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Abstract

Automatically generated databases of English
paraphrases have the drawback that they re-
turn a single list of paraphrases for an input
word or phrase. This means that all senses of
polysemous words are grouped together, un-
like WordNet which partitions different senses
into separate synsets. We present a new
method for clustering paraphrases by word
sense, and apply it to the Paraphrase Database
(PPDB). We investigate the performance of hi-
erarchical and spectral clustering algorithms,
and systematically explore different ways of
defining the similarity matrix that they use as
input. Our method produces sense clusters
that are qualitatively and quantitatively good,
and that represent a substantial improvement
to the PPDB resource.

1 Introduction

Many natural language processing tasks rely on the
ability to identify words and phrases with equiva-
lent meaning but different wording. These alterna-
tive ways of expressing the same information are
called paraphrases. Several research efforts have
produced automatically generated databases of En-
glish paraphrases, including DIRT (Lin and Pantel,
2001), the Microsoft Research Paraphrase Phrase
Tables (Dolan et al., 2004), and the Paraphrase
Database (Ganitkevitch et al., 2013; Pavlick et al.,
2015a). A primary benefit of these automatically
generated resources is their enormous scale, which
provides superior coverage compared to manually
compiled resources like WordNet (Miller, 1995).
But automatically generated paraphrase resources
currently have the drawback that they group all
senses of polysemous words together, and do not
partition paraphrases into groups like WordNet does

bug 
(n)

 insect   beetle   
cockroach   mosquito   

pest 
c1

 glitch   error   
malfunction   fault   
mistake   failure 

c2

microbe  virus    
parasite   bacterium 

c3

tracker  
microphone   wire 
 informer   snitch 

c4

Figure 1: Our goal is to partition paraphrases of an
input word like bug into clusters representing its dis-
tinct senses.

with its synsets. Thus a search for paraphrases
of the noun bug would yield a single list of para-
phrases that includes insect, glitch, beetle, error, mi-
crobe, wire, cockroach, malfunction, microphone,
mosquito, virus, tracker, pest, informer, snitch, para-
site, bacterium, fault, mistake, failure and many oth-
ers. The goal of this work is to group these para-
phrases into clusters that denote the distinct senses
of the input word or phrase, as shown in Figure 1.

We develop a method for clustering the para-
phrases from the Paraphrase Database (PPDB).
PPDB contains over 100 million paraphrases gen-
erated using the bilingual pivoting method (Ban-
nard and Callison-Burch, 2005), which posits that
two English words are potential paraphrases of each
other if they share one or more foreign translations.
We apply two clustering algorithms, Hierarchical
Graph Factorization Clustering (Yu et al., 2005;
Sun and Korhonen, 2011) and Self-Tuning Spec-
tral Clustering (Ng et al., 2001; Zelnik-Manor and
Perona, 2004), and systematically explore different
ways of defining the similarity matrix that they use
as input. We exploit a variety of features from PPDB
to cluster its paraphrases by sense, including its im-
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Figure 2: SEMCLUST connects all paraphrases that
share foreign alignments, and cuts edges below a
dynamically-tuned cutoff weight (dotted lines). The
resulting connected components are its clusters.

plicit graph structure, aligned foreign words, para-
phrase scores, predicted entailment relations, and
monolingual distributional similarity scores.

Our goal is to determine which algorithm and
features are the most effective for clustering para-
phrases by sense. We address three research ques-
tions:

• Which similarity metric is best for sense clus-
tering? We systematically compare different
ways of defining matrices that specify the sim-
ilarity between pairs of paraphrases.

• Are better clusters produced by comparing
second-order paraphrases? We use PPDB’s
graph structure to decide whether mosquito and
pest belong to the same sense cluster by com-
paring lists of paraphrases for the two words.

• Can entailment relations inform sense cluster-
ing? We exploit knowledge like beetle is-an in-
sect, and that there is no entailment between
malfunction and microbe.

Our method produces sense clusters that are qualita-
tively and quantitatively good, and that represent a
substantial improvement to the PPDB resource.

2 Related Work

The paraphrases in PPDB are already partitioned
by syntactic type, following the work of Callison-
Burch (2008). He showed that applying syntac-
tic constraints during paraphrase extraction via the

pivot method improves paraphrase quality. This
means that paraphrases of the noun bug are sepa-
rated from paraphrases of the verb bug, which con-
sist of verbs like bother, trouble, annoy, disturb, and
others. However, organizing paraphrases this way
still leaves the issue of mixed senses within a single
part of speech. This lack of sense distinction makes
it difficult to decide when a paraphrase in PPDB
would be an appropriate substitute for a word in a
given sentence. Some researchers resort to crowd-
sourcing to determine when a PPDB substitution is
valid (Pavlick et al., 2015c).

Our sense clustering work is closely related to the
task of word sense induction (WSI), which aims to
discover all senses of a target word from large cor-
pora. One family of common approaches to WSI
aims to discover the senses of a word by clustering
the monolingual contexts in which it appears (Nav-
igli, 2009). Another uncovers a word’s senses by
clustering its foreign alignments from parallel cor-
pora (Diab, 2003). A more recent family of ap-
proaches to WSI represents a word as a feature vec-
tor of its substitutable words, i.e. paraphrases (Mela-
mud et al., 2015; Yatbaz et al., 2012). In this paper
we take inspiration from each of these families of
approaches, and we explore them when measuring
word similarity in sense clustering.

The work most closely related to ours is that of
Apidianaki et al. (2014), who used a simple graph-
based approach to cluster pivot paraphrases on the
basis of contextual similarity and shared foreign
alignments. Their method represents paraphrases as
nodes in a graph and connects each pair of words
sharing one or more foreign alignments with an edge
weighted by contextual similarity. Concretely, for
paraphrase set P , it constructs a graph G = (V,E)
where vertices V = {pi ∈ P} are words in the
paraphrase set and edges connect words that share
foreign word alignments in a bilingual parallel cor-
pus. The edges of the graph are weighted based on
their contextual similarity (computed over a mono-
lingual corpus). In order to partition the graph into
clusters, edges in the initial graph G with contex-
tual similarity below a threshold T ′ are deleted. The
connected components in the resulting graph G′ are
taken as the sense clusters. The threshold is dynami-
cally tuned using an iterative procedure (Apidianaki
and He, 2010).
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As evaluated against reference clusters derived
from SEMEVAL 2007 Lexical Substitution gold
data (McCarthy and Navigli, 2007), their method,
which we call SEMCLUST, outperformed simple
most-frequent-sense, one-sense-per-paraphrase, and
random baselines. Apidianaki et al. (2014)’s work
corroborated the existence of sense distinctions in
the paraphrase sets, and highlighted the need for fur-
ther work to organize them by sense. In this paper,
we improve on their method using more advanced
clustering algorithms, and by systematically explor-
ing a wider range of similarity measures.

3 Graph Clustering Algorithms

To partition paraphrases by sense, we use two ad-
vanced graph clustering methods rather than using
Apidianaki et al. (2014)’s edge deletion approach.
Both of them allow us to experiment with a variety
of similarity metrics.

3.1 Hierarchical Graph Factorization
Clustering

The Hierarchical Graph Factorization Clustering
(HGFC) method was developed by Yu et al. (2006)
to probabilistically partition data into hierarchical
clusters that gradually merge finer-grained clusters
into coarser ones. Sun and Korhonen (2011) ap-
plied HGFC to the task of clustering verbs into
Levin (1993)-style classes. Sun and Korhonen ex-
tended the basic HGFC algorithm to automatically
discover the latent tree structure in their clustering
solution and incorporate prior knowledge about se-
mantic relationships between words. They showed
that HGFC far outperformed agglomerative cluster-
ing methods on their verb data set. We adopt Sun
and Korhonen’s implementation of HGFC for our
experiments.

HGFC takes as input a nonnegative, symmet-
ric adjacency matrix W = {wij} where rows and
columns represent paraphrases pi ∈ P , and en-
tries wij denote the similarity between paraphrases
simD(pi, pj). The algorithm works by factorizing
W into a bipartite graph, where the nodes on one
side represent paraphrases, and nodes on the other
represent senses. The output of HGFC is a set of
clusterings of increasingly coarse granularity, which
we can also represent with a tree structure. The algo-

rithm automatically determines the number of clus-
ters at each level. For our task, this has the benefit
that a user can choose the cluster granularity most
appropriate for the downstream task (as illustrated
in Figure 5). Another benefit of HGFC is that it
probabilistically assigns each paraphrase to a clus-
ter at each level of the hierarchy. If some pi has high
probability in multiple clusters, we can assign pi to
all of them (Figure 3c).

3.2 Spectral Clustering

The second clustering algorithm that we use is Self-
Tuning Spectral Clustering (Zelnik-Manor and Per-
ona, 2004). Like HGFC, spectral clustering takes
an adjacency matrix W as input, but the similari-
ties end there. Whereas HGFC produces a hierar-
chical clustering, spectral clustering produces a flat
clustering with k clusters, with k specified at run-
time. The Zelnik-Manor and Perona (2004)’s self-
tuning method is based on Ng et al. (2001)’s spectral
clustering algorithm, which computes a normalized
Laplacian matrix L from the input W , and executes
K-means on the largest k eigenvectors of L. Intu-
itively, the largest k eigenvectors of L should align
with the k senses in our paraphrase set.

4 Similarity Measures

Each of our clustering algorithms take as input an
adjacency matrix W where the entries wij corre-
spond to some measure of similarity between words
i and j. For the paraphrases in Figure 1, W is a
20x20 matrix that specifies the similarity of every
pair of paraphrases like microbe and bacterium or
microbe and malfunction. We systematically inves-
tigated four types of similarity scores to populate W .

4.1 Paraphrase Scores

Bannard and Callison-Burch (2005) defined a para-
phrase probability in order to quantify the goodness
of a pair of paraphrases, based on the underlying
translation probabilities used by the bilingual piv-
oting method. More recently, (Pavlick et al., 2015a)
used supervised logistic regression to combine a va-
riety of scores so that they align with human judge-
ments of paraphrase quality. PPDB 2.0 provides this
score for each pair of words in the database. The
PPDB 2.0 score is a nonnegative real number that
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(a) Undirected graph for query word
bug. Wider lines signify stronger
similarity.
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(b) The corresponding adjacency matrix W .
Darker cells signify stronger similarity.

insect  
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microbe  

bacterium    
virus    

glitch  
error    

failure    
fault  

mistake    
malfunction    
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tracker    

informer  
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insect, mosquito, pest  
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beetle
parasite
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virus
glitch
error, failure, fault, mistake
malfunction
microphone, wire
wire, tracker, informer, snitch

(c) The bipartite graph induced by the
first iteration of HGFC. Note wire is
assigned to two clusters.

Figure 3: The graph, corresponding adjacency matrix W , and bipartite graph created by the first iteration of
HGFC for query word bug (n)

can be used directly as a similarity measure:

wij =

{
PPDB2.0Score(i, j) (i, j) ∈ PPDB
0 otherwise

PPDB 2.0 does not provide a score for a word with
itself, so we set PPDB2.0Score(i, i) to be the max-
imum PPDB2.0Score(i, j) such that i and j have
the same stem.

4.2 Second-Order Paraphrase Scores

Work by Rapp (2003) and Melamud et al. (2015)
showed that comparing words on the basis of their
shared paraphrases is effective for WSI. We define
two novel similarity metrics that calculate the simi-
larity of words i and j by comparing their second-
order paraphrases. Instead of comparing microbe
and bacterium directly with their PPDB 2.0 score,
we look up all of the paraphrases of microbe and all
of the paraphrases of bacterium, and compare those
two lists.

Specifically, we form notional word-paraphrase
feature vectors vp

i and vp
j where the features cor-

respond to words with which each is connected in
PPDB, and the value of the kth element of vp

i equals
PPDB2.0Score(i, k). We can then calculate the
cosine similarity or Jensen-Shannon divergence be-
tween vectors:

simPPDB.cos(i, j) = cos(vp
i , v

p
j )

Figure 4: Comparing second-order paraphrases for
malfunction and fault based on word-paraphrase
vectors. The value of vector element vij is
PPDB2.0Score(i, j).

simPPDB.js(i, j) = 1− JS(vp
i , v

p
j )

where JS(vp
i , v

p
j ) is calculated assuming that the

paraphrase probability distribution for word i is
given by its normalized word-paraphrase vector vp

i .

4.3 Similarity of Foreign Word Alignments

When an English word is aligned to several foreign
words, sometimes those different translations indi-
cate a different word sense (Yao et al., 2012). Using
this intuition, Gale et al. (1992) trained an English
WSD system on a bilingual corpus, using the dif-
ferent French translations as labels for the English
word senses. For instance, given the English word
duty, the French translation droit was a proxy for its
tax sense and devoir for its obligation sense.

PPDB is derived from bilingual coropra. We re-
cover the aligned foreign words and their associated
translation probabilities that underly each PPDB en-
try. For each English word in our dataset, we get

1466



each foreign word that it aligns to in the Spanish and
Chinese bilingual parallel corpora used by Ganitke-
vitch and Callison-Burch (2014). We use this to de-
fine a novel foreign word alignment similarity met-
ric, simTRANS(i, j) for two English paraphrases i
and j. This is calculated as the cosine similarity of
the word-alignment vectors va

i and va
j where each

feature in va is a foreign word to which i or j aligns,
and the value of entry va

if is the translation probabil-
ity p(f |i).

simTRANS(i, j) = cos(va
i , va

j )

4.4 Monolingual Distributional Similarity
Lastly, we populate the adjacency with a distri-
butional similarity measure based on WORD2VEC

(Mikolov et al., 2013). Each paraphrase i in our data
set is represented as a 300-dimensional WORD2VEC

embedding vw
i trained on part of the Google News

dataset. Phrasal paraphrases that did not have an en-
try in the WORD2VEC dataset are represented as the
mean of their individual word vectors. We use the
cosine similarity between WORD2VEC embeddings
as our measure of distributional similarity.

simDISTRIB(i, j) = cos(vw
i , vw

j )

5 Determining the Number of Senses

The optimal number of clusters for a set of para-
phrases will vary depending on how many senses
there ought to be for an input word like bug. It
is generally recognized that optimal sense granu-
larity depends on the application (Palmer et al.,
2001). WordNet has notoriously fine-grained
senses, whereas most word sense disambiguation
systems achieve better performance when using
coarse-grained sense inventories (Navigli, 2009).
Depending on the task, the sense clustering for query
word coach in Figure 5b with k = 5 clusters may be
preferable to the alternative with k = 3 clusters. An
ideal algorithm for our task would enable clustering
at varying levels of granularity to support different
downstream NLP applications.

Both of our clustering algorithms can produce
sense clusters at varying granularities. For HGFC
this requires choosing which level of the resulting
tree structure to take as a clustering solution, and for
spectral clustering we must specify the number of

clusters prior to execution.1 To determine the op-
timal number of clusters, we use the mean Silhou-
ette Coefficient (Rousseeuw, 1987) which balances
optimal inter-cluster tightness and intra-cluster dis-
tance. The Silhouette Coefficient is calculated for
each paraphrase pi as

s(pi) =
b(pi)− a(pi)

max{a(pi), b(pi)}
where a(pi) is pi’s average intra-cluster distance
(average distance from pi to each other pj in the
same cluster), and b(pi) is pi’s lowest average inter-
cluster distance (distance from pi to the nearest ex-
ternal cluster centroid). For each clustering algo-
rithm, we choose as the ’solution’ the clustering
which produces the highest mean Silhouette Coef-
ficient. The Silhouette Coefficient calculation takes
as input a matrix of pairwise distances, so we simply
use 1 −W where the adjacency matrix W is calcu-
lated using one of the similarity methods we defined.

6 Incorporating Entailment Relations

Pavlick et al. (2015b) added a set of automatically
predicted semantic entailment relations for each en-
try in PPDB 2.0. The entailment types that they in-
clude are Equivalent, Forward Entailment, Reverse
Entailment, Exclusive, and Independent. While a
negative entailment relationship (Exclusive or Inde-
pendent) does not preclude words from belonging to
the same sense of some query word, a positive en-
tailment relationship (Equivalent, Forward/Reverse
Entailment) does give a strong indication that the
words belong to the same sense.

We seek a straightforward way to determine
whether entailment relations provide information
that is useful to the final clustering algorithm. Both
of our algorithms take an adjacency matrix W as
input, so we add entailment information by simply

1For spectral clustering there has been significant study into
methods for automatically determining the optimal number of
clusters, including analysis of eigenvalues of the graph Lapla-
cian, and finding the rotation of the Laplacian that brings it clos-
est to block-diagonal (Zelnik-Manor and Perona, 2004). We ex-
perimented with these and other cluster analysis methods such
as the Dunn Index (Dunn, 1973) in our work, but found that us-
ing the simple Silhouette Coefficient produced clusterings that
were competitive with the more intensive methods, in far less
time.
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autobus 
bus 
carriage 
railcar 
car 
stagecoach 
stage 
trainer, instructor 
teacher, tutor 
manager 
handler 
omnibus 

(a) HGFC clustering result

c1: trainer, tutor, instructor, teacher, manager, handler 
c2: stagecoach, stage 
c3: omnibus, bus, autobus, car, carriage, railcar 

k=3 

c1: trainer, tutor, instructor, teacher 
c2: stagecoach, stage 
c3: omnibus, bus, autobus 
c4: car, carriage, railcar 
c5: manager, handler 

k=5 

(b) Spectral clustering results

Figure 5: HGFC and Spectral Clustering results for
coach (n). Our silhouette optimization sets k = 3.

multiplying each pairwise entry by its entailment
probability. Specifically, we set

wij =

{
(1− pind(i, j))simD(i, j) (i, j) ∈ PPDB
0 otherwise

where pind(i, j) gives the PPDB 2.0 probability that
there is an Independent entailment relationship be-
tween words i and j. Intuitively, this should increase
the similarity of words that are very likely to be en-
tailing like fault and failure, and decrease the simi-
larity of non-entailing words like cockroach and mi-
crophone.

7 Experimental Setup

We follow the experimental setup of Apidianaki et
al. (2014). We focus our evaluation on a set of query
words drawn from the LexSub test data (McCarthy
and Navigli, 2007), plus 16 additional handpicked
polysemous words.

7.1 Gold Standard Clusters
One challenge in creating our clustering methodol-
ogy is that there is no reliable PPDB-sized standard
against which to assess our results. WordNet synsets
provide a well-vetted basis for comparison, but only
allow us to evaluate our method on the 38% of our
PPDB dataset that overlaps it. We therefore evaluate
performance on two test sets.

WordNet+ Our first test set is designed to assess
how well our solution clusters align with WordNet
synsets. We chose 185 polysemous words from the
SEMEVAL 2007 dataset and an additional 16 hand-
picked polysemous words. For each we formed
a paraphrase set that was the intersection of their
PPDB 2.0 XXXL paraphrases with their WordNet
synsets, and their immediate hyponyms and hyper-
nyms. Each reference cluster consisted of a Word-
Net synset, plus the hypernyms and hyponyms of
words in that synset. On average there are 7.2 refer-
ence clusters per paraphrase set.

CrowdClusters Because the coverage of Word-
Net is small compared to PPDB, and because Word-
Net synsets are very fine-grained, we wanted to cre-
ate a dataset that would test the performance of our
clustering algorithm against large, noisy paraphrase
sets and coarse clusters. For this purpose we ran-
domly selected 80 query words from the SEMEVAL
2007 dataset and created paraphrase sets from their
unfiltered PPDB2.0 XXL entries. We then itera-
tively organized each paraphrase set into reference
senses with the help of crowd workers on Amazon
Mechanical Turk. On average there are 4.0 reference
clusters per paraphrase set. A full description of our
method is included in the supplemental materials.

7.2 Evaluation Metrics
We evaluate our method using two standard metrics:
the paired F-Score and V-Measure. Both were used
in the 2010 SemEval Word Sense Induction Task
(Manandhar et al., 2010) and by Apidianaki et al.
(2014). We give our results in terms of weighted av-
erage performance on these metrics, where the score
for each individual paraphrase set is weighted by the
number of reference clusters for that query word.

Paired F-Score frames the clustering problem as
a classification task (Manandhar et al., 2010). It gen-
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erates the set of all word pairs belonging to the same
reference cluster, F (S), and the set of all word pairs
belonging to the same automatically-generated clus-
ter, F (K). Precision, recall, and F-score can then
be calculated in the usual way, i.e. P = F (K)∩F (S)

F (K) ,

R = F (K)∩F (S)
F (S) , and F = 2·P ·R

P+R .

V-Measure assesses the quality of a clustering so-
lution against reference clusters in terms of clus-
tering homogeneity and completeness (Rosenberg
and Hirschberg, 2007). Homogeneity describes the
extent to which each cluster is composed of para-
phrases belonging to the same reference cluster, and
completeness refers to the extent to which points in
a reference cluster are assigned to a single cluster.
Both are defined in terms of conditional entropy. V-
Measure is the harmonic mean of homogeneity h
and completeness c; V-Measure = 2·h·c

h+c .

7.3 Baselines

We evaluate the performance of HGFC on each
dataset against the following baselines:

Most Frequent Sense (MFS) assigns all para-
phrases pi ∈ P to a single cluster. By definition,
the completeness of the MFS clustering is 1.

One Cluster per Paraphrase (1C1PAR) assigns
each paraphrase pi ∈ P to its own cluster. By defi-
nition, the homogeneity of 1C1PAR clustering is 1.

Random (RAND) For each query term’s para-
phrase set, we generate five random clusterings of
k = 5 clusters. We then take F-Score and V-
Measure as the average of each metric calculated
over the five random clusterings.

SEMCLUST We implement the SEMCLUST
algorithm (Apidianaki et al., 2014) as a state-of-
the-art baseline. Since PPDB contains only pairs
of words that share a foreign word alignment, in
our implementation we connect paraphrase words
with an edge if the pair appears in PPDB. We
adopt the WORD2VEC distributional similarity score
simDISTRIB for our edge weights.

8 Experimental Results

Figure 6 shows the performance of the two advanced
clustering algorithms against the baselines. Our
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(a) Clustering method performance against WordNet+
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Figure 6: Hierarchical Graph Factorization Cluster-
ing and Spectral Clustering both significantly out-
perform all baselines except 1C1PAR V-Measure.

best configurations2 for HGFC and Spectral out-
performed all baselines except 1C1PAR V-Measure,
which his biased toward solutions with many small
clusters (Manandhar et al., 2010), and performed
only marginally better than SEMCLUST in terms
of F-Score alone. The dominance of 1C1PAR V-
Measure is greater for the WordNet+ dataset which
has smaller reference clusters than CrowdClusters.
Qualitatively, we find that methods that strike a bal-
ance between high F-Score and high V-Measure
tend to produce the ’best’ clusters by human judge-
ment. If we consider the average of F-Score and V-
Measure as a comprehensive performance measure,
our methods outperform all baselines.

2Our top-scoring Spectral method, Spectral*, uses entail-
ments, PPDB2.0Score similarities, and simDISTRIB to
choose k. Our best HGFC method, HGFC*, uses entailments,
simDISTRIB similarities, and PPDB2.0Score to choose k.
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Avg #
Method F-Score V-Measure Clusters
PPDB2.0Score 0.410 0.437 5.960
simDISTRIB 0.376 0.440 5.707
simPPDB.cos 0.389 0.428 7.204
simPPDB.JS 0.385 0.425 7.143
simTRANS 0.358 0.375 6.247
SEMCLUST 0.417 0.180 2.279
Reference 1.0 1.0 5.611

Table 1: Average performance and number of clus-
ters produced by our different similarity methods.

On our dataset, the state-of-the-art SEMCLUST
baseline tended to lump many senses of the query
word together, and produced scores lower than in
the original work. We attribute this to the fact that
the original work extracted paraphrases from Eu-
roParl, which is much smaller than PPDB, and thus
created adjacency matrices W which were sparser
than those produced by our method. Directly ap-
plied, SEMCLUST works well on small data sets,
but does not scale well to the larger, noisier PPDB
data. More advanced graph-based clustering meth-
ods produce better sense clusters for PPDB.

The first question we sought to address with this
work was which similarity metric is the best for
sense clustering. Table 1 reports the average F-
Score and V-Measure across 40 test configurations
for each similarity calculation method.3 On aver-
age across test sets and clustering algorithms, the
paraphrase similarity score (PPDB2.0Score) per-
forms better than monolingual distributional similar-
ity (simDISTRIB) in terms of F-Score, but the re-
sults are reversed for V-Measure. This is also shown
in the best HGFC and Spectral configurations, where
the two similarity scores are swapped between them.

Next, we investigated whether comparing second-
order paraphrases would produce better clusters than
simply using PPDB2.0Score directly. Table 1 also
compares the two methods that we had for comput-
ing the similarity of second order paraphrases – co-
sine similarity (simPPDB.cos) and Jensen-Shannon
divergence (simPPDB.JS). On average across test
sets and clustering algorithms, using the direct para-
phrase score gives stronger V-Measure and F-score
than the second-order methods. It also produces

3Our Supplementary Materials file provides the full set of
results for all 200 configurations that we tested.

coarser clusters than the second-order PPDB simi-
larity methods.

Finally, we investigated whether incorporating
automatically predicted entailment relations would
improve cluster quality, and we found that it did.
All other things being equal, adding entailment in-
formation increases F-Score by .014 and V-Measure
by .020 on average (Figure 7). Adding entailment
information had the greatest improvement to HGFC
methods with simDISTRIB similarities, where it
improved F-Score by an average of .03 and V-
Measure by an average of .05.

9 Discussion and Future Work

We have presented a novel method for clustering
paraphrases in PPDB by sense. When evaluated
against WordNet synsets, the sense clusters pro-
duced by the Spectral Clustering algorithm give a
64% relative improvement in F-Score over the clos-
est baseline, and those produced by the HGFC al-
gorithm give a 50% improvement in F-Score. We
systematically analyzed a variety of similarity met-
rics as input to HGFC and Spectral Clustering, and
showed that incorporating predicted entailment re-
lations from PPDB boosts the performance of sense
clustering.

Our sense clustering provides a significant im-
provement to the PPDB resource that may improve
its applicability to downstream NLP tasks. One pos-
sible application of sense-clustered PPDB entries is
the lexical substitution task, which seeks to iden-
tify appropriate word substitutions. Given a target
word in context, it would be reasonable to suggest
substitutes from the target word’s PPDB sense clus-
ter most closely related to the target context. There
are many possible ways to choose the best clus-
ter for a given context, ranging from simply choos-
ing the cluster whose members have highest aver-
age pointwise mutual information with the context,
to a more complex approach based on training clus-
ter representations using a pseudo-word approach as
in Melamud et al. (2015). We leave this application
for future work.

10 Software and Data Release

With publication of this paper we are releasing
paraphrase clusters for all PPDB 2.0 XXL entries,
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Figure 7: Histogram of metric change by adding en-
tailment information across all experiments.

clustering code, and an interface for crowdsourcing
paraphrase clusters using Amazon Mechanical Turk.

11 Supplementary Material

Our Supplementary Material provides additional de-
tail on our similarity metric calculation, clustering
algorithm implementation, and CrowdCluster refer-
ence cluster data development. We also provide full
evaluation results across the entire range of our ex-
periments, a selection of sense clusters output by our
methods, and example content of our WordNet+ and
CrowdCluster paraphrase sets.
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