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Abstract
A simile is a figure of speech comparing two
fundamentally different things. Sometimes, a
simile will explain the basis of a comparison
by explicitly mentioning a shared property.
For example, “my room is as cold as Antarc-
tica” gives “cold” as the property shared by
the room and Antarctica. But most similes do
not give an explicit property (e.g., “my room
feels like Antarctica”) leaving the reader to in-
fer that the room is cold. We tackle the prob-
lem of automatically inferring implicit prop-
erties evoked by similes. Our approach in-
volves three steps: (1) generating candidate
properties from different sources, (2) evaluat-
ing properties based on the influence of mul-
tiple simile components, and (3) aggregated
ranking of the properties. We also present an
analysis showing that the difficulty of infer-
ring an implicit property for a simile correlates
with its interpretive diversity.

1 Introduction

A simile is a figure of speech comparing two essen-
tially unlike things, typically using “like” or “as”
(Paul, 1970). Comparing fundamentally different
types of entities is what makes a simile figurative
(Israel et al., 2004). Similes may be closed or open
(Beardsley, 1981). A closed simile explains the
basis for a comparison by explicitly mentioning a
shared property. For example, the simile “my room
is as cold as Antarctica” gives “cold” as the prop-
erty shared by both the room and Antarctica. But
most similes do not explicitly mention the basis for
comparison, leaving people to infer what the enti-
ties have in common. An open simile expressing

the same comparison is “my room feels like Antarc-
tica”, where the shared property of being cold is left
implicit. In our study of similes in tweets, we found
that 92% of similes are open similes so the property
must be inferred. Our research tackles this problem
of inferring the implicit property evoked by an open
simile.

Inferring the basis of comparison in a simile
is central to natural language understanding and
metaphor interpretation. For example, “John was
like a lion in battle” is probably a statement about
John’s bravery or courage, not a description of
John’s physical appearance. Methods to under-
stand figurative similes could also be valuable to un-
derstand metaphor in other linguistic constructions,
such as predicate nominals (e.g., “he is a lion”).
Furthermore, identifying the implicit property of a
simile could be useful for sentiment analysis, be-
cause similes are often used to express positive and
negative feelings (Li et al., 2012). For example,
“John was like a lion in battle” contains only neutral
words, but inferring “bravery” as the implicit prop-
erty suggests that the simile has positive polarity.

We designed a three step process to infer the im-
plicit properties of open similes. First, we gen-
erate candidate properties for a simile by harvest-
ing words that are associated with its verb (“event”)
or object of comparison (“vehicle”) using a variety
of methods, including syntactic patterns, dictionary
definitions, and word embeddings. Each candidate
property is generated from just one component of
the simile. The second step of the process then eval-
uates each property’s compatibility with the com-
plementary component of the simile (event or vehi-
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cle). Finally, the third step of the process aggregates
all of the candidates generated by different methods
and ranks them based on collective evidence from
the different sources. We evaluate the performance
of our approach using gold standard properties pro-
vided by seven human annotators. We also present
an analysis of the similes in our data set with respect
to their interpretive diversity (intuitively, a measure
of how many plausible interpretations a simile has).
We show that our method performs best on similes
with low diversity, as one would expect since their
implicit properties are most clear to humans.

2 Problem Description and Data

A simile typically consists of four key components:
the topic or tenor (subject of the comparison), the
vehicle (object of the comparison), the event (act
or state), and a comparator (usually “as”, “like”,
or “than”) (Niculae and Danescu-Niculescu-Mizil,
2014). For the simile “the room feels like Antarc-
tica”, “room” is the tenor, “feels” is the event, and
“Antarctica” is the vehicle. A property (shared at-
tribute) can optionally be included to explicitly state
how the tenor is being compared with the vehicle,
(e.g., “the room is as cold as Antarctica”).

Table 1 shows examples of open similes from our
Twitter data set, along with several properties in-
ferred by our human annotators (our data set will be
described in Section 2.1). We represent each sim-
ile using just the head noun of the tenor and vehicle,
and the lemma of the event. Veale and Hao (2007)
observed that when a property is explicitly given, it
is usually a salient property of the vehicle. Table
1 illustrates some examples of inferred properties
that are strongly associated with the vehicle (e.g.,
“melodic” and “dulcet” are musical attributes).

We observed that implicit properties can be
strongly evoked from the event as well. For ex-
ample, most inferred properties for “person buzz
like fridge” emanate from the word “buzz”, such as
“humming”, “vibrating”, “distracting”, and “annoy-
ing”. Similarly, the tenor can also evoke properties,
as we see with the inferred property “squinty” for
the simile “eye feel like clam” although our obser-
vation is that this is less common. The event and the
tenor need to be semantically rich to evoke implicit
properties. The event in many similes is a form of

“to be” or a perception verb (e.g., “feels”), which
are semantically weak and contribute little. A tenor
provides limited information when it is a pronoun or
unknown entity (e.g., “John drives like a snail” is
understandable without knowing who John is).

Simile Properties Inferred by Humans
laugh be like music melodic, pleasing, dulcet, tinkly
person sound like prophet wise, insightful, prescient,

enlightened
eye feel like clam slimy, squinty, weary, gummy,

heavy
person look like carrot orange, thin, scrawny, slim, tall
person buzz like fridge humming, vibrating, distracting,

annoying, motorized
person fight like animal ferociously, scratches, tenaciously
person be like shark sneaky, primordial, dangerous, cold
time be like river flowing, fast, winding, unending,

moving
praise be like sunlight warm, rejuvenating, energizing,

cheerful

Table 1: Similes with sample properties inferred by humans.

Ultimately, an implicit property must be compat-
ible with the vehicle, event, and the tenor in order
for a simile to make sense. For example, Antarctica
is strongly associated with the color “white”, but it
would not make sense to infer the property “white”
for the simile “my room feels like Antarctica” be-
cause of the verb “feel”. Although in this example
the tenor “room” is still compatible with “white” and
will not help to eliminate “white” as a property, in
other similes it may (e.g., rivers can be “wide”, but
time can not be, so “wide” can be eliminated as an
implicit property in the simile “time be like river”).

A novel aspect of our work is that our architec-
ture is designed to consider a property’s compatibil-
ity with multiple components. In this research, for
generating candidate properties and utilizing their
influence for compatibility, we particularly focus on
the vehicle and event terms. Initially, we generate
candidate properties from the vehicle and the event
separately. But the second step then evaluates each
candidate property’s compatibility with the comple-
mentary simile component. If a property was ini-
tially generated from the vehicle, then we evaluate
its compatibility with the event; if a property was ini-
tially generated from the event, then we evaluate its
compatibility with the vehicle. This approach em-
phasizes the need to consider multiple components
of a simile when inferring implicit properties.
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2.1 Collecting Similes with Implicit Properties

For our research, we created a new data set of open
similes, where the property is implicit. Similes are
common on Twitter, so we extracted similes from
roughly 140 million English tweets collected dur-
ing the time period 2/13/2013 – 4/15/2014. To iden-
tify similes, we applied a part-of-speech tagger de-
signed for Twitter (Owoputi et al., 2013) to tweets
containing the word “like” and applied rules to rec-
ognize simple noun phrases and verb phrases. We
then selected tweets matching the syntactic pattern:
NP1 V ERB like NP2, where NP2 can contain
only a noun and an optional indefinite article. We
required similes to have a vehicle term with no pre-
modifiers to avoid problems associated with corefer-
ence (e.g., “the man” or “that man”) and to focus on
vehicles that represent general concepts. We leave
for future work the challenge of tackling multi-word
vehicle phrases (e.g., “my room is like stepping into
a hurricane” or “my room is like a boots store”).

This selection process extracted many similes, but
it also extracted literal comparisons with no apparent
property (e.g., “this flower smells like a rose”) and
statements that are not comparisons (e.g., “I called
like five times”). To focus on figurative similes with
an implicit property, we further filtered the collec-
tion to only retain similes with vehicle terms that had
occurred in comparisons with an explicit property.
Using the same Twitter data, we extracted nouns that
appeared in the following syntactic patterns, which
represent comparison constructions with an adjecti-
val property: ADJ like [a, an] NOUN (e.g., “red
like a tomato”) and ADJ as [a, an] NOUN (e.g.,
“red as a tomato”). We only kept similes whose ve-
hicle occurred in these patterns. Finally, we filtered
similes that contain a pronoun (except personal pro-
nouns in the tenor, which we generalized to a “per-
son” token), common person first names1, profan-
ity,2 or words not in a dictionary3 to avoid issues
with Twitter language such as misspellings, elon-
gated words, etc.

1http://deron.meranda.us/data/census-derived-all-first.txt
2http://www.bannedwordlist.com/lists/swearWords.txt
3Using Wordnik: https://www.wordnik.com/

2.2 Gold Standard Implicit Properties

We developed a gold standard set of implicit proper-
ties for each simile using Mechanical Turk. We pre-
qualified 7 workers, who each annotated 700 similes
with frequency≥ 3 randomly selected from our col-
lection. Each annotator was asked to provide up to
2 properties that best captured the most likely basis
for comparison between the tenor and vehicle. We
also provided the annotators with the option to label
a simile as Invalid if it was not a simile at all (most
commonly due to parse errors, such as “he looks like
ran”) or label a simile as having No Property (often
due to literal or underspecified comparisons, such
as “she looks like my aunt”). The annotators were
asked to give adjectives, adverbs, or verbs but oc-
casionally they provided a noun. Table 1 presents
sample annotated simile properties.

Among the 700 similes, a majority of the annota-
tors labeled 59 of them as either Invalid or No Prop-
erty, so we did not use these. We set aside 183 sim-
iles (29%) as a development set and the remaining
458 similes (71%) as a test set.

3 Inferring Implicit Properties

Our research tackles the problem of inferring prop-
erties in open similes by decomposing the problem
into three subtasks: (1) generating candidate proper-
ties, (2) evaluating the candidate properties with re-
spect to multiple simile components, and (3) aggre-
gated ranking of the properties. Figure 1 illustrates
our approach.

Figure 1: Framework for inferring implicit properties.

First, the vehicle and event components of a
simile are used individually to generate candidate
properties. We investigate a variety of candidate
generation methods, including harvesting properties
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from syntactic structures and dictionary definitions,
identifying relevant properties using statistical co-
occurrence, and assessing similarity between word
embedding vectors.

Second, the candidates generated by each method
are evaluated based on their strength of association
with the complementary component of the simile.
For candidates generated from the vehicle term, we
evaluate them based on their association with the
event term, and vice versa. We explore three asso-
ciation measures: point-wise mutual information to
measure statistical co-occurrence, and vector simi-
larity using single and composite word embeddings.

Third, we produce an aggregate ranking over the
entire set of properties hypothesized by all of the
candidate generation methods. Intuitively, we view
each candidate generation method as an independent
source, and look at the aggregate evidence across the
set of different candidate generation methods (simi-
lar to an ensemble). Each property is scored based
on its average rank across the different methods, so
that properties highly ranked by multiple methods
are preferred.

3.1 Candidate Property Generation

We generate candidate properties from the vehicle
and event words of a simile. However when the
event is a form of “to be” or a perception verb (taste,
smell, feel, sound, look), we do not generate candi-
date properties from the event because the verb is too
general. Only 73 (16%) of the similes in our evalu-
ation data have a verb other than “to be” or a per-
ception verb. We restrict properties to be adjectives,
adverbs, or verb forms that can function as nominal
premodifiers (e.g., “crying baby”, “wilted lettuce”).
We explore a total of seven methods for generating
candidate properties and generate candidates using
our entire Twitter corpus.

Modifying ADJ: Given a vehicle term, we extract
pre-modifying adjectives. For example, “ripe” is
extracted for the vehicle “tomato” from the phrase
“ripe tomato”.

Predicate ADJ: Given a vehicle term, we extract
adjectives in predicate adjective constructions with
the vehicle. For example, “red” is extracted for the
vehicle “tomato” from the phrase “tomato is red”.

Modifying ADV: Given an event term (verb), we ex-

tract adverbs that precede or follow the verb. For ex-
ample, “immaturely” is extracted for the event “act”
due to the phrase “acts immaturely”.

Explicit Property: We extract properties mentioned
explicitly in comparison phrases. For vehicle terms,
we extract properties from phrases of the form:
“ADJ/ADV like NP” (e.g., “cold like Antarctica”)
and “ADJ/ADV as NP” (e.g., “cold as Antarctica”).
For event terms, we extract properties from phrases
of the form: “VERB ADJ/ADV like” and “VERB as
ADJ/ADV as” (e.g., “feels as cold as”).

Dictionary Definition: Dictionary definitions often
mention salient properties associated with a word.
We harvest adjectives, adverbs and verbs (function-
ing as premodifiers) as candidate properties from the
dictionary definitions of the vehicle and event terms.
For the definitions, we use Wordnik4, which con-
tains 5 source dictionaries: Heritage Dictionary of
the English Language, Wiktionary, the Collabora-
tive International Dictionary of English, The Cen-
tury Dictionary and Cyclopedia, and WordNet 3.0
(Miller, 1995).

PMI: Given a vehicle or event term, we compute
point-wise mutual information (PMI) between that
term and candidate properties (appearing in ≥ 100
tweets) in our Twitter corpus.

Word Embedding: We train a word embedding
model using our tweet collection, limiting the vo-
cabulary to nouns, verbs, adjectives and adverbs that
occurred in ≥ 100 tweets. For training, we use
word2vecf5 (Levy and Goldberg, 2014) which al-
lows training for arbitrary context using the skip-
gram model. We use 300 dimensions for the out-
put word and context vectors. Candidate proper-
ties are generated by selecting the words whose con-
text vector6 is most similar to the vehicle or event’s
word vector using cosine similarity. To control for
noisy candidates, we require that the property oc-
curred with the vehicle (or event) as a bigram with
frequency ≥ 10 in the Twitter corpus.

For each generation method, we rank the candi-
dates and select the top 20 properties. For the four
methods that use syntactic patterns, we calculate

4https://www.wordnik.com/
5https://bitbucket.org/yoavgo/word2vecf
6properties are expected in the context of a component word.
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P(property | vehicle) based on the number of times
the property and the vehicle appear together in that
syntactic construction among all times the vehicle
appear in that syntactic construction. We use this
probability to rank the candidates. For the dictio-
nary definition method, we sort the properties based
on how many of the 5 dictionaries mention the prop-
erty in the word’s definition. We break ties based on
the frequency of the property in the definitions. For
the word embedding-based method, we use cosine
similarity scores.

3.2 Productivity of the Candidate Generation
Methods

First we investigate how many candidates each
method is able to generate. If a method generates
too few candidates, it will not be very useful. Con-
versely, if a method generates a large number of can-
didates, then our ranking framework needs to be ro-
bust to rank the plausible properties higher than the
properties that do not fit.

Average Min Max
# of Candidates Generated from Vehicle

Modifying ADJ 423.62 1 3177
Predicate ADJ 104.21 0 1070
Explicit Property 8.28 0 116
Dictionary Def. 20.5 0 71

# of Candidates Generated from Event
Modifying ADV 68.67 2 223
Explicit Property 19.85 0 61
Dictionary Def.* 18.59 3 55

Figure 2: Statistics about candidates generated by different

methods. Similes with a “to be” or perception verb were ex-

cluded for the methods that use the event as the source.

Figure 2 presents statistics about the candidate
properties generated by different methods. The PMI

and Word Embedding-based methods were excluded
here as these methods evaluate all words in the cor-
pus. The methods that used the explicit property ex-
traction patterns and dictionary definitions generate
fewer candidates than the methods that used gen-
eral syntactic structures. The trend lines in Figure 2
show that these methods do not generate more than
20 candidate properties for most similes.

3.3 Coverage of the Generated Candidates

Next, we investigate the effectiveness of our candi-
date generation methods. The last column of Table 2
shows candidate ranking results based on Mean Re-
ciprocal Rank (MRR) for the top 20 properties pro-
duced by each candidate generation method. MRR
is calculated by:

MRR =
1
|S|

∑
s∈S

1
(rank of 1st acceptable property)

where S is the set of similes. We observe that the
PMI method (for both vehicles and events) and the
Dictionary Definition method (for events) produced
low MRR scores < 0.10. Therefore we decided not
to use these candidate generation methods.7

One of our primary concerns is assessing the abil-
ity of our candidate generation methods to generate
at least some acceptable properties. We expect them
to over-generate, but they need to produce at least
one acceptable property or the downstream compo-
nents will be helpless. To assess this, we evaluated
the coverage of each candidate generation method
based on the Top 10, Top 20, and Top 30 proper-
ties that it produced. Coverage is the percentage
of similes for which the method generates at least
one gold standard property (from the human annota-
tors). Table 2 shows that the Dictionary Definitions
for vehicles was the best performing method for the
Top 10 candidates, generating at least one accept-
able property for 40% of the similes. The Modify-
ing ADJ method performed best for the Top 30 can-
didates, generating an acceptable property for 63%
of similes. Note that the Explicit Property method
performs reasonably well (40% coverage for Top 30
properties generated from vehicles and 6% coverage
for properties generated from events), but clearly is

7We made this decision based on similar results observed on
our development data.
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not sufficient on its own, showing the limitation of
harvesting explicitly stated properties.

Top10 Top20 Top30 MRR
Coverage of Candidates Generated from Vehicle

PMI* 18% 31% 37% .06
Modifying ADJ 39% 55% 63% .16
Predicate ADJ 28% 39% 43% .11
Explicit Property 37% 39% 40% .23
Dictionary Def. 40% 47% 49% .22
Word Embedding 35% 48% 58% .15
ALL 76% 84% 86% n/a

Coverage of Candidates Generated from Event
PMI* 2% 3% 4% .09
Modifying ADV 4% 5% 5% .13
Explicit Property 4% 5% 6% .16
Dictionary Def.* 3% 4% 4% .09
Word Embedding 5% 6% 6% .16
ALL 9% 10% 10% n/a

All Candidates
TOTAL 78% 86% 88% n/a

Table 2: Coverage and MRR for the candidate generation meth-

ods. Top10, Top20, Top30 = percent of similes with a plausible

property within top 10, 20, 30 ranked properties. Methods ex-

cluded in “ALL” and “TOTAL” rows are marked with (*). In the

MRR calculation when the event component is source, similes

with a “to be” or a perception verb were excluded.

The ALL rows show the coverage obtained by
combining the property lists from all generation
methods listed above in the table. The combined
set of properties (Top 30) generated from vehicles
yields 86% coverage, while the combined set of
properties generated from events yields only 10%
coverage (partly because these methods apply to
only 16% of the similes), showing that vehicles are
more effective for candidate generation. However,
the TOTAL row shows that combining properties
generated from both vehicles and events yields 88%
coverage using the Top 30 candidates. The Top 20
candidates provide coverage that is nearly as good
(86%) with substantially fewer properties to process
downstream, so we use the Top 20 candidates for all
of our experiments.8

3.4 Ranking the Candidate Properties Using
Influence from the Second Component

Next, we investigate whether the initial ranking re-
sults in the previous step can be improved by con-

8The decision to use the Top 20 candidates was based on
similar results on our development data.

sidering the second component of the simile. Intu-
itively, suppose that “green”, “slow”, and “endan-
gered” are generated as candidate properties from
the vehicle “turtle” (e.g., for “dad drives like a tur-
tle”). Taking the event verb “drive” into account can
help to rank “slow” more highly than the other can-
didates. We explore three criteria to rank candidates
generated from one simile component based on its
association with the second component (unless the
event is “to be” in which case we retain the original
candidate ranking because the verb is too general).
PMI with second component (PMI): We calculate
Pointwise Mutual Information between a candidate
property and the second component of a simile.
Embedding word vector similarity with the sec-
ond component (EMB1): We use our trained word
embeddings model to calculate cosine similarity be-
tween a candidate property and the second compo-
nent of the simile. As before, for properties we use
the context vectors.
Embedding word vector similarity with compos-
ite simile vector (EMB2): For a given event and
vehicle, we create a composite simile vector by per-
forming element-wise addition of the vectors for the
event and the vehicle, and calculate cosine similar-
ity with the candidate properties. For example, for
“person talks like robot”, the vectors for “talk” and
“robot” are used to create a composite vector, and
the similarity of the resulting vector with a candidate
property’s context vector is used as the ranking crite-
ria. The intuition here is to capture what is common
in the context distribution (Mikolov et al., 2013) of
“robot” and “talk”, and the context vector of a suit-
able property should have strong similarity with the
resulting vector.

3.5 Results for Candidate Re-ranking
Table 3 presents MRR results after the initially gen-
erated candidates are re-ranked using the influence
of the second simile component. For comparison,
the MRR results from Table 2 are also presented in
the first column (Orig).

Influence from the second simile component as-
sessed with PMI and EMB1 improved the MRR
scores for some candidate generation methods (e.g.,
Predicate ADJ), but did not for others (e.g., Mod-
ifying ADV). However using the composite word
embedding vector (EMB2) to capture the common
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Ranking Method Orig PMI EMB1 EMB2

Candidates Generated from Vehicle
Modifying ADJ .16 .22 .19 .24
Predicate ADJ .11 .16 .14 .22
Explicit Property .23 .25 .23 .28
Dictionary Def. .22 .21 .20 .25
Word Embedding .15 .19 .20 .21

Candidates Generated from Event
Modifying ADV .13 .10 .13 .19
Explicit Property .16 .18 .18 .18
Word Embedding .16 .11 .14 .18
Table 3: MRR scores for candidate ranking methods.

aspects in the context distributions of the event and
vehicle consistently improved MRR for all candi-
date generation methods. Consequently, we use the
composite word embedding vector as the ranking
method for each set of candidate properties.

3.6 Aggregated Ranking

Finally, we need to consider all of the properties pro-
duced by the various candidate generation methods.
As we saw in Table 2, they produce complemen-
tary sets of properties and coverage is highest when
we use all of them together. To produce an aggre-
gated ranking of all candidate properties, we calcu-
late the harmonic mean of the rank for each individ-
ual candidate generation method. This approach re-
wards properties that have a consistently high rank-
ing across different methods.

For comparison, we also show results for a voting
method where a candidate property is ranked based
on how many different methods generated it. To
break ties, we used the frequency of the candidate
in our Twitter corpus.

3.7 Results for Aggregated Ranking

Our final results use two gold standard property sets:
(1) Gd (Gold): uses the set of properties from the
human annotators, and (2) Gd+WN expands Gold
with WordNet synsets (words in the same synset of
a gold property are added) and WordNet’s “similar
to” relation (words that are connected to a gold prop-
erty by the relation are added). The reason for using
Gd+WN is to include synonyms of a gold property
that would otherwise be considered wrong (e.g., if
a human annotator said “beautiful” and our system
said “pretty”).

The first two columns in Table 4 present MRR

MRR Top 1 Top 5

Gd
Gd +
WN

Gd
Gd +
WN

Gd
Gd +
WN

Voted .25 .35 14% 21% 36% 52%
Mean .33 .41 21% 27% 46% 58%

Table 4: Aggregate ranking results.

results for our final ranking. The results show that
with both Gd and Gd+WN, our aggregated ranking
using harmonic mean yields much better MRR re-
sults than the individual methods and better than the
Voted method, yielding our highest MRR: .33 and
.41.

The last 4 columns of Table 4 present the percent-
age of similes for which an acceptable property was
ranked #1 (Top 1) or within the Top 5. Our aggregate
ranking scheme ranks an acceptable property in the
Top 1 position for 27% of similes based on Gd+WN,
and inferred an acceptable property within the Top 5
positions for 58% of all similes.

For the above evaluations, any property given by
the annotators is deemed correct, and any consensus
that the annotators may have had is not accounted
for. To address this, we retained properties with
different degrees of consensus, and subdivided the
evaluation data set. Each subset of the data kept sim-
iles that have properties from a minimum number of
annotators, and only those properties are used as the
gold standard. WordNet synsets and “similar to” re-
lations are also used in determining consensus.

Min # of
Annotators 1 2 3 4 5 6 7
# of Similes
in Data Set 641 588 418 252 136 67 27

Figure 3: Ranking results tracked by annotation consensus with

Gd+WN gold standard, and corresponding data set sizes.
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Figure 3 shows that for all degrees of consensus,
the aggregated ranking is consistently better than the
method that uses the explicit property extraction pat-
terns, which was the best individual candidate gen-
eration method. When properties given by at least 2
annotators are considered as the gold standard, MRR
is lower than when properties given by any annota-
tor are used. With higher consensus, MRR gradually
increases, which is probably because the properties
with high consensus have stronger association with
the simile components, so are easier to infer.

4 Analysis and Discussion

Our gold standard property collection confirmed our
intuition that some similes have many plausible in-
terpretations while others do not. We hypothesized
that this should contribute to the difficulty of implicit
property inference. Utsumi and Kuwabara (2005)
introduced “interpretive diversity” with the hypoth-
esis that similes with more diversity in the inferred
property tend to be more metaphorical, and the val-
ues of salience of the properties are more uniform.
They used Shannon’s entropy to measure the inter-
pretive diversity of a simile.

To explore our hypothesis regarding difficulties
associated with property inference, we first clus-
ter our gold-standard annotated properties. When a
property appears in the WordNet synset of another
property, or if two properties are connected by the
WordNet “similar to” relation, we group the prop-
erties to form property clusters. So each property
cluster represents a set of words that are synonyms
of each other. We aggregate frequency statistics of
individual words in a cluster and measure interpre-
tive diversity of a simile using Shannon’s entropy
(here, X is the random variable representing prop-
erty clusters of a simile):

H(X) = −
∑
x∈X

P (x) log2 P (x)

Figure 4 shows the entropy curve after the 641
similes are sorted by the entropy values of their
property clusters. Based on changes in the slope of
the curve, we then divided the data into 3 subsets,
similes with high (1–100 similes), medium (101–
500 similes), and low (501–641 similes) interpre-
tive diversity. Table 5 presents examples of sim-
iles in each category. High interpretive diversity

Figure 4: Entropy as interpretive diversity of similes.

High Interpretive Diversity
person act like mom : bossy (2), friendly, nuturing,

overbearing, loving, scolding, caring, hovers, strict
protective, cleans, nurturing, annoying

person act like baby : {childish,immature,young} (4),
crying (2), whine, silly, cry, dependent, needy,
pouting, whiny, weak

Medium Interpretive Diversity
person look like robot : stiff (5), jointed, stoic, blank,

expressionless, mechanical, inhuman, dull, uneasy
girl be like butterfly : {beautiful,pretty} (4), free (2),

delicate (2), graceful (2), fluttering, floating,
happy, flowy

Low Interpretive Diversity
person act like clown : {goofy,ridiculous,silly} (5),

{amusing,comical,funny} (5), stupid, degrading,
disruptive, childish

throat feel like sandpaper : {rough,scratchy} (9),
coarse (2), raspy, sore, dry

Table 5: Similes with different levels of interpretive diversity.

Aggregated frequencies are presented within parenthesis.

is clearly demonstrated by “person act like mom”,
showing properties with many different characteris-
tics attributed to mom. Note that the properties con-
tain both positive (e.g., friendly, loving) and negative
(scolding, annoying) attributes. On the other side of
the spectrum are similes with low interpretive diver-
sity, as exemplified by “throat feel like sandpaper”
where the vocabulary of the property set is more lim-
ited.

Table 6 shows that it is much harder to infer the
implicit property in similes with high interpretive di-
versity, demonstrated by a .19 difference in MRR
score from high to low. This trend is also consis-
tent when we see the percentage of similes for which
the system ranks a plausible property at the topmost
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Diversity High Medium Low
MRR .31 .40 .50
Top 1 15% 26% 37%
Top 5 47% 57% 66%

Table 6: Results for different subsets of similes divided by in-

terpretive diversity, using Gold+WN properties.

position (Top 1) or within the Top 5. It is possible
that with low interpretive diversity, when the prop-
erty distribution is unimodal or bimodal, statistical
associations between a property and simile compo-
nents are stronger, and so more easily discovered by
our candidate generation and ranking methods.

5 Related Work

Similes have been studied in linguistics and psy-
cholinguistics to understand how humans process
similes, comparisons, and metaphors, and the inter-
play among different components of these linguistic
forms. Glucksberg et al. (1997) presented a property
attribution model of metaphor comprehension where
the candidate properties are selected from a vehicle
and applied to a topic. Chiappe and Kennedy (2000)
investigated if the number of properties varies be-
tween a metaphor and its simile form. The im-
pacts of semantic dimensions of tenor and prop-
erty salience have been compared by Gagné (2002).
Fishelov (2007) experimented with affective conno-
tation and degrees of difficulty associated with un-
derstanding a simile when a simile property is con-
ventional or unconventional, or no property is given.
Hanks (2005) manually categorized vehicle nouns of
similes into semantic categories.

Automatic approaches that use computational
models for similes are relatively rare. Veale and
Hao (2007) extracted salient properties of vehicles
from the web using “as ADJ as a/an NOUN” extrac-
tion pattern to acquire knowledge for concept cate-
gories. Veale (2012) built a knowledge-base of af-
fective stereotypes by characterizing simile vehicles
with salient properties. Li et al. (2012) used explicit
property extraction patterns to determine the senti-
ment that properties convey toward simile vehicles.
Niculae and Yaneva (2013) and Niculae (2013) used
constituency and dependency parsing-based tech-
niques to identify similes in text. Qadir et al. (2015)
classified similes into positive and negative affec-
tive polarities using supervised classification, with

features derived from simile components. Nicu-
lae and Danescu-Niculescu-Mizil (2014) designed
a classifier with domain specific, domain agnostic,
and metaphor inspired features to determine when
comparisons are figurative.

Computational approaches to work on figurative
language also include figurative language identifi-
cation using word sense disambiguation (Rentoumi
et al., 2009), harvesting metaphors by using noun
and verb clustering-based techniques (Shutova et al.,
2010), interpreting metaphors by generating literal
paraphrases (Shutova, 2010), etc.

Although previous research has extensively used
explicit property extraction patterns for various
tasks, none has explored the impact of multiple
simile components for inferring properties. To our
knowledge, we are the first to introduce the task
of automatically inferring the implicit properties in
open similes, which is fundamental to automatic un-
derstanding of similes.

6 Conclusion

In this work, we addressed the problem of infer-
ring implicit properties in open similes. We showed
that acceptable properties for most similes can be
identified by harvesting properties using syntac-
tic structures, dictionary definitions, statistical co-
occurrence, and word embedding vectors. We then
demonstrated that capturing the combined influence
of a simile’s event and vehicle terms using a com-
posite word embedding vector improved our ability
to rank candidate properties. Finally, we showed
that properties harvested by different methods can
be aggregated and effectively ranked using the har-
monic mean of rankings from the individual meth-
ods. Our method for inferring implicit properties
performed best on similes with low interpretive di-
versity. In future work, we plan to use the inferred
properties to improve affective polarity recognition
in similes.
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