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Abstract

Understanding how a fictional relationship be-
tween two characters changes over time (e.g.,
from best friends to sworn enemies) is a key
challenge in digital humanities scholarship. We
present a novel unsupervised neural network
for this task that incorporates dictionary learn-
ing to generate interpretable, accurate relation-
ship trajectories. While previous work on char-
acterizing literary relationships relies on plot
summaries annotated with predefined labels,
our model jointly learns a set of global re-
lationship descriptors as well as a trajectory
over these descriptors for each relationship in
a dataset of raw text from novels. We find that
our model learns descriptors of events (e.g.,
marriage or murder) as well as interpersonal
states (love, sadness). Our model outperforms
topic model baselines on two crowdsourced
tasks, and we also find interesting correlations
to annotations in an existing dataset.

1 Describing Character Relationships

When two characters in a book break bread, is their
meal just a result of biological needs or does it mean
more? Cognard-Black et al. (2014) argue that this
simple interaction reflects the diversity and back-
ground of the characters, while Foster (2009) sug-
gests that the tone of a meal can portend either good
or ill for the rest of the book. To support such theo-
ries, scholars use their literary expertise to draw con-
nections between disparate books: Gabriel Conroy’s
dissonance from his family at a sumptuous feast in
Joyce’s The Dead, the frustration of Tyler’s mother in
Dinner at the Homesick Restaurant, and the grudging
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I love him more 
than ever. We are 
to be married on 
28 September.

I feel so weak and worn 
out … looked quite grieved 
… I hadn't the spirit

poor girl, there is 
peace for her at 
last. It is the end!

Arthur placed the 
stake over her 
heart … he struck 
with all his might. 
The Thing in the 
coffin writhed …

Figure 1: An example trajectory depicting the dynamic relation-

ship between Lucy and Arthur in Bram Stoker’s Dracula, which

starts with love and ends with Arthur killing the vampiric Lucy.

Each column describes the relationship state at a particular time

by weights over a set of descriptors (larger weights shown as

bigger boxes). Our goal is to learn—without supervision—both

the descriptors and the trajectories from raw fictional texts.

respect for a blind man eating meatloaf in Carver’s
Cathedral.

However, these insights do not come cheap. It
takes years of careful reading and internalization to
make connections across books, which means that
relationship symmetries and archetypes are likely to
remain hidden in the millions of books published
every year unless literary scholars are actively search-
ing for them.

Natural language processing techniques have been
increasingly used to assist in these literary investiga-
tions by discovering patterns in texts (Jockers, 2013).
In Section 6 we review existing techniques that clas-
sify or cluster relationships between characters in
books using a fixed set of labels (e.g., friend or en-
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emy). However, such approaches ignore interactions
between characters that lie outside of the established
lexicon and cannot account for the dynamic nature
of relationships that evolve through the course of a
book, such as the vampiric downfall of Lucy and
Arthur’s engagement in Dracula (Figure 1) or Win-
ston Smith’s rat-induced betrayal of Julia in 1984.

To address these issues, we propose the task of un-
supervised relationship modeling, in which a model
jointly learns a set of relationship descriptors as well
as relationship trajectories for pairs of literary char-
acters. Instead of assigning a single descriptor to a
particular relationship, the trajectories learned by the
model are sequences of descriptors as in Figure 1.

The Bayesian hidden topic Markov model (HTMM)
of Gruber et al. (2007) emerges as a natural choice
for our task because it is capable of computing rela-
tionship descriptors (in the form of topics) and has
an additional temporal component. However, our
experiments show that the descriptors learned by the
HTMM are not coherent and focus more on events or
environments (e.g., meals, outdoors) than interper-
sonal states like happiness and sadness.

Motivated by recent advances in deep learning, we
propose the relationship modeling network (RMN),
which is a novel variant of a deep recurrent autoen-
coder that incorporates dictionary learning to learn
relationship descriptors. We show that the RMN
achieves better descriptor coherence and trajectory
accuracy than the HTMM and other topic model base-
lines in two crowdsourced evaluations described in
Section 4. In Section 5 we show qualitative results
and make connections to existing literary scholarship.

2 A Dataset of Character Interactions

Our dataset consists of 1,383 fictional works pulled
from Project Gutenberg and other Internet sources.
Project Gutenberg has a limited selection (outside of
science fiction) of mostly classic literature, so we add
more contemporary novels from various genres such
as mystery, romance, and fantasy to our dataset.

To identify character mentions, we run the Book-
NLP pipeline of Bamman et al. (2014), which in-
cludes character name clustering, quoted speaker
identification, and coreference resolution.1 For ev-

1While this pipeline works reasonably well, it is unreliable
for first-person narratives; we leave the necessary improvements

ery detected character mention, we define a span as
beginning 100 tokens before the mention and end-
ing 100 tokens after the mention. We do not use
sentence or paragraph boundaries because they vary
considerably depending on the author (e.g., William
Faulkner routinely wrote single sentences longer than
many of Hemingway’s paragraphs). All spans in our
dataset contain mentions to exactly two characters.
This is a rather strict requirement that forces a reduc-
tion in data size, but spans in which more than two
characters are mentioned are generally noisier.

Once we have identified usable spans in the dataset,
we apply a second filtering step that removes rela-
tionships containing fewer than five spans. Without
this filter, our dataset is dominated by fleeting inter-
actions between minor characters; this is undesirable
since our focus is on longer, mutable relationships.
Finally, we filter our vocabulary by removing the
500 most frequently occurring words, as well as all
words that occur in fewer than 100 books. The latter
step helps correct for variation in time period and
genre (e.g., “thou” and “thy” found in older works
like the Canterbury Tales). Our final dataset contains
20,013 relationships and 380,408 spans, while our
vocabulary contains 16,223 words.2

3 Relationship Modeling Networks

This section mathematically describes how we apply
the RMN to relationship modeling on our dataset. Our
model is similar in spirit to topic models: for an input
dataset, the output of the RMN is a set of relationship
descriptors (topics) and—for each relationship in the
dataset—a trajectory, or a sequence of probability
distributions over these descriptors (document-topic
assignments). However, the RMN uses recent ad-
vances in deep learning to achieve better control over
descriptor coherence and trajectory smoothness (Sec-
tion 4).

3.1 Formalizing the Problem

Assume we have two characters c1 and c2 in book b.
We define Sc1,c2 as a sequence of token spans where
each span st ∈ Sc1,c2 is itself a set of tokens

to character name clustering, which are further expanded upon
in Vala et al. (2015), for future work.

2Code and span data available at http://github.com/
miyyer/rmn.
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rt = RTdt

Mrs. Reilly looked at her son slyly and asked, 
"Ignatius, you sure you not a communiss?" 
"Oh, my God!" Ignatius bellowed. "Every 
day I am subjected to a McCarthyite 
witchhunt in this crumbling building. No!"

Mrs. Reilly Ignatius “A Confederacy
  of Dunces”

ht = f(Wh · [vst
; vc1

; vc2
; vb])

vst vc1
vc2 vb

dt�1

R

dt = ↵ · softmax(Wd · [ht; dt�1])+
(1� ↵) · dt�1

: previous state

: descriptor
   matrix

: reconstruction
   of input span

: distribution over        
  descriptors

Figure 2: An example of the RMN’s computations at a single

time step. The model approximates the vector average of an

input span (vst ) as a linear combination of descriptors from R.

The descriptor weights dt define the relationship state at each

time step and—when viewed as a sequence—form a relationship

trajectory.

{w1, w2, . . . , wl} of fixed size l that contains men-
tions (either directly or by coreference) to both c1 and
c2. In other words, Sc1,c2 includes the text of every
scene, chronologically ordered, in which c1 and c2
are present together.

3.2 Model Description

As in other neural network models for natural lan-
guage processing, we begin by associating each word
type w in our vocabulary with a real-valued embed-
ding vw ∈ Rd. These embeddings are rows of a
V × d matrix L, where V is the vocabulary size.
Similarly, characters and books have their own em-
beddings in rows of matrices C and B. We want B
to capture global context information (e.g., “Moby
Dick” takes place at sea) and C to capture immutable
aspects of characters not related to their relationships
(e.g., Javert is a police officer). Finally, the RMN
learns embeddings for relationship descriptors, which
requires a second matrix R of size K × d where K is
the number of descriptors, analogous to the number
of topics in topic models.

Each input to the RMN is a tuple that contains
identifiers for a book and two characters, as well
as the spans corresponding to their relationship:
(b, c1, c2, Sc1,c2). Given one such input, our objective
is to reconstruct Sc1,c2 using a linear combination of
relationship descriptors from R as shown in Figure 2;
we now describe this process formally.

3.2.1 Modeling Spans with Vector Averages
We compute a vector representation for each span

st in Sc1,c2 by averaging the embeddings of the words
in that span,

vst =
1
l

∑
w∈st

vw. (1)

Then, we concatenate vst with the character embed-
dings vc1 and vc2 as well as the book embedding vb
and feed the resulting vector into a standard feed-
forward layer to obtain a hidden state ht,

ht = f(Wh · [vst ; vc1 ; vc2 ; vb]). (2)

In all experiments, the transformation matrix Wh

is d × 4d, and we set f to the ReLu function,
ReLu(x) = max(0, x).

3.2.2 Approximating Spans with Relationship
Descriptors

Now that we can obtain representations of spans,
we move on to learning descriptors using a variant
of dictionary learning (Olshausen and Field, 1997;
Elad and Aharon, 2006), where our descriptor matrix
R is the dictionary and we are trying to approximate
input spans as a linear combination of items from this
dictionary.

Suppose we compute a hidden state for every span
st in Sc1,c2 (Equation 2). Now, given an ht, we com-
pute a weight vector dt over K relationship descrip-
tors with some composition function g, which is fully
specified in the next section. Conceptually, each dt
is a relationship state, and a relationship trajectory
is a sequence of chronologically-ordered relationship
states as shown in Figure 1. After computing dt, we
use it to compute a reconstruction vector rt by taking
a weighted average over relationship descriptors,

rt = RTdt. (3)

Our goal is to make rt similar to vst . We use a
contrastive max-margin objective function similar to
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previous work (Weston et al., 2011; Socher et al.,
2014). We randomly sample spans from our dataset
and compute the vector average vsn for each sampled
span as in Equation 1. This subset of span vectors
is N . The unregularized objective J is a hinge loss
that minimizes the inner product between rt and the
negative samples while simultaneously maximizing
the inner product between rt and vst ,

J(θ) =
|Sc1,c2 |∑
t=0

∑
n∈N

max(0, 1−rtvst +rtvsn), (4)

where θ represents the model parameters.

3.2.3 Computing Weights over Descriptors
What function should we choose for our composi-

tion function g to represent a relationship state at a
given time step? On the face of it, this seems trivial;
we can project ht to K dimensions and then apply a
softmax or some other nonlinearity that yields non-
negative weights.3 However, this method ignores the
relationship states at previous time steps. To model
the temporal aspect of relationships, we can add a
recurrent connection,

dt = softmax(Wd · [ht; dt−1]) (5)

where Wd is of size K× (d+K) and softmax(q) =
exp q/

∑k
j=1 exp qj .

Our hope is that this recurrent connection will
carry some of the previous relationship state over to
the current time step. It should be unlikely for two
characters in love at time t to fall out of love at time
t+ 1 even if st+1 does not include any love-related
words. However, because the objective function in
Equation 4 maximizes similarity with the current
time step’s input, the model is not forced to learn
a smooth interpolation between the previous state
and the current one. A natural remedy is to have the
model predict the next time step’s input instead, but
this proves hard to optimize.

We instead force the model to use the previous
relationship state by modifying Equation 5 to include
a linear interpolation between dt and dt−1,

dt = α · softmax(Wd · [ht; dt−1])+
(1− α) · dt−1.

(6)

3We experiment with a variety of nonlinearities but find that
the softmax yields the most interpretable results due to its pre-
disposition to select a single descriptor.

Here, α is a scalar between 0 and 1. We experiment
with setting α to a fixed value of 0.5 as well as allow-
ing the model to learn α as in

α = σ(vT
α · [ht; dt−1; vst ]), (7)

where σ is the sigmoid function and vα is a vector
of dimensionality 2d+K. Fixing α = 0.5 initially
and then tuning it after other parameters have con-
verged improves training stability; for the specific
hyperparameters we use see Section 4.4

3.2.4 Interpreting Descriptors and Enforcing
Uniqueness

Recall that each descriptor is a d-dimensional row
of R. Because our objective function J forces these
descriptors to be in the same vector space as that
of the word embeddings L, we can interpret them
by looking at nearest neighbors in L using cosine
distance as the similarity metric.

To discourage learning descriptors that are too sim-
ilar to each other, we add another penalty term X to
our objective function,

X(θ) =
∥∥∥RRT − I

∥∥∥ , (8)

where I is the identity matrix. This term comes from
the component orthogonality constraint in indepen-
dent component analysis (Hyvärinen and Oja, 2000).

We add J and X together to obtain our final train-
ing objective L,

L(θ) = J(θ) + λX(θ), (9)

where λ is a hyperparameter that controls the magni-
tude of the uniqueness penalty.

4 Evaluating Descriptors and Trajectories

Because no previous work explores the interpretabil-
ity of unsupervised relationship modeling over time,
evaluating the RMN is tricky. Further compounding
the problem is the subjective nature of the task; for
example, is a trajectory that ignores a key event bet-
ter than one that hallucinates episodes absent from
source text?

4This strategy is reminiscent of alternative minimization
strategies for dictionary learning (Agarwal et al., 2014), where
the dictionary and weights are learned separately by keeping the
other fixed.
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With these issues in mind, we conduct three eval-
uations to show that our output is reasonable. First,
we conduct a crowdsourced interpretability experi-
ment that shows RMNs produce significantly more
coherent descriptors than three topic model baselines.
A second crowdsourced task indicates that our model
produces trajectories that match plot summaries more
accurately than topic models. Finally, we qualita-
tively compare the RMN’s output to existing static
annotations of literary relationships and find both
expected and surprising results.

4.1 Topic Model Baselines
Before moving onto the evaluations, we briefly
describe three baseline models, all of which are
Bayesian generative models. Latent Dirichlet al-
location (Blei et al., 2003, LDA) learns a single
document-topic distribution per document; we can
apply LDA to our dataset by concatenating all spans
from a relationship into a single document. Similarly,
NUBBI (Chang et al., 2009a) learns separate sets of
topics for relationships and individual characters.5

LDA and NUBBI are incapable of taking into ac-
count the chronological ordering of the spans because
they view all relationships tokens as exchangeable.
While we can compare the descriptors learned by
these models to those of the RMN, we cannot evaluate
their trajectories. We turn instead to the hidden topic
Markov model (Gruber et al., 2007, HTMM), which
foregoes the bag-of-words assumption of LDA and
NUBBI in favor of modeling topic segments within a
document as a Markov chain. This model outputs a
smooth sequence of topic assignments over a docu-
ment, so we can compare the trajectories it learns on
our dataset to those of the RMN.

4.2 Experimental Settings
In our descriptor interpretability experiments, we
vary the number of descriptors (topics) for all models
(K = 10, 30, 50). We train LDA and NUBBI for 100
iterations with a collapsed Gibbs sampler, and the
HTMM uses the default setting of 100 EM iterations.

For the RMN, we initialize the word embedding
matrix L with 300-dimensional GloVe embeddings
trained on the Common Crawl (Pennington et al.,

5NUBBI requires additional spans that mention only a sin-
gle character to differentiate character topics from relationship
topics. None of the other models receives these extra data.
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Figure 3: Model precision results from our word intrusion task.

The RMN learns more interpretable descriptors than three topic

model baselines.

2014). The character and book embeddings (C and
B) are initialized randomly. We fix α to 0.5 for the
first 15 epochs of training; after the descriptor ma-
trix R has converged, we fix R and tune α using
Equation 6 for 15 more epochs.6 Since the topic
model baselines do not have access to character and
book metadata, for fair comparison we also train
a “generic” version of the RMN (GRMN) where the
metadata embeddings are removed from Equation 2.
The uniqueness penalty λ is set to 10−4.

All of the RMN model parameters except L are
optimized using Adam (Kingma and Ba, 2014) with
a learning rate of 0.001 for 30 epochs; the word
embeddings are not fine-tuned during training.7 We
also apply word dropout (Iyyer et al., 2015) to the
input spans, removing words from the vector average
computation in Equation 1 with probability 0.5.

4.3 Do Descriptors Make Sense?

The goal of our first experiment is to compare the de-
scriptors R learned by the RMN to the topics learned
by the topic model baselines. We conduct a word
intrusion experiment (Chang et al., 2009b): workers
identify an “intruder” word from a set of words that—
other than the intruder—come from the same topic.
For the topic models, the five most probable words
are joined by a highly-probable word from a different
topic as the intruder. We use the same procedure for
the RMN and GRMN, except that cosine similarity to

6Preliminary experiments show that learning α and R simul-
taneously results in less interpretable descriptors.

7Tuning L ruins descriptor interpretability; pretrained em-
beddings are likely already a good solution for our problem.
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RMN HTMM

Label MP Nearest Neighbors Label MP Most Probable Words

sadness 1.0 regretful rueful pity pained despondent violence 1.0 sword shot blood shouted swung

love 1.0 love delightful happiness enjoyed boats 1.0 ship boat captain deck crew

murder 1.0 autopsy arrested homicide murdered food 1.0 kitchen mouth glass food bread

worship 0.1 toil pray devote yourselves gather sci-fi 0.0 suppose earth robots computer certain

moodiness 0.3 glumly snickered quizzically guiltily fantasy 0.0 agreed magician dragon castle talent

informal 0.4 kinda damn heck guess shitty military 0.1 ship captain lucky hour general

Table 1: Three high-precision (top) and three low-precision (bottom) descriptors for the RMN and HTMM, along with labels from

an external evaluator and model precision (MP) computed via word intrusion experiments. The RMN is able to learn a variety of

interpersonal states (e.g., love, sadness), while the HTMM’s most coherent topics are about concrete objects or events.

descriptor embeddings replaces topic-word probabil-
ity. To control for randomness in the training process,
we train three of each model, so the final experiment
consists of 1,350 tasks (K = 10, 30, 50 descriptors
per trial, three trials per model).

We collect judgments from ten different workers
for each task using the Crowdflower platform.8 Our
evaluation metric, model precision (MP), is the frac-
tion of workers that select the correct intruder word
for a descriptor k. Low model precision signals de-
scriptors that lack cohesive themes.

On average, the RMN’s descriptors are much more
interpretable than those of the baselines, as it achieves
a mean model precision of 0.73 (Figure 3) across all
values of K. There is little difference between the
model precision of the three topic model baselines,
which hover around 0.5. There is also little difference
between the GRMN and RMN; however, visualizing
the learned character and book embeddings as in
Figure 6 may be insightful for literary scholars. We
show example high and low precision descriptors for
the RMN and HTMM in Table 1; a full list is included
in the supplementary material.

4.4 Do Trajectories Make Sense?

While the previous evaluation focused only on de-
scriptor quality, our next experiment compares the
trajectories learned by the best RMN model from
the intrusion experiment (measured by highest mean
model precision) to those learned by the best HTMM
model, which is the only baseline capable of learning
relationship trajectories. Workers read a plot sum-

8http://www.crowdflower.com

mary and choose which model’s trajectory best repre-
sents the relationship in question. We use theK = 30
setting because it provides the best balance between
descriptor variety and trajectory interpretability.

For this evaluation, we crawl Wikipedia,
Goodreads, and SparkNotes for plot summaries
associated with our 1,383 books. We then remove all
relationships where each involved character is not
mentioned at least five times in the summary, which
results in a final evaluation set of 125 relationships.9

We present workers with two characters, a plot
summary, and a visualization of trajectories learned
by the RMN and the HTMM (Figure 4). The workers
then select the trajectory that best matches the
relationship described by the summary.

To generate the visualizations, we first have an
external annotator label each descriptor from both
models with a single word as in Table 1. For fairness,
the annotator is unaware of the underlying models.
For the RMN, we visualize trajectories by displaying
the label of the argmax over descriptor weights dt
at each time step t. Similarly, for the HTMM, we
display the most probable topic at each time step.10

The results of this task with seven workers per
comparison favor the RMN: for 87 out of the 125
evaluated relationships (69.6%), the workers choose
the RMN’s trajectory over the HTMM’s. We com-
pute the Fleiss κ value (Fleiss, 1971) to correct our
inter-annotator agreement for chance and find that

9Without this filtering step, workers do not have enough infor-
mation to compare the two models since most of the characters
in our dataset are not mentioned in summaries.

10To reduce visual clutter, we ignore descriptors that persist
for only a single time step.
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Summary: Govinda is Siddhartha’s best friend and sometimes his 
follower. Like Siddhartha, Govinda devotes his life to the quest for 
understanding and enlightenment. He leaves his village with 
Siddhartha to join the Samanas, then leaves the Samanas to follow 
Gotama. He searches for enlightenment independently of Siddhartha 
but persists in looking for teachers who can show him the way. In the 
end, he is able to achieve enlightenment only because of 
Siddhartha’s love for him.

A B

TI
M

E

Siddhartha and Govinda

Figure 4: An example from the Crowdflower summary matching

task; workers are asked to choose the trajectory (here, “A” is

generated by the RMN and “B” by the HTMM) that best matches

a provided summary that describes the relationship between

Siddartha and Govinda (from Siddartha by Hesse).

κ = 0.32, indicating fair agreement among the work-
ers. Furthermore, thirty-four relationships had unani-
mous agreement among the seven workers; of these,
twenty-six were unanimous in favor of the RMN com-
pared to only eight for the HTMM.

4.5 What Makes a Relationship Positive?

While the previous two experiments show that the
RMN is more interpretable and accurate than baseline
models, we have not yet shown that its insights can
aid in drawing connections across various books and
genres. As a first step in this direction, we investi-
gate what makes a relationship positive or negative
by comparing trajectories from the RMN and HTMM
to static affinity annotations from a recently-released
dataset (Massey et al., 2015) of fictional relationships.
Expected correlations (e.g., murder and sadness are
strongly negative descriptors) emerge alongside sur-
prising ones (politics is negative, religion is positive).

The affinity labeling task of Massey et al. (2015)
requires workers to describe a given relationship as
positive, negative, or neutral. We consider only non-
neutral relationships for which two annotators agree

Model Positive Negative

RMN education, love, reli-
gion, sex

politics, murder, sad-
ness, royalty

HTMM love, parental, busi-
ness, outdoors

love, politics,
violence, crime

Table 2: Descriptors most characteristic of positive and negative

relationships, computed using existing annotations. Compared

to the RMN, the HTMM struggles to coherently characterize

negative relationships. Interestingly, both models show negative

predispositions for political relationships, perhaps due to genre

bias or class differences.

on the affinity label and remove all books not present
in our own dataset. This filtering step results in 120
relationships, 78% of which are positive and the re-
maining 22% negative.

Since the annotations are static, we first aggregate
our trajectories across all time steps. We compute
K-dimensional “average positive” and “average neg-
ative” weight vectors ap and an by averaging the
relationship states dt for the RMN and the document-
topic distributions for the HTMM across all time steps
for relationships labeled with a particular affinity.
Then, we compute the vector difference ap−an and
sort it to produce a ranked list of descriptors, where
descriptors with positive differences occur more fre-
quently in positive relationships. Table 2 shows the
most positive and most negative descriptors; of par-
ticular interest is the large negative weight associated
with political relationships from both models.

5 Qualitative Analysis

Our experiments show the superiority of the RMN
over various topic model baselines in both descrip-
tor interpretability and trajectory accuracy, but what
causes the improved performance? In this section,
we analyze similarities between the RMN and HTMM
and look at qualitative examples where the RMN suc-
ceeds and fails. We also connect the findings of our
affinity experiment to existing literary scholarship.

Both models are equally proficient at learning
and assigning event-based descriptors (e.g., crime,
violence, food). More specifically, the RMN and
HTMM agree on environmental descriptions (e.g.,
boats, outdoors) and graphic sexual scenes (Figure 5,
middle).

However, the RMN is more sophisticated with in-
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HTMMRMN

Storm Island: David and Lucy

HTMMRMN

A Tale of Two Cities: Darnay and Lucie

HTMMRMN

Dracula: Arthur and Lucy

Figure 5: Left: the RMN is able to model Arthur and Lucy’s trajectory reasonably well compared to our manually-created version in

Figure 1. Middle: both models agree on event-based descriptors such as food and sex. Right: a failure case for the RMN in which it

is unable to learn that Lucie Manette and Charles Darnay are in love.

terpersonal relationships. None of the topic model
baselines learns negative emotional descriptors such
as sadness or suffering, which explains the inaccurate
HTMM trajectory of Arthur and Lucy in the left-most
panel of Figure 5. All of the topic model baselines
learn duplicate topics; in Table 2, one love descriptor
is highly positive while a duplicate is strongly nega-
tive.11 The RMN circumvents this problem with its
uniqueness penalty (Equation 8).

While the increased descriptor variety is a posi-
tive, sometimes it leads the RMN astray. The model
largely ignores the love between Charles Darnay and
Lucie Manette in Dickens’ A Tale of Two Cities due to
book’s sad tone; meanwhile, the HTMM’s trajectory,
while vastly simplified, does pick up on the romance
(Figure 5, right). While the RMN’s learnable book
and character embeddings should help, the signal in
a span cannot lead to the “proper” descriptor.

Both the RMN and HTMM learn that politics is
strongly negative (Table 2). Existing scholarship
supports this finding: Victorian-era authors, for ex-
ample, are “obsessed with otherness . . . of antiquated
social and legal institutions, and of autocratic and/or
dictatorial abusive government” (Zarifopol-Johnston,
1995), while in science fiction, “dystopia—–precisely
because it is so much more common (than utopia)—–
bears the aspect of lived experience” (Gordin et al.,
2010). Our affinity data comes primarily from Victo-
rian novels (e.g., by Dickens and George Eliot), lead-
ing us to believe that that the models are behaving

11This “duplicate love” phenomenon persists even when we
reduce the number of topics.

reasonably. Finally, returning to the “extra” meaning
of meals discussed in Section 1, food occurs slightly
more frequently in positive relationships.

6 Related Work

There are two major areas upon which our work
builds: computational literary analysis and deep neu-
ral networks for natural language processing.

Most previous work in computational literary anal-
ysis has focused either on characters or events. In
the former category, graphical models and classi-
fiers have been proposed for learning character per-
sonas from novels (Bamman et al., 2014; Flekova and
Gurevych, 2015) and film summaries (Bamman et
al., 2013). The NUBBI model of Chang et al. (2009a)
learns topics that statically describe characters and
their relationships. Because these models lack tempo-
ral components (the focus of our task), we compare
instead against the HTMM of Gruber et al. (2007).

Closest to our own work is the supervised struc-
tured prediction problem of Chaturvedi et al. (2016),
in which features are designed to predict dynamic se-
quences of positive and negative interactions between
two characters in plot summaries. Other research in
this area includes social network construction from
novels (Elson et al., 2010; Srivastava et al., 2016)
and film (Krishnan and Eisenstein, 2015), as well as
attempts to summarize and generate stories (Elsner,
2012).

While some of the relationship descriptors learned
by our model are character-centric, others are more
events-based, depicting actions rather than feelings;
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Figure 6: Clusters from PCA visualizations of the RMN’s learned book (left) and character (right) embeddings. We see a cluster

of books about war and violence (many of which are authored by Tom Clancy) as well as a cluster of lead female characters from

primarily romance novels. These visualizations show that the RMN can recover useful static representations of characters and books

in addition to the dynamic relationship trajectories.

such descriptors have been the focus of much previ-
ous work (Schank and Abelson, 1977; Chambers and
Jurafsky, 2008; Chambers and Jurafsky, 2009; Orr
et al., 2014). Our model is more closely related to
the plot units framework (Lehnert, 1981; Goyal et al.,
2013), which annotates events with emotional states.

The RMN builds on deep recurrent autoencoders
such as the hierarchical LSTM autoencoder of Li et
al. (2015); however, it is more efficient because of
the span-level vector averaging. It is also similar
to recent neural topic model architectures (Cao et
al., 2015; Das et al., 2015), although these models
are limited to static document representations. We
hope to apply the RMN to nonfictional datasets as
well; in this vein, Iyyer et al. (2014) apply a neural
network to sentences from nonfiction political books
for ideology prediction.

More generally, topic models and related genera-
tive models are a central tool for understanding large
corpora from science (Talley et al., 2011) to poli-
tics (Nguyen et al., 2014). We show representation
learning models like RMN can be just as interpretable
as LDA-based models. Other applications for which
researchers have prioritized interpretable vector rep-
resentations include text-to-vision mappings (Lazari-
dou et al., 2014) and word embeddings (Fyshe et al.,
2015; Faruqui et al., 2015).

7 Conclusion

We formalize the task of unsupervised relationship
modeling, which involves learning a set of relation-
ship descriptors as well as a trajectory over these
descriptors for each relationship in an input dataset.
We present the RMN, a novel neural network archi-
tecture for this task that generates more interpretable
descriptors and trajectories than topic model base-
lines. Finally, we show that the output of our model
can lead to interesting insights when combined with
annotations in an existing dataset.
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