
Proceedings of NAACL-HLT 2016, pages 1490–1500,
San Diego, California, June 12-17, 2016. c©2016 Association for Computational Linguistics

Dependency Based Embeddings for Sentence Classification Tasks

Alexandros Komninos
Department of Computer Science

University of York
York, YO10 5GH
United Kingdom

ak1153@york.ac.uk

Suresh Manandhar
Department of Computer Science

University of York
York, YO10 5GH
United Kingdom

suresh@cs.york.ac.uk

Abstract

We compare different word embeddings
from a standard window based skipgram
model, a skipgram model trained using
dependency context features and a novel
skipgram variant that utilizes additional
information from dependency graphs. We
explore the effectiveness of the different types
of word embeddings for word similarity and
sentence classification tasks. We consider
three common sentence classification tasks:
question type classification on the TREC
dataset, binary sentiment classification on
Stanford’s Sentiment Treebank and semantic
relation classification on the SemEval 2010
dataset. For each task we use three different
classification methods: a Support Vector
Machine, a Convolutional Neural Network
and a Long Short Term Memory Network.
Our experiments show that dependency based
embeddings outperform standard window
based embeddings in most of the settings,
while using dependency context embeddings
as additional features improves performance
in all tasks regardless of the classification
method.
Our embeddings and code are available at
https://www.cs.york.ac.uk/nlp/
extvec

1 Introduction

Representing words as low dimensional vectors
(also known as word embeddings) has been a widely
adopted technique in NLP. Word representations can
be used as features for classification tasks such as
named entity recognition or chunking (Turian et al.,

2010), and as a pretraining method for initializing
deep neural network representations (Collobert et
al., 2011; Kim, 2014). Word embeddings provide
better generalization to unseen examples since they
can capture general semantic and syntactic proper-
ties of words. One of the most popular methods of
learning word embeddings is the skipgram model of
Mikolov et al. (2013a; 2013b) where embeddings
are trained by making predictions of context words
appearing in a window around a target word.

The standard skipgram model ignores syntax and
only partially takes into consideration the sequen-
tial structure of text, but still captures certain syn-
tactic properties of words. A significant amount
of previous research has explored methods for di-
rectly taking syntax into account for word embed-
ding learning (Pham et al., 2015; Cheng and Kart-
saklis, 2015; Hashimoto et al., 2014). One simple
method is based on traditional count-based distribu-
tional semantic spaces and utilizes words with syn-
tactic types from a dependency parse graph as con-
text features (Padó and Lapata, 2007; Baroni and
Lenci, 2010). This method has also been applied to
skipgram models, where word embeddings are op-
timized to predict dependency context features in-
stead of other words (Levy and Goldberg, 2014).

Syntax-based embeddings have been shown to
have different properties in word similarity evalua-
tions than their window based counterparts, better
capturing the functional properties of words. How-
ever, it is not clear if they provide any advantage for
NLP tasks. We show that using dependency context
features can be a general method of providing syn-
tactic information for several sentence classification

1490

tasks. Furthermore, the dependency context embed-
dings improve performance with all classifiers we
tested.

We consider the usage of word and dependency
context features for three common sentence classi-
fication tasks: TREC question type classification,
binary sentiment prediction on Stanford Sentiment
Treebank, and SemEval 2010 relation identification.
We evaluate different methods of using the depen-
dency context embeddings as extra features besides
word embeddings to inject information into sentence
classifiers about the syntactic structure of a sentence.
The advantage of such a method is that it can be
applied to any classifier that utilizes standard word
embeddings. We evaluate the usefulness of syntax-
based word embeddings and dependency context
embeddings with three different sentence classifica-
tion methods: a Support Vector Machine (SVM), a
Convolutional Neural Network (CNN) and a Long
Short Term Memory network (LSTM).

In order to better utilize the structure of depen-
dency graphs, we propose an extended version of
the simple dependency based skipgram of Levy et
al. (2014). This extended version considers co-
occurrences in a dependency graph between pairs
of words, words and dependency context features,
and between different dependency context features.
This scheme results in word embeddings that share
properties between window based models and de-
pendency graph based ones. More importantly, it
provides additional structural information for the de-
pendency context feature embeddings making them
more effective when used in sentence classification
tasks.

Our evaluation provides several insights on the
role of syntax for embeddings and how they can
be used for sentence classification. First, we con-
firm past claims about the different properties be-
tween dependency and window based skipgram em-
beddings in word similarity tasks. Second, we show
that dependency based embeddings perform better
in question classification and relation identification
than window based ones. These results are robust
across multiple classification methods. We show
that combining dependency context feature embed-
dings together with word embeddings provide a sim-
ple and effective way to improve sentence classifica-
tion performance. Finally, the performance gain is

higher for the extended dependency based skipgram
developed in this paper.

2 Related Work

Estimating word representations from text has been
the focus of a lot of research in NLP. Traditional
count-based models learn representations by apply-
ing SVD in a word-word co-occurrence matrix (Tur-
ney et al., 2010). More recently, neural models have
been used to learn word embeddings by optimizing
for a word prediction task (Collobert et al., 2011;
Mnih and Teh, 2012; Mikolov et al., 2013a). How-
ever, the most commonly used word representation
techniques like word2vec’s skipgram and CBoW
take little consideration of syntactic structure.

Several modifications have been proposed so that
word embedding learning algorithms can better uti-
lize syntax or the sequence structure of sentences.
One such model is the dependency based skipgram
of Levy and Goldberg (2014) which we further ex-
tend in this paper. Evaluation of this model is limited
to word similarity or lexical substitution in context
(Melamud et al., 2015), and little is known about
performance within other NLP tasks. Hashimoto et
al. (2014) proposed a log-bilinear language model
based on predicate-argument structures and report
improvements on phrase similarity tasks compared
to standard skipgram. In Ling et al. (2015), skip-
gram and CBoW models are adapted to include po-
sition specific weights for the words inside the co-
occurrence window and the resulting embeddings
provide slight improvements for parsing and POS
tagging tasks. The C-PHRASE model (Pham et al.,
2015) is another modification of the CBoW model
that uses an external parser to replace windows
with syntactic constituents. In Cheng and Kartsak-
lis (2015), a recursive neural network structured ac-
cording to a sentence’s parse learns word embed-
dings by composing into valid sentences rather than
distorted ones.

Structured skipgram models (Levy and Goldberg,
2014; Ling et al., 2015) have a notable difference
with other approaches of incorporating structural in-
formation into embeddings (e.g. C-PHRASE), since
they also produce embeddings of the structural con-
text features at the prediction layer. We show that
in the case of dependency contexts, these structural

1491

features can provide valuable information to sen-
tence classifiers. In our extended dependency based
skipgram, we do not make a distinction between
words and structural features in the training pro-
cess, which results into better performing depen-
dency context embeddings when used in sentence
classification. Another difference of our skipgram
model with other structured skipgram variants is that
we keep the long distance word contexts used in
standard window based skipgram training with the
purpose of capturing both functional and topic re-
lated semantic properties of words.

Our work is also related to methods of provid-
ing explicit syntactic information to sentence clas-
sifiers. Most of the previously proposed approaches
rely on tree-structured neural architectures to drive
composition of word embeddings to a sentence rep-
resentation (Socher et al., 2012; Tai et al., 2015; Li
et al., 2015). We use a different approach where
syntactic information is provided only through em-
beddings. Our approach is not orthogonal to using
tree-structured models and the two of them could be
applied together. An advantage of providing syn-
tactic information through embeddings is that large
amounts of automatically parsed textual data can be
utilized in order to learn representations of depen-
dency types.

3 Embedding Models

The skipgram model of Mikolov et al. (2013a;
2013b) optimizes vector representations of words
(word embeddings) such that they can predict other
context words occurring in a small window. The ar-
chitecture consists of a single hidden layer feedfor-
ward network without any non-linearity applied on
the hidden layer. The input to the network is the in-
dex of a target word (a one-hot vector) and the output
is a vector of probabilities of appearance for con-
text words. The network learns word embeddings
by maximizing the log probability of a context word
c given a target word t observed in a large corpus
of textual data D. To avoid the large computational
cost of applying a softmax for the whole vocabulary,
a commonly used strategy is to train with negative
sampling. For each target-context pair (t, c) com-
ing from the observed data D, a small number of
context words is sampled from unobserved data D

′

according to a simple distribution and then used as
the negative classes.

The probability of the target context pair (t, c) be-
ing observed in the data is given by:

P (D = 1 | t, c) = σ(vt · vc) (1)

where vt and vc are target and context word embed-
dings, and σ is the sigmoid function. For a negative
sampled pair (t, c), the probability of the pair not
being observed in the data is given by:

P (D = 0 | t, c) = 1− σ(vt · vc) (2)

The objective becomes:

arg max
vt,vc

∑
t,c∈D

log σ(vt · vc) +
∑

t,c∈D′
log σ(−vt · vc)

(3)
The network learns two sets of weights for each

word: one for embedding words to a low dimen-
sional representation in the hidden layer that we will
refer to as the embedding layer weights, and one for
assigning a probability to context words that we will
refer to as the prediction layer weights. Both sets
of weights assign representations to words such that
words that have similar co-occurrence patterns with
other words are closer in the embedding space. Typ-
ically, the embedding layer weights are used as fea-
ture representations of words for other other tasks.
Due to its scalability to large corpora and the good
performance of its derived word embeddings in sev-
eral NLP tasks the skipgram model has become a
standard solution for unsupervised learning of word
representations.

While typical training of skipgarm is performed
by optimizing for the prediction of other words in
a window around the target word, it is possible to
use other contextual features, such as contexts from
dependency graphs of sentences.

We consider three variations of skipgram based
on different target-context pairs:

3.1 Window-5 based skipgram (Win5)
This is a standard skipgram model that consid-
ers target-context word pairs inside a window of 5
words to the right and to the left of the target word.
The window size for every target instance in the cor-
pus is uniformly sampled from the [1,5] range, ef-
fectively providing a weighting scheme for context

1492

Win5 “cup” contexts: She, asked, for, a, of, coffee

LG “cup” contexts: case_for, det_a, of:nmod_coffee,

for:nmod-1_asked

EXT “cup” contexts: She, asked, for, a, of, coffee,

case_for, det_a, of:nmod_coffee, for:nmod-1_asked

EXT “of:nmod_coffee” contexts: cup, case_for, det_a,

for:nmod-1_asked

input sentence: She asked for a cup of coffee

asked

She cup

for a

of

coffee

nsubj for:nmod

case

det
of:nmod

case

Figure 1: A sentence and its dependency parse graph. The contexts of the word ”cup” are shown for each model. In addition, for

the EXT model the contexts of the ”of:nmod coffee” dependency context feature are shown.

words according to their distance from the target
word.

3.2 Skipgram with dependency contexts (LG)
Levy and Golberg’s (2014) modification to the skip-
gram model replaces context words in a window by
dependency contexts. A dependency context is a
discrete symbol denoting a word and its syntactic
role in a dependency parse graph (e.g. nsubj she,
of : nmod coffee, of : nmod−1 cup). The
directionality of dependency edges is encoded by
introducing features with inverse relations. Train-
ing of this skipgram variant is similar to window
based approaches, but each word is considered as
a node in a dependency graph obtained by a parser,
and embeddings are optimized to predict their corre-
sponding word’s immediate syntactic contexts (Fig-
ure 1). The network’s weight matrices have different
shapes, where representations coming from the em-
bedding layer weights correspond to word embed-
dings, while representations coming from the pre-
diction layer weights to dependency context embed-
dings.

3.3 Extended Dependency Skipgram (EXT)
We propose another variation of skipgram based
on dependency graphs that utilizes additional co-
occurrences compared to the LG variant. Each target
word is taken as a node in the dependency graph and
then optimize word embeddings such that they max-
imize the probability of other words within distance

one and two in the graph. As with the Win5 model,
we apply a weighting according to distance, with
words having distance one from the target counted
twice. This word-word prediction behaves similarly
to the Win5 model, but considers the dependency
parse to filter coincidental co-occurrences. The sec-
ond type of predictions that embeddings are opti-
mized for is similar to the LG model, where each
word predicts its dependency contexts. We also op-
timize for a third type of context prediction where
for each node, dependency contexts become the tar-
gets and predict the rest of dependency contexts of
the same node. An example of the different target-
context pairs that each skipgarm variant utilizes can
be seen in Figure 1. The three types of target-context
pairs for the extended dependency skipgram are in-
terleaved during training. The weight matrices of
this network are symmetric resulting in two embed-
dings per word and dependency context feature.

3.4 Implementation Details

We trained 300 dimensional versions of the above
skipgram variants on English Wikipedia August
2015 dump of 2 billion words. Vocabularies con-
sist of words and dependency contexts that appear
more than 100 times (approximately 220k words and
1.3m dependency contexts). Training was done by
applying negative sampling with 15 negative sam-
ples per target-context pair for 10 iterations over the
entire corpus using stochastic gradient descent. The

1493

following commonly used methods (Mikolov et al.,
2013b; Levy et al., 2015) were applied during train-
ing: drawing negative samples according to their un-
igram distribution raised to the power of 0.75, linear
decay of learning rate with initial α = 0.25, and
subsampling of target words with probability given

by p = f−10−5

f −
√

10−5

t where f is the word’s
frequency. Dependency parsing for LG and EXT
training was done with the Stanford Neural Network
dependency parser (Chen and Manning, 2014) us-
ing Universal Dependency tags (De Marneffe et al.,
2014).

4 Word Similarity Evaluation

We evaluate the effect of the different contextual fea-
tures for skipgram word embeddings in two word
similarity datasets: WordSim-353 (Finkelstein et
al., 2001) and SimLex-999 (Hill et al., 2015). For
both datasets, we compare the cosine similarity of
word embeddings for a pair of words to human
judgements and report Spearman’s correlation in Ta-
ble 1. The two datasets use a different notion of
word similarity for scoring. Wordsim-353 mostly
captures topical similarity (or relatedness), giving
high similarity to pair of words like clothes-closet.
SimLex-999 uses a more strict version of similar-
ity, often called substitutional similarity, where the
pair clothes-closet has a low similarity score and
pairs like shore-coast have high similarity. Win5
skipgram version achieves a higher correlation for
WordSim-353 compared to LG, but the results are
reversed for SimLex-999. This agrees with previ-
ous research that shows that syntactic contexts corre-
late better with substitutional similarity judgements
than using words in a window as contexts (Levy and
Goldberg, 2014). As expected, the extended model
represents a middle ground solution between the
two. While similarity based evaluation makes ob-
vious that different contextual features capture dif-
ferent properties of words, it is not clear which kind
similarity notion is more useful when word repre-
sentations are used as features for NLP tasks. We
answer this question for sentence level classification
tasks in the next section.

Embeddings WordSim-353 SimLex-999
Win5 0.714 0.389
LG 0.621 0.460
EXT 0.678 0.414

Table 1: Spearman correlation for the 3 skipgram variants

on WordSim-353 and SimLex-999 word similarity evaluation

tasks.

5 Sentence Classification

We consider three common sentence classification
tasks: TREC question type classification (QC), bi-
nary sentiment classification on Stanford’s Senti-
ment Treebank (SST), and relation identification be-
tween pairs of nominals (RI) using the SemEval
2010 dataset. The experiments aim to answer two
questions. First, to assess the effect of different
context features for word embeddings when used
in sentence classification tasks, given their differ-
ent behaviour on word similarity evaluation. Sec-
ond, to experiment with methods of using the de-
pendency context embeddings themselves as a way
to provide classifiers with dependency syntactic in-
formation. We carry out experiments with three dif-
ferent classification methods: SVMs with averaged
embeddings, the Convolutional Neural Network of
Kim (2014), and a Long Short Term Memory recur-
rent neural network (Hochreiter and Schmidhuber,
1997). These classifiers have some distinct charac-
teristics. The SVM does not take into account the
structure of the sentence, nor does it build any in-
ternal representations. On the other hand, both the
CNN and LSTM networks operate on sequences of
words and build internal representations before pre-
dicting the class label distribution. However, they do
not have access to explicit syntactic information.

We first give a description of the classification
methods and the way embeddings are used as fea-
tures, followed by the description of the tasks and
results.

5.1 Classification Methods

SVM with averaged embeddings We create a
sentence representation by averaging embeddings of
sentence features (words and dependency contexts).
This can be considered the equivalent of a Bag-
of-Words sentence representation in the embedding

1494

space, hence called Bag-of-Embeddings (BoE). We
then train a classifier by applying a Support Vector
Machine with a Gaussian kernel:

K(x,x
′
) = exp(−γ‖x− x

′‖2) (4)

For hyperparameter tuning, we set parameter γ of
the kernel to 1/k, where k is the number of features
(dimensionality of embeddings), and then perform
cross validation for the c parameter using the stan-
dard Win5 word embeddings in the question classi-
fication task.

Convolutional Neural Network (CNN) We use
the simple Convolutional Neural Network of Kim
(2014) that has been shown to perform well in mul-
tiple sentence classification tasks. The network’s in-
put is a sentence matrix X formed by concatenating
k-dimensional word embeddings. Then a convolu-
tional filter W ∈ Rh×k is applied to every possible
sequence of length h to get a feature map:

ci = tanh(W ·X + b) (5)

followed by a max-over-time pooling operation to
get the feature with the highest value:

ĉ = max c (6)

The pooled features of different filters are then con-
catenated and passed to a fully connected softmax
layer to perform the classification. The network
uses multiple filters with different sequence sizes
covering different size of windows in the sentence.
All hyperparameters of the network are the same as
used in the original paper (Kim, 2014): stochastic
dropout (Srivastava et al., 2014) with p = 0.5 on the
penultimate layer, 100 filters for each filter region
with filter regions of width 2,3 and 4. Optimization
is performed with Adadelta (Zeiler, 2012) on mini-
batches of size 50.

Long Short Term Memory (LSTM) LSTM net-
works (Hochreiter and Schmidhuber, 1997) are re-
current neural networks where recurrent units con-
sist of a memory cell c and three gates i, o and f .
Given a sequence of input embeddings x, LSTM
outputs a sequence of states h given by the following

equations:
it
ft
ot

c̃t

 =


σ
σ
σ

tanh

W ·
(
ht−1

xt

)
(7)

ct = ft � ct−1 + it � c̃t (8)

ht = ot � tanh(ct) (9)

where W ∈ R4k×2k, c̃t is a candidate state for the
memory cell and � is element-wise vector multi-
plication. The distribution of labels for the whole
sentence is computed by a fully connected softmax
layer on top of the final hidden state after applying
stochastic dropout with p = 0.25. We use 150 di-
mensions for the size of h, Adagrad (Duchi et al.,
2011) for optimization and mini-batch size of 100.

5.2 Sentence Feature Representations
We provide syntactic information to each classifier
in the following manner. First we parse each sen-
tence to get a dependency graph. Each node in the
graph is associated with a word w having an embed-
ding vw and a set of dependency context features
d1, d2, ..., dC with embeddings vd1 ,vd2 , ...,vdC

exactly like during the dependency based skipgram
training process. We then create a representation x
of that node using different combinations of its as-
sociated word and dependency context embeddings:

• Words: Using only word embeddings

x = vw (10)

• Dep: A node’s representation becomes the av-
erage of its associated dependency context em-
beddings:

x =
1
C

C∑
c=1

vdc (11)

• Wavg: Combination of the word and depen-
dency context embeddings by a weighted av-
erage scheme that assigns equal contribution to
the word and dependency context part:

x =
1
2
vw +

1
2C

C∑
c=1

vdc (12)

1495

• Conc: Similar to the Wavg, but dependency
context embeddings are first averaged and then
concatenated to the word embedding to form a
single vector:

x = vw ⊕ 1
C

C∑
c=1

vdc (13)

where ⊕ is the concatenation operator. This
method keeps the word and syntactic part sepa-
rate at the expense of doubling the dimension-
ality.

The above methods are used with the LG and EXT
variants to create context specific node representa-
tions. For the EXT model, both word and depen-
dency context embeddings used come from the em-
bedding layer weights. The Words method is the
only one that can be applied to the Win5 model. It is
the most commonly used method to utilize word rep-
resentations as features and our baseline. To make
the comparison more fair for the Win5 model we in-
clude two additional variations that utilize both the
embedding and prediction layer weights as an en-
semble method for creating a word’s representation:

• Win5 AvgE: Ensemble made by averaging word
embeddings from the embedding and predic-
tion layer weights of Win5 skipgram:

x =
1
2
(vw + vw′) (14)

• Win5 ConcE: Another ensemble made by con-
catenating word embeddings from the embed-
ding and prediction layer weights of Win5 skip-
gram:

x = vw ⊕ vw′ (15)

Ensemble techniques have been reported to out-
perform simple word representations in some word
similarity tasks (Levy et al., 2015). Since the EXT
skipgram version uses symmetric weight matrices
for the embedding and prediction layer, ensemble
methods like the above could also be applied, but
are not considered for these experiments. Note that
contrary to the dependency based models, these en-
semble methods do not create context specific repre-
sentations.

The dependency graph’s node representations are
used as a sequence of embeddings respecting the or-
der of the sentence to become the input for the CNN
and LSTM. For the SVM BoE, word and depen-
dency contexts of the whole sentence are averaged
separately for the Words and Dep method, and then
averaged again for the Wavg method or concatenated
for the Conc method. As we are evaluating perfor-
mance of embeddings, we do not perform updates
during training of CNNs and LSTMs.

5.3 Datasets and Results

TREC Question Classification The TREC Ques-
tion Classification dataset (Li and Roth, 2002) con-
sists of 5452 training questions and 500 test ques-
tions. The task is to classify each question with one
of six labels (e.g. location, definition, ...) depend-
ing on the answer they seek. For CNNs and LSTMs
10% of the training data were used as the dev set to
pick the best model among different iterations. Clas-
sification accuracy results for each input representa-
tions and classification method can be seen in Table
2. We also report the state of the art result by the
dependency convolutional neural network of Mu et
al. (2015). Their model consists of a convolutional
neural network that takes a dependency tree at the
input layer instead of a sequence, and uses heuris-
tics to choose the subset of nodes where pooling is
applied.

Embeddings SVM CNN LSTM
Win5 Words 81.4 92.8 88.4
Win5 AvgE 81.4 91.2 88.8
Win5 ConcE 82.4 92.6 90.4
LG Words 86.8 93.8 90.6
LG Dep 85.2 89.0 87.2
LG Wavg 87.2 93.4 91.2
LG Conc 84.0 94.6 92.0
EXT Words 88.4 94.2 91.8
EXT Dep 87.6 90.6 89.8
EXT Wavg 89.0 95.0 92.2
EXT Conc 91.6 93.2 94.4
tree CNN 96.0

Table 2: Accuracy on 6-way TREC question classification

task. Tree CNN is a CNN operating on dependency trees (Mou

et al., 2015).

1496

SST-2 The Stanford Sentiment Treebank dataset
(Socher et al., 2013) has fine grained sentiment
polarity scores for movie reviews on the phrasal
and sentence level. The binary version of the task
considers only positive and negative sentiment la-
bels, resulting in a 6920/872/1821 split for train-
ing/dev/testing sets. All the models were trained us-
ing only the sentence level annotations. Classifica-
tion accuracies for all models are reported in Table 3.
The state of the art for this dataset comes from Kim
(2014) using the same convolutional neural network
as we do, but also utilizing the phrasal level anno-
tations which provide about an order of magnitude
larger training set. In addition, this specific configu-
ration of the network (multichannel) uses two chan-
nels at the input layer, one updating the word embed-
dings during training and one that keeps them static
as we do in our experiments.

Embeddings SVM CNN LSTM
Win5 Words 80.1 83.5 76.1
Win5 AvgE 79.5 83.2 76.9
Win5 ConcE 80.3 82.9 77.6
LG Words 78.5 84.5 77.2
LG Dep 76.0 76.8 69.1
LG Wavg 78.9 82.0 78.6
LG Conc 79.8 82.7 79.7
EXT Words 80.5 84.1 77.6
EXT Dep 77.7 77.2 69.6
EXT Wavg 80.6 84.6 75.7
EXT Conc 80.6 83.5 79.8
CNN-multichannel 88.1

Table 3: Accuracy on Stanford Sentiment Treebank binary

classification task. CNN-multichannel is the best result reported

in Kim (2014).

SemEval 2010 Relation Identification The Se-
mEval 2010 Relation Identification task (Hendrickx
et al., 2009) considers the classification of semantic
relations between pairs of nominals into 19 classes.
The classes are formed by 9 types of relations (e.g.
cause-effect, component-whole, ...) with direction-
ality taken into account and an extra OTHER class.
We only used the shortest dependency path between
the two nominals as the input to classifiers. In table
4, we report results using the official SemEval metric
of macro-averaged F1-Score for (9+1)-way classifi-

cation, taking directionality into account. The best
reported result for this dataset is 85.6 F1-score by
Xu et al. (2015) also using a convolutional network
on a sequence of word embeddings from the short-
est dependency path between the pair of nominals.
They also introduce negative samples during train-
ing by reversing the subject and object of the rela-
tion and WordNet features. Without using WordNet
features their model achieves 84.0 F1-score.

Embeddings SVM CNN LSTM
Win5 Words 72.23 81.60 77.30
Win5 AvgE 71.09 79.46 76.67
Win5 ConcE 72.74 81.33 78.09
LG Words 75.29 84.18 79.94
LG Dep 75.19 79.13 74.77
LG Wavg 77.61 83.17 79.69
LG Conc 78.71 83.41 78.57
EXT Words 74.93 83.69 80.24
EXT Dep 75.64 79.30 75.64
EXT Wavg 77.42 84.31 79.59
EXT Conc 78.53 83.93 80.53
CNN-NS-WN 85.6

Table 4: F1 score for SemEval 2010 Relation Identification

task. CNN-NS-WN is CNN with negative sampling and Word-

Net features (Xu et al., 2015).

6 Discussion

Our evaluation shows that dependency context em-
beddings can provide valuable syntactic information
for sentence classification tasks using the three clas-
sification methods described. Out of the three tasks,
Question Classification and Relation Identification
showed great improvements when using dependency
context embeddings compared to the baseline, while
sentiment classification only showed moderate im-
provements. This is in agreement with previous re-
search (Li et al., 2015), where explicit syntactic in-
formation was provided to classifiers by using tree
structured networks and showed that syntax pro-
vides small improvements for binary sentiment clas-
sification in Stanford’s Sentiment Treebank.

It is notable that for QC and RI, using only word
embeddings that are trained with syntactic informa-
tion (LG and EXT Words models) still outperform
the baseline window based skipgram. Using the de-

1497

pendency context embeddings as a means to rep-
resent the dependency parse of sentences consis-
tently outperforms the baseline method across the
three tasks and for every classification method. This
indicates that this additional syntactic information
cannot be recovered by the CNN and LSTM even
though they have access to the sequential structure
of sentences, at least when trained on datasets of this
size. As expected, the SVM BoE benefits the most
by the addition of dependency context embeddings
since these are its only source of structural informa-
tion.

The dependency context embeddings from the
EXT model outperform the LG model, both when
used alone and when in combination with the word
embeddings. This can be attributed to the additional
information they are exposed to during training.

The effectiveness of the Wavg compared to the
Conc method for combining word and dependency
context embeddings seems to depend on the classi-
fication method. In genearal, we observe that the
CNN performs better with Wavg, while SVM and
LSTM with Conc. On the other hand, the ensemble
methods of the Win5 model (AvgE and ConcE) do
not provide any consistent advantage over the base-
line. In most cases, AvgE slightly hurts performance
while ConcE slighty improves it.

Our evaluation also suggests that best perform-
ing models in word similarity tasks do not neces-
sarily achieve the best performance in other NLP
tasks. When considering only word embeddings as
features for sentence classification (Words method),
we observe that the EXT model on average performs
better than the Win5 and LG models, while the op-
posite is true for word similarity evaluation. This
indicates that providing additional contextual infor-
mation for training embeddings results in less spe-
cialized embeddings for particular types of semantic
similarity evaluations, but can be useful for a wide
range of sentence level classification tasks.

While the purpose of our experiments is a com-
parison of embeddings and little hyperparameter
tuning was done for the classifiers, results of the
CNN using EXT Wavg representations for QC
(95.0) and RI (84.31) are close to the best re-
ported results with specifically engineered systems
for these tasks: 96.0 for QC (Mou et al., 2015) and
85.6 for RI (Xu et al., 2015). As our method does not

depend on a specific classification setting it would
be interesting to see if those approaches can further
improve using dependency based representations.

7 Conclusions

We compare a window based, a dependency based
and an extended dependency based skipgram model
in word similarity and sentence classification tasks
of question classification, binary sentiment pre-
diction and semantic relation identification. For
the sentence classification, we use three classifiers
(SVM, CNN, LSTM) and experiment with several
methods of utilizing dependency context feature
embeddings to create representations that capture
the syntactic role of words in dependency graphs.
We reaffirm that dependency based models pro-
duce word embeddings that better capture functional
properties of words and that window based models
better capture topical similarity. The dependency
based word embeddings largely improved the per-
formance of the three classifiers for question classi-
fication and semantic relation identification, but only
marginally for sentiment prediction. Finally, using
dependency context features along with the word
embeddings we observed better performance for the
three classifiers in each task.

Acknowledgments

Alexandros Komninos was supported by EP-
SRC via an Engineering Doctorate in LSCITS.
Suresh Manandhar was supported by EPSRC grant
EP/I037512/1, A Unified Model of Compositional
& Distributional Semantics: Theory and Applica-
tion.

References

[Baroni and Lenci2010] Marco Baroni and Alessandro
Lenci. 2010. Distributional memory: A general
framework for corpus-based semantics. Computa-
tional Linguistics, 36(4):673–721.

[Chen and Manning2014] Danqi Chen and Christopher D
Manning. 2014. A fast and accurate dependency
parser using neural networks. In Proceedings of
the 2014 Conference on Empirical Methods in Natu-
ral Language Processing (EMNLP), volume 1, pages
740–750.

1498

[Cheng and Kartsaklis2015] Jianpeng Cheng and Dimitri
Kartsaklis. 2015. Syntax-aware multi-sense word em-
beddings for deep compositional models of meaning.
In Proceedings of the 2015 Conference on Empiri-
cal Methods in Natural Language Processing, pages
1531–1542, Lisbon, Portugal, September. Association
for Computational Linguistics.

[Collobert et al.2011] Ronan Collobert, Jason Weston,
Léon Bottou, Michael Karlen, Koray Kavukcuoglu,
and Pavel Kuksa. 2011. Natural language process-
ing (almost) from scratch. The Journal of Machine
Learning Research, 12:2493–2537.

[De Marneffe et al.2014] Marie-Catherine De Marneffe,
Timothy Dozat, Natalia Silveira, Katri Haverinen,
Filip Ginter, Joakim Nivre, and Christopher D Man-
ning. 2014. Universal stanford dependencies: A
cross-linguistic typology. In Proceedings of LREC,
pages 4585–4592.

[Duchi et al.2011] John Duchi, Elad Hazan, and Yoram
Singer. 2011. Adaptive subgradient methods for on-
line learning and stochastic optimization. The Journal
of Machine Learning Research, 12:2121–2159.

[Finkelstein et al.2001] Lev Finkelstein, Evgeniy
Gabrilovich, Yossi Matias, Ehud Rivlin, Zach
Solan, Gadi Wolfman, and Eytan Ruppin. 2001.
Placing search in context: The concept revisited. In
Proceedings of the 10th international conference on
World Wide Web, pages 406–414. ACM.

[Hashimoto et al.2014] Kazuma Hashimoto, Pontus
Stenetorp, Makoto Miwa, and Yoshimasa Tsuruoka.
2014. Jointly learning word representations and
composition functions using predicate-argument
structures. In Proceedings of the 2014 Conference on
Empirical Methods in Natural Language Processing
(EMNLP), pages 1544–1555.

[Hendrickx et al.2009] Iris Hendrickx, Su Nam Kim, Zor-
nitsa Kozareva, Preslav Nakov, Diarmuid Ó Séaghdha,
Sebastian Padó, Marco Pennacchiotti, Lorenza Ro-
mano, and Stan Szpakowicz. 2009. Semeval-2010
task 8: Multi-way classification of semantic relations
between pairs of nominals. In Proceedings of the
Workshop on Semantic Evaluations: Recent Achieve-
ments and Future Directions, pages 94–99. Associa-
tion for Computational Linguistics.

[Hill et al.2015] Felix Hill, Roi Reichart, and Anna Ko-
rhonen. 2015. Simlex-999: Evaluating semantic mod-
els with (genuine) similarity estimation. Computa-
tional Linguistics.

[Hochreiter and Schmidhuber1997] Sepp Hochreiter and
Jürgen Schmidhuber. 1997. Long short-term memory.
Neural computation, 9(8):1735–1780.

[Kim2014] Yoon Kim. 2014. Convolutional neural net-
works for sentence classification. In Proceedings of
the 2014 Conference on Empirical Methods in Natural

Language Processing (EMNLP), pages 1746–1751.
Association for Computational Linguistics.

[Levy and Goldberg2014] Omer Levy and Yoav Gold-
berg. 2014. Dependencybased word embeddings. In
Proceedings of the 52nd Annual Meeting of the Associ-
ation for Computational Linguistics, volume 2, pages
302–308.

[Levy et al.2015] Omer Levy, Yoav Goldberg, and Ido
Dagan. 2015. Improving distributional similarity
with lessons learned from word embeddings. Transac-
tions of the Association for Computational Linguistics,
3:211–225.

[Li and Roth2002] Xin Li and Dan Roth. 2002. Learn-
ing question classifiers. In Proceedings of the 19th in-
ternational conference on Computational linguistics-
Volume 1, pages 1–7. Association for Computational
Linguistics.

[Li et al.2015] Jiwei Li, Thang Luong, Dan Jurafsky, and
Eduard Hovy. 2015. When are tree structures neces-
sary for deep learning of representations? In Proceed-
ings of the 2015 Conference on Empirical Methods in
Natural Language Processing, pages 2304–2314, Lis-
bon, Portugal, September. Association for Computa-
tional Linguistics.

[Ling et al.2015] Wang Ling, Chris Dyer, Alan Black, and
Isabel Trancoso. 2015. Two/too simple adaptations
of word2vec for syntax problems. Proceedings of the
North American Chapter of the Association for Com-
putational Linguistics (NAACL), Denver, CO.

[Melamud et al.2015] Oren Melamud, Omer Levy, and
Ido Dagan, 2015. Proceedings of the 1st Workshop
on Vector Space Modeling for Natural Language Pro-
cessing, chapter A Simple Word Embedding Model for
Lexical Substitution, pages 1–7. Association for Com-
putational Linguistics.

[Mikolov et al.2013a] Tomas Mikolov, Kai Chen, Gre-
gory S. Corrado, and Jeffrey Dean. 2013a. Efficient
estimation of word representations in vector space. In
Proceedings of ICLR Workshop.

[Mikolov et al.2013b] Tomas Mikolov, Ilya Sutskever,
Kai Chen, Greg S Corrado, and Jeff Dean. 2013b.
Distributed representations of words and phrases and
their compositionality. In Advances in neural infor-
mation processing systems, pages 3111–3119.

[Mnih and Teh2012] Andriy Mnih and Yee Whye Teh.
2012. A fast and simple algorithm for training neu-
ral probabilistic language models. In In Proceedings
of the International Conference on Machine Learning.

[Mou et al.2015] Lili Mou, Hao Peng, Ge Li, Yan Xu,
Lu Zhang, and Zhi Jin. 2015. Discriminative neural
sentence modeling by tree-based convolution. In Pro-
ceedings of the 2015 Conference on Empirical Meth-
ods in Natural Language Processing, pages 2315–

1499

2325, Lisbon, Portugal, September. Association for
Computational Linguistics.

[Padó and Lapata2007] Sebastian Padó and Mirella Lap-
ata. 2007. Dependency-based construction of se-
mantic space models. Computational Linguistics,
33(2):161–199.

[Pham et al.2015] The Nghia Pham, Germán Kruszewski,
Angeliki Lazaridou, and Marco Baroni. 2015. Jointly
optimizing word representations for lexical and sen-
tential tasks with the c-phrase model. In Proceed-
ings of the 53rd Annual Meeting of the Association
for Computational Linguistics and the 7th Interna-
tional Joint Conference on Natural Language Process-
ing (Volume 1: Long Papers), pages 971–981. Associ-
ation for Computational Linguistics.

[Socher et al.2012] Richard Socher, Brody Huval,
Christopher D Manning, and Andrew Y Ng. 2012.
Semantic compositionality through recursive matrix-
vector spaces. In Proceedings of the 2012 Joint
Conference on Empirical Methods in Natural
Language Processing and Computational Natural
Language Learning, pages 1201–1211. Association
for Computational Linguistics.

[Socher et al.2013] Richard Socher, Alex Perelygin, Jean
Wu, Jason Chuang, D. Christopher Manning, Andrew
Ng, and Christopher Potts. 2013. Recursive deep
models for semantic compositionality over a sentiment
treebank. In Proceedings of the 2013 Conference on
Empirical Methods in Natural Language Processing,
pages 1631–1642. Association for Computational Lin-
guistics.

[Srivastava et al.2014] Nitish Srivastava, Geoffrey Hin-
ton, Alex Krizhevsky, Ilya Sutskever, and Ruslan
Salakhutdinov. 2014. Dropout: A simple way to pre-
vent neural networks from overfitting. The Journal of
Machine Learning Research, 15(1):1929–1958.

[Tai et al.2015] Sheng Kai Tai, Richard Socher, and
D. Christopher Manning. 2015. Improved semantic
representations from tree-structured long short-term
memory networks. In Proceedings of the 53rd Annual
Meeting of the Association for Computational Linguis-
tics and the 7th International Joint Conference on Nat-
ural Language Processing (Volume 1: Long Papers),
pages 1556–1566. Association for Computational Lin-
guistics.

[Turian et al.2010] Joseph Turian, Lev Ratinov, and
Yoshua Bengio. 2010. Word representations: a simple
and general method for semi-supervised learning. In
Proceedings of the 48th annual meeting of the asso-
ciation for computational linguistics, pages 384–394.
Association for Computational Linguistics.

[Turney et al.2010] Peter D Turney, Patrick Pantel, et al.
2010. From frequency to meaning: Vector space mod-

els of semantics. Journal of artificial intelligence re-
search, 37(1):141–188.

[Xu et al.2015] Kun Xu, Yansong Feng, Songfang Huang,
and Dongyan Zhao. 2015. Semantic relation classifi-
cation via convolutional neural networks with simple
negative sampling. In Proceedings of the 2015 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing, pages 536–540, Lisbon, Portugal, September.
Association for Computational Linguistics.

[Zeiler2012] Matthew D Zeiler. 2012. Adadelta:
An adaptive learning rate method. arXiv preprint
arXiv:1212.5701.

1500

