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Abstract

We describe a technique for adding contex-
tual distinctions to word embeddings by ex-
tending the usual embedding process — into
two phases. The first phase resembles existing
methods, but also constructs K classifications
of concepts. The second phase uses these clas-
sifications in developing refined K embed-
dings for words, namely word K-embeddings.
The technique is iterative, scalable, and can
be combined with other methods (including
Word2Vec) in achieving still more expressive
representations.

Experimental results show consistently large
performance gains on a Semantic-Syntactic
Word Relationship test set for different K set-
tings. For example, an overall gain of 20% is
recorded at K = 5. In addition, we demon-
strate that an iterative process can further tune
the embeddings and gain an extra 1% (K =
10 in 3 iterations) on the same benchmark. The
examples also show that polysemous concepts
are meaningfully embedded in our K different
conceptual embeddings for words.

1 Introduction

Neural-based word embeddings are vectorial repre-
sentations of words in high dimensional real valued
space. Success with these representations have re-
sulted in their being considered for an increasing
range of natural language processing (NLP) tasks.
Recent advances in word embeddings have shown
great effects that are pushing forward state-of-the-art
results in NLP (Koo et al., 2008; Turian et al., 2010;
Collobert et al., 2011; Yu et al., 2013; Mikolov et al.,

2013a; Mikolov et al., 2013b; Mikolov et al., 2013c).
Embedding learning models for words are also being
adapted for tasks in other research fields (Reinanda
et al., 2015; Vu and Parker, 2015). The Continuous
bag of words (CBOW) and Skip-gram (Mikolov et
al., 2013a) are currently considered as state-of-the-
art in learning algorithms for word embeddings.

The ability of words to assume different roles
(syntax) or meanings (semantics) presents a basic
challenge to the notion of word embedding (Erk and
Padó, 2008; Reisinger and Mooney, 2010; Huang et
al., 2012; Tian et al., 2014; Neelakantan et al., 2014;
Chen et al., 2015). External resources and features
are introduced to address this challenge. In general,
individuals with no linguistic background can gener-
ally resolve these differences without difficulty. For
example, they can distinguish “bank” as referring to
a riverside or a financial establishment without se-
mantic or syntactic analysis.

Distinctions of role and meaning often follow
from context. The idea of exploiting context in lin-
guistics was introduced with a distributional hypoth-
esis: “linguistic items with similar distributions have
similar meanings” (Harris, 1954). Firth soon after-
wards emphasized this in a famous quote: “a word is
characterized by the company it keeps” (1957).

We propose to exploit only context information to
distinguish different concepts behind words in this
paper. The contribution of this paper is to note that
a two-phase word embedding training can be helpful
in adding contextual information to existing embed-
ding methods:

• we use learned context embeddings to effi-
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ciently cluster word contexts into K classifi-
cations of concepts, independent of the word
embeddings.

• this approach can complement existing sophis-
ticated, linguistically-based features, and can
be used with word embeddings to achieve gains
in performance by considering contextual dis-
tinctions for words.

• two-phase word embedding may have other ap-
plications as well, conceivably permitting some
‘non-linear’ refinements of linear embeddings.

In the next section we present our learning strat-
egy for word K-embeddings, outlining how the
value of K affects its power in increasing syntac-
tic and semantic distinctions. Following this, a large-
scale experiment serves to validate the idea — from
several different perspectives. Finally, we offer con-
clusions about how adding contextual distinctions to
word embeddings (with our second phase of embed-
ding) can gain power in distinguishing among dif-
ferent aspects of words.

2 Learning Word K-Embeddings

The use of multiple semantic representations for a
word in resolving polysemy has a significant liter-
ature (Erk and Padó, 2008; Reisinger and Mooney,
2010; Huang et al., 2012; Tian et al., 2014; Nee-
lakantan et al., 2014; Chen et al., 2015). Strategies
often focus on discrimination using syntactic and se-
mantic information.

We investigate another direction — the extension
of the word embedding process into a second phase
— which allows context information to be consol-
idated with the embedding. Rather than annotating
words with features, our technique treats context as
second-order in nature, suggesting an additional rep-
resentation step.

Our learning strategy for word K-embeddings is
therefore done, possibly iteratively, in two phases:

1. Annotating words with concepts (defined by
their contextual clusters)

2. Training embeddings using the resulting anno-
tated text.

2.1 Concept Annotation using Context
Embeddings

We propose to annotate words with concepts given
by learned context embeddings, which are an under-
utilized output of word embedding training. Our
strategy is based on the assumption that the context
of a word is useful for discriminating its conceptual
alternatives in polysemy. In general, our concept an-
notation for words is performed in two steps — clus-
tering of context embeddings followed by annota-
tion.

Specifically, we first employ a clustering algo-
rithm to cluster the context embeddings. K-means
is our algorithm of choice. The clustering algorithm
will assign each context word to a distinct cluster.
This result is then used to re-assign words in train-
ing data to their contextual cluster.

Second, we annotate words in the training data
with their most common contextual cluster (of their
context words). We define context words to mean
the surrounding words of a given word. Formally,
a word is annotated with a concept given by the fol-
lowing function:

max
c∈C

∑
(wi,ci)∈W

f(ci, c)

Here W is the set of context words of the current
word, and f(ci, cj) is a boolean function whose out-
put is 1 if the input parameters are equal:

f(ci, cj) =

{
1, if ci = cj

0, otherwise.

The cluster-annotated dataset is then passed into
the next training phase.

2.2 Training Word K-Embeddings
The second phase is similar to existing word embed-
ding training systems. The number of clusters K de-
fines the maximum number of different representa-
tions for words. Table 1 presents the statistics for dif-
ferent selections of K using the dataset mentioned in
the Experiments section.

Each value K in Table 1 is shown with the total
number of embeddings and vocabulary size. Words
in the vocabulary can have up to K different em-
beddings for different annotated concepts. As K
increases, the size of the vocabulary decreases —
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K total embeddings vocabulary size ratio
1 1,965,139 1,965,139 1.00
5 2,807,016 1,443,061 1.95

10 2,740,351 1,474,704 1.86
15 3,229,945 1,374,055 2.35
20 3,236,882 1,410,521 2.29
25 3,382,722 1,383,162 2.45
30 3,404,150 1,418,027 2.40

Table 1: Total embeddings and vocabulary size for different K

for Wikipedia dataset. Words with frequency lower than 5 are

filtered during pre-processing.

yet remains largely stable for different values of K
greater than 1. This is explained by the count of
words being scattered to different concepts, result-
ing in a lower word count per concept. In our set-
ting, concept-annotated words with fewer than 5 oc-
currences will be discarded during training of word
embeddings.

It is interesting to note that the total number of
embeddings is broadly stable and less affected by
K. For example, as we allow up to 10 different con-
cepts for a word (K = 10), the total number of em-
beddings grows only slightly compared to the result
for K = 1. The average number of embeddings for
a word is 1.86 for K = 10. In other words, concept
annotations do converge as we increase K.

2.3 Word K-Embedding Training Workflow

Figure 1 presents our proposed workflow to train
context-based conceptual word K-embeddings. Our
system allows each word to have at most K differ-
ent embeddings, where each is a representation for a
certain concept.

The input to the workflow is a large-scale text
dataset. Initially, we compute context embeddings
for words as presented previously. We can derive
context embeddings directly from the training of al-
most any context-based word embeddings, where
word embeddings are computed via their context
words.

Subsequently, we cluster context embeddings into
groups which reflect varied concepts on some se-
mantic vector space. Each context embedding is as-
signed to a cluster denoting its conceptual role as a
context word. Any clustering algorithm for vectors
can be applied for this task.

Embeddings of annotated context words are used
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Figure 1: Training Word K-Embeddings

to compute concepts of words in a sentence. We hy-
pothesize that the concept of a word is defined by
the concept of its surrounding words. We annotate
concepts for all words in the training data.

Finally, the concept-annotated training data is
passed into any standard algorithm for training
word embeddings for the conceptual word K-
embeddings.

3 Experiments

3.1 Settings

Our training data for word embeddings is Wikipedia
for English, downloaded on November 29, 2014.
It consists of 4,591,457 articles, with a total of
2,015,823,886 words. The dataset is pre-processed
with sentence and word tokenization. We convert
text to lower-case prior to training. We consider
|W |= 5 for the size of the context window W pre-
sented in Section 2.1.

We used the Semantic-Syntactic Word Relation-
ship test set (Mikolov et al., 2013a) for our exper-
imental studies. This dataset consists of 8,869 se-
mantic and 10,675 syntactic queries. Each query is a
tuple of four words (A, B,C, D) for the question “A
is to B as C to what?”. These queries can be either
semantic or syntactic. D, to be predicted from the
learned embeddings, is defined as the closest word
to the vector (A−B + C). We used Word2Vec for
training and scikit-learn for clustering tasks.
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We evaluate the accuracy of the prediction of D
in these queries. A query is considered hit if there
exists at least one correct match and all the words
are in the same concept group. This is based on the
assumption that if “A is to B as C is to D”, either
(A, B) and (C, D) OR (A, C) and (B, D) have to
be in the same concept group.

3.2 Results
The embeddings learned in phases 1 and 2 can be
compared, using different values for K in the K-
means clustering. Word relationship performance re-
sults are shown in Table 2.

Our proposed technique in phase 2 achieves con-
sistently high performance. For example, when K =
5, our absolute performance is 89% and 81% in se-
mantic and syntactic relationship evaluations, gain-
ing 24% and 16% from the standard CBOW model
(phase 1). When K = 25, the performance yields
the best combined result. As shown in Table 1, the
total number of embeddings and vocabulary size dif-
fer by a small multiplicative factor as K increases.

In another comparison, Figure 2 plots our K-
Embeddings results versus the results of a relaxed
evaluation for CBOW, which considers the top K
embeddings instead of the best. Even though our
evaluation is restricted to one-best for each of the
K embeddings, the overall (combined) performance
for different K settings is still consistently better
than the top K embeddings of CBOW. Moreover,
for a specific K setting, the total number of differ-
ent embeddings considered in K-Embeddings is al-
ways less than that of the top K. For example, in our
peak result (K = 25), the total number of embed-
dings considered in the evaluation set is only about
76.17% of the total embeddings with the top 25 of
CBOW.

In addition, we also compare the performances
of K-embeddings in multiple iterations under the
same K setting in Table 3. It shows that the K-
embeddings are improved after certain number of it-
erations. Particularly, for K = 10, we can achieve
best performance after 3 to 4 iterations, gaining
roughly 1%.

Finally, it is also worth noting that the perfor-
mance does not always increase linearly with the
number of embeddings or vocabulary size. This sug-
gests that as we achieve better performance in K-
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Figure 2: Word K-Embeddings and Top-K of CBOW accuracy

comparison

Type iter 1 iter 2 iter 3 iter 4 iter 5
Semantic 88.8 89.6 90.3 90.0 89.0
Syntactic 85.9 84.8 86.7 86.7 85.8

Combined 87.3 87.0 88.3 88.2 87.3

Table 3: Performance of K = 10 in five iterations

embeddings, we should also gain more compact
conceptual embeddings.

3.3 Word Expressivity Analysis
Expressivity of word groups for “mercury” and
“fan” are studied in Table 4. The first two rows
shows most related words of “mercury” and “fan”
without concepts annotation (baseline). The follow-
ing rows present our K-embeddings result. This ta-
ble illustrates the differences that arise in multiple
representations of a word, and shows semantic dis-
tinctions among these representations.

For example, different representations for the
word “mercury” indeed represent a spectrum of as-
pects for the word, ranging from related-cosmos, re-
lated chemical element, automobile, or even to mu-
sic. The same can be seen for “fan” — where we
find concepts related to fan as a follower/supporter,
fan as in machinery, or Fan as a common Chinese
surname. Indeed, we can find many different con-
ceptual readings of these words. These not only re-
flect different polysemous meanings, but also their
conceptual aspects in the real world. Observe that
most related words are grouped into distinct concept
groups, and thus yield strong semantic distinctions.
The result firmly suggests that context embeddings,
like word embeddings, can capture linguistic regu-
larities efficiently.
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Analogy Type Total CBOW K = 5 K = 10 K = 15 K = 20 K = 25 K = 30
capital-common-countries 506 85.18 100.00 100.00 100.00 100.00 100.00 100.00

capital-world 4,524 78.89 96.60 97.24 99.12 99.18 99.29 99.27
currency 866 20.01 36.72 31.18 40.65 41.22 42.84 44.80

city-in-state 2,467 44.75 90.76 89.26 95.42 97.16 97.28 97.61
family 506 85.38 96.25 99.01 97.23 98.42 97.83 99.21

total semantic evaluation 8,869 64.67 89.30 88.83 92.32 92.96 93.18 93.53
gram1-adjective-to-adverb 992 19.76 51.41 59.98 65.73 68.95 70.06 61.90

gram2-opposite 812 26.72 42.12 48.52 62.81 62.19 68.84 56.03
gram3-comparative 1,332 87.99 97.30 97.82 99.25 99.17 99.02 99.25

gram4-superlative 1,122 52.65 71.93 74.15 81.02 78.88 78.70 75.22
gram5-present-participle 1,056 64.96 87.31 91.57 93.47 92.52 96.78 94.03

gram6-nationality-adjective 1,599 90.87 93.62 94.81 93.87 94.68 95.37 94.93
gram7-past-tense 1,560 65.51 66.28 94.42 94.49 95.45 96.41 93.72

gram8-plural 1,332 77.40 93.92 95.42 97.90 96.55 95.80 96.92
gram9-plural-verbs 870 66.78 83.33 94.60 94.71 95.63 95.75 93.22

total syntactic evaluation 10,675 65.17 81.72 85.94 88.83 88.93 90.08 87.21
total combined evaluation 19,544 64.94 85.16 87.25 90.42 90.76 91.49 90.08

Table 2: K-embeddings performance

# Word Most Similar Words

0
mercury cadmium, barium, centaur, jupiter, venus

fan fans, fanbase, fan-base, supporter, fandom

1

mercury1 vanadium1, iron1, sulfur1, polonium1

mercury3 tribune3, dragon3, curlew3, keith3, stanley3

mercury5 ammonia5, magnesium5, sulfur5, mercury9

mercury9 mercury5, mercury2, neptune9, titan9

1

fan1 inlet1, crinoids1, sect1, wedge1, beach1

fan4 supporter4, likes4, legend4, bust4, member4
fan5 fan9, fan0, fans5, fandom5, fanbase5, gamer5
fan8 xiang8, yong8, xin8, yang8, cui8, guo8

3

mercury1 polaris1, mercury3, mercury6, cadmium1

mercury4 chrysler4, sheedy4, mohammad4, gott4
mercury6 arsenic6, lithium6, oxygen6, methane6, dust6
mercury7 cadmium7, nickel7, pollutants7, impurities7
mercury8 rubidium8, xenon8, selenium8, cadmium8

3

fan2 yong2, ye2, ching2, hao2, yi2, chang2, guo2

fan4 member4, parody4, protg4, supporter4
fan6 fanbase6, buzz6, fans3, fandom6, video6

fan7 imprints7, gnatcatchers7, minuta7, flat7
fan8 impeller8, inlet8, spinner8, spring8, hot8

5

mercury2 titanium2, jupiter2, sapphire2, saturn2

mercury3 sodium3, helium3, oxygen3, hydrogen3

mercury6 blue6, leopards6, lotus6, unilever6, copper6
mercury7 arsenic7, sulfur7, radioactivity7, lithium7

mercury9 chlorine9, strontium9, ammonia9, arsenic9

5

fan2 buzz2, fanbase2, gamer2, loudest1, fans1
fan3 blower3, ducts3, cooler3, compressor3
fan5 zang5, huang5, yan5, dun5, zhang5, kao5

fan6 youngster6, participant6, mobster6
fan7 fanbase7, buzz7, youtube7, blogging7

fan8 supporter8, fandom8, enthusiast8, parody8

Table 4: Word Expressivity Analysis

4 Conclusion

In this paper, we have presented a technique for
adding contextual distinctions to word embeddings
with a second phase of embedding. This contextual
information gains power in distinguishing among
different aspects of words. Experimental results with
embedding of the English variant of Wikipedia (over
2 billion words) shows significant improvements in
both semantic- and syntactic- based word embed-
ding performance. The result also presents a wide
range of interesting concepts of words in expressiv-
ity analysis.

These results strongly support the idea of using
context embeddings to exploit context information
for problems in NLP. As we highlighted earlier,
context embeddings are underutilized, even though
word embeddings have been extensively exploited
in multiple applications.

Furthermore, the contextual approach can com-
plement existing sophisticated, linguistically-based
features, and can be combined with other learning
methods for embedding. These results are encour-
aging; they suggest that useful extensions of current
methods are possible with two-phase embeddings.
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