLESS and
EVALution. The encyclopedic section was com-
piled on the basis of word lists in Wikipedia and
other internet resources2. Categories E01 and E10

2E06-08: https://en.wikipedia.org/wiki/List of animal names

E02: http://www.infoplease.com/ipa/A0855611.html
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SubcategoryAnalogy structure and examples

In
fle

ct
io

ns
Nouns I01: regular plurals (student:students)

I02: plurals - orthographic changes (wife:wives)
Adjectives I03: comparative degree (strong:stronger)

I04: superlative degree (strong:strongest)
Verbs I05: infinitive: 3Ps.Sg (follow:follows)

I06: infinitive: participle (follow:following)
I07: infinitive: past (follow:followed)
I08: participle: 3Ps.Sg (following:follows)
I09: participle: past (following:followed)
I10: 3Ps.Sg : past (follows:followed)

D
er

iv
at

io
n

No stem D01: noun+less (life:lifeless)
change D02: un+adj. (able:unable)

D03: adj.+ly (usual:usually)
D04: over+adj./Ved (used:overused)
D05: adj.+ness (same:sameness)
D06: re+verb (create:recreate)
D07: verb+able (allow:allowable)

Stem D08: verb+er (provide:provider)
change D09: verb+ation (continue:continuation)

D10: verb+ment (argue:argument)

L
ex

ic
og

ra
ph

y

Hypernyms L01: animals (cat:feline)
L02: miscellaneous (plum:fruit, shirt:clothes)

Hyponyms L03: miscellaneous (bag:pouch, color:white)
Meronyms L04: substance (sea:water)

L05: member (player:team)
L06: part-whole (car:engine)

Synonyms L07: intensity (cry:scream)
L08: exact (sofa:couch)

Antonyms L09: gradable (clean:dirty)
L10: binary (up:down)

E
nc

yc
lo

pe
di

a

Geography E01: capitals (Athens:Greece)
E02: country:language (Bolivia:Spanish)
E03: UK city:county York:Yorkshire

People E04: nationalities (Lincoln:American)
E05: occupation (Lincoln:president)

Animals E06: the young (cat:kitten)
E07: sounds (dog:bark)
E08: shelter (fox:den)

Other E09: thing:color (blood:red)
E10: male:female (actor:actress)

Table 1: The Bigger Analogy Test Set: categories
and examples

are based on the Google test, and category E09 - on
the color dataset (Bruni et al., 2012). In most cases
we did not rely on one source completely, as they did
not make the necessary distinctions, included clearly
ambiguous or low-frequency words, and/or were
sometimes inconsistent3 (e.g. sheep:flock in EVA-
Lution is a better example of member:collection re-
lation than jury:court).

Another new feature in BATS, as compared to the
Google test set and SemEval, is that it contains sev-
eral acceptable answers (sourced from WordNet),

E03: http://whitefiles.org/b4 g/5 towns to counties index/

L02: https://www.vocabulary.com/lists/189583#view=notes
L07: http://justenglish.me/2012/10/17/character-feelings

3No claims are made about our own work being free from
inconsistencies, as no dictionary will ever be so.

where applicable. For example, both mammal and
canine are hypernyms of dog.

4 Testing the test

4.1 The vector offset method
As mentioned above, Mikolov et al. (2013a) sug-
gested to capture the relations between words as the
offset of their vector embeddings. The answer to the
question “a is to b as c is to ?d” is represented by hid-
den vector d, calculated as argmaxd∈V (sim(d, c−
a + b)). Here V is the vocabulary excluding words
a, b and c and sim is a similarity measure, for which
Mikolov and many other researchers use angular dis-
tance: sim(u, v) = cos(u, v) = u·v

||u||||v|| .
Levy and Goldberg (2014b) propose an alterna-

tive optimization objective: argmaxd∈V (cos(d −
c, b−a)) They report that this method produces more
accurate results for some categories. Essentially it
accounts for d− c and b−a to share the same direc-
tion and discards lengths of these vectors.

We supply the BATS test set with a Python eval-
uation script that implements both methods.4 We
report results calculated by the Mikolov’s method
for the sake of consistency, but some authors choose
the best result for each category from each method
(Levy and Goldberg, 2014b).

4.2 Corpus and models
One of the current topics in research on word em-
beddings is the (de)merits of count-based models
as compared to the neural-net-based models. While
some researchers find that the latter outperform the
former (Baroni et al., 2014), others show that these
approaches are mathematically similar (Levy and
Goldberg, 2014b). We compare models of both
types as a contribution to the ongoing dispute.

Our count-based model is built with Pointwise
Mutual Information (PMI)frequency weighting. In
the dimensionality reduction step we used the Sin-
gular Value Decomposition (SVD), raising Σ matrix
element-wise to the power of a where 0 < a ≤ 1
to give a boost to dimensions with smaller variance
Caron (2001). In this study, unless mentined oth-
erwise, a = 1. The co-occurrence extraction was
performed with the kernel developed by Drozd et al.
(2015).

4http://vsm.blackbird.pw/bats
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Figure 1: GloVe and SVD: accuracy on different types of relations

As a representative of implicit models we chose
GloVe (Pennington et al., 2014) that achieved the
highest performance on the Google test set to this
date. Our source corpus combines the English
Wikipedia snapshot from July 2015 (1.8B tokens),
Araneum Anglicum Maius (1.2B) (Benko, 2014)
and ukWaC (2B) (Baroni et al., 2009). We discarded
words occurring less than 100 times, resulting in vo-
cabulary of 301,949 words (uncased).

To check the validity of our models we evaluate
it with the Google test set for which there are nu-
merous reported results. For GloVe we used the
parameters from the original study (Pennington et
al., 2014): 300 dimensions, window 10, 100 iter-
ations, xmax= 100, a = 3/4, sentence borders ig-
nored. For comparison we also built an SVD model
with 300 dimensions and window size 10. On our
5 B corpus GloVe achieved 80.4% average accuracy
(versus 71.7% on 6 B corpus in the original study).
The comparable SVD model achieved 49.9%, as op-
posed to with 52.6% result reported by Levy et al.
(2015) for 500 dimensions, window size 10 on 1.5
B Wikipedia corpus.

To evaluate effects of window size and dimen-
sionality we built 19 SVD-based models for win-
dows 2-8 at 1000 dimensions, and for dimensions
100-1200 for window size 5.

5 Results and discussion

5.1 Word category effect

Figure 1 presents the results of BATS test on the
GloVe model (built with the parameters from the
original study (Pennington et al., 2014)), and the
best performing SVD model, which was the model
with window size 3 at 1000 dimensions. The model
built with the same parameters as GloVe achieved
only 15.9% accuracy on BATS, and is not shown.

While GloVe outperforms the SVD-based model
on most categories, neither of them achieves even
30% accuracy, suggesting that BATS is much more
difficult than the Google test set. Many categories
are either not captured well by the embedding, or
cannot be reliably retrieved with vector offset, or
both. The overall pattern of easier and more dif-
ficult categories is the same for GloVe and SVD,
which supports the conclusion of Levy and Gold-
berg (2014b) about conceptual similarity of explicit
and implicit models. The overall performance of
both models could perhaps be improved by parame-
ters that we did not consider, but the point is that the
current state-of-the-art in analogical reasoning with
word embeddings handles well only certain types of
linguistic relations, and there are directions for im-
provement that have not been considered so far.

The high variation we observe in this experiment
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is consistent with evidence from systems competing
at SemEval2012-Task2, where not a single system
was able to achieve superior performance on all sub-
categories. Fried and Duh (2015) also showed a sim-
ilar pattern in 7 different word embeddings.

As expected, inflectional morphology is overall
easier than semantics, as shown even by the Google
test results (see Skip-Gram (Mikolov et al., 2013a;
Lai et al., 2015), GloVe (Pennington et al., 2014),
and K-Net (Cui et al., 2014), among others). But it
is surprising that derivational morphology is signifi-
cantly more difficult to detect than inflectional: only
3 categories out of ten yield even 20% accuracy.

The low accuracy on the lexicographic part of
BATS is consistent with the findings of Köper et
al. (2015). It is not clear why lexicographic rela-
tions are so difficult to detect with the vector offset
method, despite numerous successful word similar-
ity tests on much the same relations, and the fact
that BATS make the task easier by accepting sev-
eral correct answers. The easiest category is binary
antonyms of the up:down kind - the category for
which the choice should be the most obvious in the
semantic space.

A typical mistake that our SVD models make
in semantic questions is suggesting a morphologi-
cal form of one of the source words in the a:b::c:d
analogy: cherry:red :: potato:?potatoes instead of
potato:brown. It would thus be beneficial to exclude
from the set of possible answers not only the words
a, b and c, but also their morphological forms.

5.2 Window size effect
Evaluating two count-based models on semantic and
syntactic parts of the Google test set, Lebret and
Collobert (2015) shows that the former benefit from
larger windows while the latter do not. Our exper-
iments with SVD models using different window
sizes only partly concur with this finding.

Table 2 presents the accuracy for all categories
of BATS using a 1000-dimension SVD model with
window size varying between 2 and 8. The codes
and examples for each category are listed in table
1. All categories are best detected between win-
dow sizes 2-4, although 9 of them yield equally
good performance in larger windows. This indicates
that there is not a one-on-one correspondence be-
tween “semantics” and “larger windows” or “mor-

2 3 4 5 6 7 8 2 3 4 5 6 7 8
I01 62 71 70 68 67 65 58 L01 11 10 9 8 7 6 6
I02 41 50 47 44 42 40 34 L02 5 4 4 4 4 5 4
I03 57 61 58 52 47 41 32 L03 10 8 8 8 7 6 4
I04 49 57 51 45 40 35 25 L04 5 5 5 5 5 5 4
I05 27 37 39 36 34 32 29 L05 2 0 1 1 1 1 1
I06 62 71 67 63 60 58 53 L06 3 3 4 3 3 3 3
I07 26 32 36 36 36 36 34 L07 13 12 9 7 6 5 4
I08 21 20 19 18 18 18 16 L08 19 16 13 12 10 9 6
I09 23 30 34 35 36 36 35 L09 15 19 17 14 12 11 9
I10 25 25 23 21 19 19 17 L10 32 33 30 28 27 25 24
D01 0 0 0 0 0 0 0 E01 69 77 79 77 74 71 69
D02 12 13 12 12 11 10 9 E02 29 28 24 22 21 20 17
D03 10 18 20 20 20 20 19 E03 11 18 18 18 18 18 17
D04 12 8 6 5 4 3 2 E04 19 10 3 3 3 3 4
D05 7 13 13 11 9 8 5 E05 20 15 15 14 14 13 13
D06 15 24 18 13 10 8 5 E06 2 2 1 1 1 1 1
D07 4 4 3 2 2 1 1 E07 2 3 3 2 2 1 1
D08 1 2 2 2 1 1 1 E08 0 0 0 0 0 0 0
D09 6 10 11 11 11 11 10 E09 19 18 19 18 18 19 18
D10 3 12 12 10 10 9 9 E10 20 25 25 25 24 23 21

Table 2: Accuracy of SVD-based model on 40 BATS
categories, window sizes 2-8, 1000 dimensions

phology” and “smaller windows”. Also, different
categories benefit from changing window size in dif-
ferent ways: for noun plurals the difference between
the best and the worse choice is 13%, but for cate-
gories where accuracy is lower overall there is not
much gain from altering the window size.

Our results are overall consistent with the evalu-
ation of an SVD-based model on the Google set by
Levy et al. (2015). This study reports 59.1% average
accuracy for window size 2 yields, 56.9% for win-
dow size 5, and 56.2% for window size 10. How-
ever, using window sizes 3-4 clearly merits further
investigation. Another question is whether changing
window size has different effect on different models,
as the data of Levy et al. (2015) suggest that GloVe
actually benefits from larger windows.

5.3 Vector dimensionality effect

Intuitively, larger vectors capture more information
about individual words, and therefore should in-
crease accuracy of detecting linguistic patterns. In
our data this was true of 19 BATS categories (I01-
02, I04, I06, D02-03, D05-07, E01, E03, E07, E10,
L03-04, L07-10): all of them either peaked at 1200
dimensions or did not start decreasing by that point.

However, the other 20 relations show all kinds
of patterns. 14 categories peaked between 200 and
1100 dimensions, and then performance started de-
creasing (I03, I05, I07-10, D01, D04, D09, E02,
E05, E09, L1, L6). 2 categories showed negative
effect of higher dimensionality (D08, E04). Finally,
2 categories showed no dimensionality effect (E08,
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L05), and 3 more - idiosyncratic patterns with sev-
eral peaks (D10, E02, L06); however, this could be
chance variation, as in these categories performance
was generally low (under 10%). Figure 2 shows sev-
eral examples of these different trends5.
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E04 nationalities
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I01 noun plurals

I05 infinitive – 3Ps.Sg

Figure 2: Effect of vector dimensionality: example categories

The main takeaway from this experiment is that,
although 47.5% of BATS categories do perform bet-
ter at higher dimensions (at least for SVD-based
models), 40% do not, and, like with window size,
there is no correlation between type of the relation
(semantic or morphological) and its preference for
a higher or low dimensionality. One possible ex-
planation for lower saturation points of some rela-
tions is that, once the dimensions corresponding to
the core aspects of a particular relation are included
in the vectors, adding more dimensions increases
noise. For practical purposes this means that choos-
ing model parameters would have to be done to tar-
get specific relations rather than relation types.

5.4 Other parameters

In scope of this study we did not investigate all pos-
sible parameters, but our pilot experiments show that
changing the power a for the Σ matrix of the SVD
transformation can boost or decrease the perfor-
mance on individual categories by 40-50%. Smaller
value of a gives more weight to the dimensions
which capture less variance in the original data,
which can correspond to subtle linguistic nuances.
However, as with windows and dimensions, no set-
ting yields the best result for all categories.

A big factor is word frequency, and it deserves
more attention than we can provide in scope of this
paper. Some categories could perform worse be-

5All data for all categories can be found at
http://vsm.blackbird.pw/bats

cause they contain only low-frequency vocabulary;
in our corpus, this could be the case for D01 and
D04-066. But other derivational categories still do
not yield higher accuracy even if the frequency dis-
tribution is comparable with that of an “easier” cat-
egory (e.g. D8 and E10). Also, SVD was shown to
handle low frequencies well (Wartena, 2014).

6 Conclusion

This study follows up on numerous reports of suc-
cessful detection of linguistic relations with vector
offset method in word embeddings. We develop
BATS - a balanced analogy test set with 40 morpho-
logical and semantic relations (99,200 questions in
total). Our experiments show that derivational and
lexicographic relations remain a major challenge.
Our best-performing SVD-based model and GloVe
achieved only 22.1% and 28.5% average accuracy,
respectively. The overall pattern of “easy” and “dif-
ficult” categories is the same for the two models, of-
fering further evidence in favor of conceptual sim-
ilarity between explicit and implicit word embed-
dings. We hope that this study would draw atten-
tion of the NLP community to word embeddings and
analogical reasoning algorithms in context of lexico-
graphic and derivational relations7.

Our evaluation of the effect of vector dimension-
ality on accuracy of analogy detection with SVD-
based models shows that roughly half BATS cate-
gories are best discovered with over 1000 dimen-
sions, but 40% peak between 200 and 1100. There
does not seem to be a correlation between type of
linguistic relation and preference for higher or low
dimensionality. Likewise, our data does not confirm
the intuition about larger windows being more ben-
eficial for semantic relations, and smaller windows
- for morphological, as our SVD model performed
best on both relation types in windows 2-4. Further
research is needed to establish whether other models
behave in the same way.

6Data on frequency distribution of words in
BATS categories in our corpus can be found at
http://vsm.blackbird.pw/bats

7BATS was designed for word-level models and does not
focus on word phrases, but we included WordNet phrases as
possible correct answers, which may be useful for phrase-aware
models. Also, morphological categories involving orthographic
changes may be of interest for character-based models.
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