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Abstract

We introduce the task of cross-lingual lexical
entailment, which aims to detect whether the
meaning of a word in one language can be in-
ferred from the meaning of a word in another
language. We construct a gold standard for
this task, and propose an unsupervised solu-
tion based on distributional word representa-
tions. As commonly done in the monolingual
setting, we assume a word e entails a word f if
the prominent context features of e are a sub-
set of those of f. To address the challenge of
comparing contexts across languages, we pro-
pose a novel method for inducing sparse bilin-
gual word representations from monolingual
and parallel texts. Our approach yields an F-
score of 70%, and significantly outperforms
strong baselines based on translation and on
existing word representations.

1 Introduction

Multilingual Natural Language Processing lacks
techniques to automatically compare and contrast
the meaning of words across languages. Machine
translation (Koehn, 2010) lets us discover transla-
tion correspondences in bilingual texts, but a word
and its translation often do not cover the exact same
semantic space: distinct word senses might trans-
late differently (Gale et al., 1992; Diab and Resnik,
2002, among others); semantic relations and asso-
ciations do not always translate, an important is-
sue when constructing multilingual ontologies (Fell-
baum and Vossen, 2012); and words in parallel text
might be translated non-literally due to lexical gaps
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(Santos, 1990; Bentivogli and Pianta, 2000) or deci-
sions of the translator, as becomes clear when com-
paring multiple translations of the same source text
(Bhagat and Hovy, 2013).

As aresult, correct word translations found in par-
allel corpora exhibit a variety of relations including
equivalence, hypernymy, and meronymy. For in-
stance, even after removing noisy examples (John-
son et al., 2007) from a Machine Translation bilex-
icon induced from parallel corpora (Koehn et al.,
2007), we find that the French word “appartement”
(apartment) is linked to related but not strictly equiv-
alent English words, such as “home” or “condo”.

house ||| foyer (foyer)

house ||| maison (house)

house ||| chambre (chamber)

home ||| appartement

condo ||| appartement
apartment ||| appartement

Table 1: Examples of translations drawn from an English-

French bilexicon automatically learned on parallel text.

We aim to design models that capture these differ-
ences and similarities in word meaning across lan-
guages, beyond translation correspondences. As a
first step, we introduce cross-lingual lexical entail-
ment, the task of detecting whether the meaning of
a word in one language can be inferred from the
meaning of a word in another language. In mono-
lingual settings, lexical entailment has received sig-
nificant attention as a representation-agnostic way
of modeling lexical semantics, and as a step to-
ward textual inference (Zhitomirsky-Geffet and Da-
gan, 2009; Turney and Mohammad, 2015; Levy et
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al., 2015; Pavlick et al., 2015). We hypothesize that
the cross-lingual task can help do the same with mul-
tilingual texts.

Building on prior work on the monolingual task,
we take an unsupervised approach, and use a direc-
tional semantic similarity metric motivated by the
distributional inclusion hypothesis (Geffet and Da-
gan, 2005a; Kotlerman et al., 2010): we assume a
word e entails a word f if the prominent context fea-
tures of e are a subset of those of f. However, we
face a new challenge in the cross-lingual case: how
can we represent and compare word contexts across
languages? Our solution leverages recent work on
sparse representations for natural language process-
ing. We develop sparse bilingual word representa-
tions that represent contexts based on interpretable
dimensions that are aligned across languages.

As we will see, this approach successfully detects
cross-lingual lexical entailment (with an F-score of
70%), and significantly outperforms strong base-
lines based (1) on machine translation, and (2) on ex-
isting dense bilingual word representations. Along
the way, we construct a new dataset to evaluate
cross-lingual lexical entailment, and also show the
benefits of our approach in the monolingual setting.

2 A Cross-Lingual View of Lexical
Entailment

Zhitomirsky-Geffet and Dagan (2009) formalize
lexical entailment as a substitutional relationship.
Under their definition, given a word pair (w,v), w
entails v if the following two conditions are fulfilled

1. The meaning of a possible sense of w implies a
possible sense of v, and

2. w can substitute for v in a sentence, such that
the meaning of the modified sentence entails
the meaning of the original sentence.

As a result, monolingual lexical entailment in-
cludes various semantic relations, such as syn-
onymy, hypernymy, some meronymy relations, but
also cause-effect relations (murder entails death),
and other associations (ocean entails water) (Kotler-
man et al., 2010).

We extend this definition to the cross-lingual case
by modifying the second condition. Given a word
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pair (w’,v’), where w’ is a word in language e and
v’ is a word in language f, w’ entails v’ if

1. The meaning of a possible sense of w’ implies
a possible sense of v, and

2. Given a sentence T in f containing v/, w’ can
substitute for v’ in the translation of 7" in e, such
that the meaning of the modified sentence en-
tails the meaning of the original sentence.

Cross-lingual lexical entailment helps us refine
our understanding of semantic mappings across lan-
guages: while the French word ouvrier can be trans-
lated as worker in English, knowing that worker
does not entail ouvrier could be useful in many mul-
tilingual applications, including machine translation
and its evaluation, question answering or entity link-
ing in multilingual texts.

As can be seen in Table 2, lexical entailment is
not always preserved by translation: while aspirin
entails the English word drug, it does not entail the
French drogue, which only refers to the narcotic
sense of drug and not to its medicinal sense.

English-English
affection — feeling
aspirin — drug
water — wet
feeling 4 nostalgia

English-French
affection — sentiment
aspirin /4 drogue
water — humide
feeling /> nostalgie

Table 2: Examples of monolingual and cross-lingual lexical en-

tailment: — can be read as “entails”, /- as “does not entail”.

When evaluating lexical entailment, we use the
same approach as in monolingual tasks (Baroni et
al., 2012; Baroni and Lenci, 2011; Kotlerman et al.,
2010; Turney and Mohammad, 2015): given a bilin-
gual word pair, systems are asked to make a binary
true/false decision on whether the first word entails
the second. We describe the collection of gold stan-
dard annotations in Section 5.2.

3 Unsupervised Detection of Lexical
Entailment

We choose to detect lexical entailment without su-
pervision. As in the monolingual case, detection can
be done using a scoring function which quantifies
the directional semantic similarity of an input word
pair. On monolingual tasks, despite reaching better



performance, supervised systems do not really learn
entailment relations for word pairs, but instead learn
when a particular word in the pair is a “prototypi-
cal hypernym” (Levy et al., 2015). ! Thus, we limit
our investigation to unsupervised models. As a re-
sult, our approach only requires a small number of
annotated examples to tune the scoring threshold.

We use the balAPinc score (Kotlerman et al.,
2009), which is based on the distributional inclusion
hypothesis (Geffet and Dagan, 2005b): given feature
representations of the contexts of two words u and
v, 1 1s assumed to entail v if all features of u tend to
appear within the features of v.

Formally, balAPinc is the geometric mean of a
symmetric similarity score, LIN (Lin, 1998), and an
asymmetric score, APinc. Given a directional entail-
ment pair (v — v),

balAPinc(u — v) = v/LIN(u,v) - APinc(u — v)

Assume we are given ranked feature lists /'V,, and
F'V,, for words u and v respectively. Let w,(f) de-
note the weight of a particular feature f in F'V,,. LIN
is defined by

2

[wu(f) + wy(f)]
_ fEFVLNFV,
a > wu(f)+ D we(f)

JeFV, feFV,

LIN (u,v)

ey

APinc is a modified asymmetric version of the
Average Precision metric used in Information Re-
trieval:

[PV
Z [P(Tv FVmFVU) ’ Tel/(fr)}
APinc(u — v) = 2=1

|F'Va|
(2)
where,
P(r, FV,, FV,)

__ |# features of v in top r features of u |

”
1 iff € FV,

0 otherwise

rel'(f)

!Given a word pair such as (dog,animal), supervised meth-
ods tend to learn that animal is very likely to be a category word
i.e. one that is likely to be a hypernym, and do not take into ac-
count the relationship of animal with dog.
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Thus, to use balAPinc for cross-lingual lexical en-
tailment, we need a ranked list of features that cap-
ture information about the context of words in two
languages. In the monolingual case, features are di-
mensions in a distributional semantic space. For the
cross-lingual task, we need to represent words in two
languages in the same space, or in spaces where a
one-to-one mapping between dimensions exists.

4 Learning Sparse Bilingual Word
Representations

As we will see in Section 9, there is a wealth of ex-
isting methods for learning representations that cap-
ture context of words in two different languages in
the literature. However, they have been evaluated
on tasks that do not require much semantic analy-
sis, such as translation lexicon induction or docu-
ment categorization. In contrast, detecting lexical
entailment requires the ability to capture more subtle
semantic distinctions. This requires bilingual repre-
sentations to capture both the full range of word con-
texts observed in original language texts, as well as
cross-lingual correspondences from translated texts.
We propose a new model that uses sparse non-
negative embeddings to represent word contexts as
interpretable dimensions, and facilitate context com-
parisons across languages. This is an instance of
sparse coding, which consists of modeling data vec-
tors as sparse linear combinations of basis elements.
In contrast with dimensionality reduction techniques
such as PCA, the learned basis vectors need not be
orthogonal, which gives more flexibility to represent
the data (Mairal et al., 2009). These models have
been introduced as word representations in monolin-
gual settings (Murphy et al., 2012) with the goal of
obtaining interpretable, cognitively-plausible repre-
sentations. We review the monolingual models, be-
fore introducing our novel bilingual formulation.

4.1 Review: Learning Monolingual Sparse
Representations

Previous work (Murphy et al., 2012; Faruqui et al.,
2015) on obtaining sparse monolingual representa-
tions is based on a variant of the Nonnegative Matrix
Factorization problem. Given a matrix X contain-
ing v dense word representations arranged row-wise,
sparse representations for the v words can be ob-



tained by solving the following optimization prob-
lem

argmin Z [|ADT — X;|13 + M|Adl 1

’ i=1
subjectto A;; >=0,Vi,j 3)
DI'D; <=1,Vi

The first term in the objective 3 aims to factor-
ize the dense representation matrix X into two ma-
trices, A and D such that the [y reconstruction er-
ror is minimized. The second term is an /; regu-
larizer on A which encourages sparsity, where the
level of sparsity is controlled by the A hyperparame-
ter. This, together with the non-negativity constraint,
helps in obtaining sparsified and interpretable repre-
sentations in A since non-negativity has been shown
to correlate with interpretability. Note that the ob-
jective function on its own is degenerate since it can
be trivially optimized by making the entries of D
arbitrarily large and choosing corresponding small
values as entries of A. To avoid this, an additional
constraint is imposed on D.

4.2 Proposed Bilingual Model

Learning bilingual word representations for entail-
ment requires two sources of information:

e Monolingual distributional representations in-
dependently learned from large amounts of text
in each language. We denote them as two in-
put matrices, X, and Xy, of respective sizes
Ve X Me and vy X ny. Each row in X, repre-
sents the representation of a particular word in
the first language, e, while Xy represents word
representations for the other language f.

e Cross-lingual correspondences that enable
comparison across languages. We define a
“score” matrix S of size v X vy, which captures
high-confidence correspondences between the
vocabularies of the two languages. There are
many ways of defining S. As a starting point,
we define each row of S as a one-hot vector
that identifies the word in f that is most fre-
quently aligned with the e word for that row in
a large parallel corpus. This reduction leads to
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a many-to-one mapping from e to f, which cap-
tures translation ambiguity by allowing multi-
ple words in e to be aligned to the same word

inf.
We formulate the following optimization problem
to obtain sparse bilingual representations:

Ve

. 1
argmin Z iHAeiDeT_XeiH% + Ael[Aeil |1
Ae,De,Af,Ds i=1i

vf

1
+Z §|’AijfT — ijH% + ArllAg
=i
v vf 1
+ZZ§>\xSij||Aei_AfjH§ “)
i=1 j—1

subjectto A > 0 ;DeiT.Dei <1L,1<i<wgg
Ag>0;Dg; Dy < 1,1 < j <y

The first two rows and the constraints in Equation
4 can be understood as in Equation 3 - they encour-
age sparsity in word representations for each lan-
guage. The third row imposes bilingual correspon-
dence constraints, weighted by the regularizer A, : it
encourages words in e and f that are strongly aligned
according to S to have similar representations.

4.3 Optimization

Equations 3 and 4 define non-differentiable, non-
convex optimization problems and finding the glob-
ally optimally solution is not feasible. However, var-
ious methods used to solve convex problems work
well in practice. We use Forward Backward Split-
ting, a proximal gradient method for which an effi-
cient generic solver, FASTA, is available (Goldstein
et al., 2015; Goldstein et al., 2014). FASTA (Fast
Adaptive Shrinkage / Thresholding Algorithm) is
designed to minimize functions of the form f(Ax)+
g(z), where f is a differentiable function, g is a
function (possibly non-differentiable) for which we
can calculate the proximal operator, and A is a lin-
ear operator. For the objective function in our model,
the /1 terms form ¢ and the /5 terms form f.

We have now described all components of the
model required to detect bilingual lexical entail-
ment: solving objective 4 as described yields sparse
representations for words in the two languages that
can be compared directly using the balAPinc metric.



5 Constructing a Gold Standard

5.1 Existing Monolingual Test Suites

A comprehensive suite of lexical entailment test
beds is available for English (Levy et al., 2015).
They were constructed either by asking humans to
annotate entailment relations directly (Kotlerman et
al., 2010), or by deriving entailment labels from
semantic relation annotations (Baroni et al., 2012;
Baroni and Lenci, 2011; Turney and Mohammad,
2015). Each test set has 900 to 1300 positive exam-
ples of lexical entailment - word pairs (w,v) such
that w — v. All but one are balanced.

5.2 Creating a Cross-Lingual Test Set

We select French as the second language: it is a good
starting point for studying cross-lingual entailment,
as it is a resource-rich language with many available
bilingual annotators. We will construct data sets for
more distant language pairs in future work.

We aim to construct a balanced test set of posi-
tive and negative bilingual entailment examples in
the spirit of the existing English test beds. While it
is attractive to leverage existing English examples,
we cannot translate them directly as entailment rela-
tions might be affected by translation ambiguity (as
illustrated in Table 2).

We therefore obtain annotated bilingual examples
using a two step process: (1) automatic translation of
monolingual examples, and (2) manual annotation
through crowdsourcing. For a sample of positive ex-
amples of entailment w, — v, in the monolingual
datasets, we generate up to two French translations
for ve, vy and vyo, using the top translations from
BabelNet (Navigli and Ponzetto, 2012) and Google
Translate. vy and vy are then paired back with we,
thus generating two unannotated crosslingual exam-
ples. Annotation is crowdsourced on Crowdflower
2: for each example pair (we, vy ), workers are asked
to label it as true (w. — vy) or false (we /> vy). We
select the positive examples annotated with high-
agreement, and obtain the same number of negative
examples by applying the same translation process

to negative examples>.

2http://crowdflower.com

3Manual annotation is unnecessary for negative examples: it
is unlikely that a negative example w - v will become posi-
tive by translating v automatically. We verified this by asking

1191

5.3 Crowdsourcing Cross-lingual Entailment
Judgments

Detecting lexical entailment for bilingual word pairs
is a non-trivial annotation task, and requires a good
command of both French and English. For quality
control, we first ask a bilingual speaker in our group
to conduct a pilot annotation task, which we use to
evaluate workers’ ability to perform the task. In ad-
dition, Crowdflower allows us to present this task
to only workers who have a proven knowledge of
French, and to georestrict the task to countries most
likely to have French-English bilinguals.

N | Examples

0 | (animal,couleur), (animal,reptile),
(art, serpent)

1 (asp, vertébré), (chancellor, guide),
(psychotherapy,capacité)

2 (bookmark, marque), (postman, ouvrier),
(endurance, force)

3 (cricket,insecte), (muse,divinité),
(parapet, paroi)

4 (ape, animal), (reimbursement,paiement),
(lady,adulte)

5 | (epistle,lettre), (gin,boisson),
(potato,nourriture)

Table 3: Randomly selected examples for each level of annota-
tor agreement: N is the number of annotators who labeled pair
as true (out of five)

This approach yielded a large number of high-
quality annotations quickly. 1680 cross-lingual pairs
were presented to five annotators each. 24 pairs did
not receive enough judgments. For the remaining
1656 pairs, four or more annotators agreed for 75%
of examples (Figure 1).

This result first shows that we can indeed gener-
ate a gold standard for the challenging task of cross-
lingual lexical entailment using such crowdsourcing
techniques. We ensure high-quality annotations by
selecting all 945 (w, v) where four or more annota-
tors agree that w — v.

In addition, the degree of agreement sheds light
on how the notion of lexical entailment is inter-
preted by non-expert annotators. In Table 3, we
present randomly selected examples for each agree-

a bilingual speaker to manually check a random sample of 100
such translated pairs, which were all found to remain negative.
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Figure 1: Agreement statistics for dataset creation. X-axis in-
dicates number of annotators who labeled pair as true (out of
five)

ment level. The bottom two rows represent clear
positive examples, that are cross-lingual equivalents
of hypernymy or synonymy relations: e.g., gin is a
kind of drink (boisson in French). The top row rep-
resent clear negative examples, where the two words
are unrelated (e.g., art and serpent, which means
snake in English) or the directionality is wrong (e.g.,
animal < reptile). The middle rows where one to
three annotators chose to annotate the word pair as
negative contain less clear-cut cases, including as-
sociation relations (e.g., endurance — force), and
examples where entailment judgments requires tak-
ing into account more subtle word sense or transla-
tion distinctions (e.g., bookmark can be translated as
marque for a positive example, but the most frequent
sense of marque translates into English as brand, for
which the entailment relation does not hold.)

6 Experimental Conditions

We estimate the following models for evaluation on
the test sets described in the previous section.

6.1 Sparse Bilingual Model

Estimating sparse, bilingual representations as de-
scribed in Section 4.2 first requires learning dense
monolingual representations in two languages (Xe
and X¢). We can in principle use any type of dense
representations. We choose to train GloVe (Penning-
ton et al., 2014) vectors on a corpus comprised of Gi-
gaword and Wikipedia to learn dense representations
of 2000 dimensions for English and French. English
vectors are trained on a corpus of 4.9B words, while
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French vectors are trained on 1.2B words.

Second, we construct S by word-aligning large
amounts of parallel corpora using a fast implemen-
tation of IBM model 2 (Dyer et al., 2013). We com-
bine Europarl (Koehn, 2005), News Commentary 4
and Wikipedia > to create a large parallel corpus of
72M English tokens and 78M French tokens. All
corpora are tokenized and lowercased.

We learn 100-dimensional sparse representations
with hyperparameters A\, = Ay = 0.5, A, = 10.

6.2 Contrastive Models

We also learn two other sets of 100-dimensional
word representations, as a basis for comparison.

First, we learn sparse monolingual English word
representations, which will be used in monolingual
lexical entailment experiments (Section 7.1). These
are trained using the non-negative sparse method de-
scribed in Section 4.1, on the same 4.9B word En-
glish corpus that was used for learning bilingual rep-
resentations.

Second, we learn dense bilingual word repre-
sentations using BiCVM (Hermann and Blunsom,
2014), to use as a baseline for our cross-lingual lex-
ical entailment experiments (Section 7.2). BiCVM
uses sentence aligned parallel corpora to learn rep-
resentations for words in two languages, with the
objective that when these representations are com-
posed into representations for parallel sentences, the
Euclidean distance between the parallel sentences
should be minimized. We learn English-French vec-
tors on the parallel corpora described in Section 6.1.

7 Results
7.1

We first evaluate the monolingual version of our
sparse model on English test sets. While our fo-
cus is on the cross-lingual setting, the monolingual
evaluation lets us compare a version of our newly
proposed approach with existing lexical entailment
results (Levy et al., 2015), obtained using dense
word representations compared with cosine similar-
ity. This is not a controlled comparison, as train-
ing conditions are not comparable. Nevertheless it

Monolingual Tasks

*http://www.statmt.org/wmt15/training-parallel-nc-v10.tgz
>https://sites.google.com/site/iwsltevaluation2015/data-
provided



English Dataset Levy et al. | Sparse+cosine | Sparse+balAPinc
Baroni et al. (2012) 788 745 744
Baroni and Lenci (2011) 197 552 .546
Kotlerman et al. (2010) 461 .620 .618
Turney and Mohammad (2015) .642 576 587

Table 4: Evaluating sparse representations on monolingual lexical entailment (F-score): we compare previously published unsu-

pervised results (Levy et al.) to our sparse word representations. While this is not a controlled comparison, we can see that our

word representations yield roughly comparable performance to prior work.

is reassuring to see that sparse word representations
are roughly on par with previously published results.
This suggests that they indeed provide good features
for discovering entailment relations, using both co-
sine and balAPinc as metrics®.

Results (Table 4) show that sparse representa-
tions lead to performance comparable to previous
approaches, thus providing a strong motivation for

using the same for the crosslingual task.

7.2 Cross-lingual Task

Word Representations | Cosine | balAPinc
bilingual + dense 528 548
monolingual + sparse .663 .675
bilingual + sparse .687 703

Table 5: F-Score on Cross-lingual Lexical Entailment Task. All
results are obtained by 10-fold cross-validation. Using balAP-
inc with features from the sparse bilingual representations out-

performs all other approaches.

We evaluate our proposed approach on the new
English-French lexical entailment test set. We eval-
uate the impact of choosing a sparse representa-
tion by comparing our approach to the dense bilin-
gual word representations obtained with the BiICVM
model (Section 6.2). We also evaluate the usefulness
of bilingual vs. monolingual word representations:
given a bilingual example (we,vs), we translate vy
into English using Google Translate, and then detect
lexical entailment using English sparse representa-
tions for the English pair (we,ve) as described in
Section 6.2.

SWhile cosine and balAPinc yield comparable F-scores
here, balAPinc is still a better metric as it captures direction-
ality. If the test sets included examples of both entailment di-
rection for every pair, cosine would yield incorrect predictions
for as many as half of the examples, since its predictions would
be the same regardless of the direction.
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Results are summarized in Table 5. First, we ob-
serve that balAPinc outperforms cosine for all word
representations, confirming that the directional met-
ric is better suited to discovering lexical entailment.
Second, all sparse models significantly outperform
the model based on dense representation, which sug-
gests that sparsity helps discover useful context fea-
tures. Finally, our proposed approach (balAPinc
with features from sparse bilingual representations)
yields the best result overall, perofrming better than
the second best model (cosine with features from
sparse bilingual representations) by approximately
1.6 points. This difference is highly statistically sig-
nificant (at p < 0.01) according to the McNemar’s
Test (Dietterich, 1998). Our model also outper-
forms translation followed by monolingual entail-
ment, confirming the need for models that directly
compare the meaning of words across languages, in-
stead of using translation as a proxy.

8 Discussion

8.1 Examining bilingual dimensions learned

One motivation for using sparse representations is
that they yield interpretable dimensions: one can
summarize a dimension using the top scoring words
in its column. Interpreting five randomly selected
dimensions learned in our bilingual model (Table 6)
shows that we indeed learn English and French di-
mensions that align well, but that are not identical
- reflecting the difference in contexts observed in
monolingual English vs. French corpora, as needed
to detect lexical entailment.

8.2 Sparse Vectors Help Capture
Distributional Inclusion

One advantage of our sparse representations over
dense bilingual representations is that they can bet-
ter leverage an asymmetric scoring function like



French Dimensions

English Dimensions

logiciel, fichiers, web, microsoft

doigts, genoux, jambes, muscles

université, college, lycée, conseil de administration
virus informatique, virus, infection, cellules

budapest, stockholm, copenhague, buenos

files, web, microsoft, www
university, college, graduate, faculty
virus, viruses, infection, cells
bruises, fingers, toes, knees
lahore, dhaka, harare, karachi

Table 6: Top scoring words in 5 randomly selected French and English dimensions learned by our bilingual model.

balAPinc . Consider the following two pairs
from our dataset - (mesothelioma,tumeur) and (tu-
mormésothéliome). The former is a positive exam-
ple since mesothelioma — tumeur, but the latter is
negative (since not all tumors are mesotheliomas.)

Cosine similarity is unable to differentiate be-
tween these two cases, assigning a high score to both
these pairs, causing both of them to be labeled posi-
tive. However, balAPinc with sparse representations
teases them apart by giving a high score to the first
pair and a low score to the second.

In the bilingual sparse model, mesothelioma and
mésothéliome have only one non-zero entry ( in the
dimension corresponding to [‘virus’, ‘viruses’, ‘in-
fection’, ‘cells’, ‘cancer’]) whereas tumeur and tu-
mor have five non-zero entries in their representa-
tions. Based on the distributional inclusion hypothe-
sis, this difference in the number of non-zero entries
is a strong basis for mesothelioma — tumor.

8.3 Benefits of Bilingual Modeling

Examining the results of the approach based on
translation followed by monolingual entailment con-
firms the problems raised by sense ambiguities.

Consider the English word drug, which can be
translated into the French drogue when used in the
narcotics sense, and médicament when used in the
medicinal sense. Thus the pair (antibiotic,drogue)
that is correctly labeled as negative in the cross-
lingual case, gets converted to (antibiotic,drug) by
translation and is then incorrectly labeled as posi-
tive. Similarly, the pair (coriander, herbe), which
is positive in the crosslingual case, gets translated
to (coriander, grass) because the French herbe is
primarily aligned to the English grass (rather than
herb). The translated pair is labeled negative.
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9 Related Work

Bilingual Word Representations Much re-
cent work targets the problem of learning low-
dimensional multilingual word representations,
using matrix decomposition techniques such as
Principal Component Analysis and Canonical
Correlation Analysis (Gaussier et al., 2004; Jagarla-
mudi and Daumé III, 2012; Gardner et al., 2015),
Latent Dirichlet Allocation (Mimno et al., 2009;
Jagarlamudi and Daumé III, 2010), and neural
distributional representations (Klementiev et al.,
2012; Gouws et al., 2015; Lu et al., 2015, among
others). However, these models have typically been
evaluated on translation induction or document cat-
egorization, which, unlike lexical entailment, focus
on capturing coarse cross-lingual correspondences.

Sparse Word Representations While cooccur-
rence matrices and their PPMI transformed variants
are early examples of sparse representations, recent
work has leveraged Nonnegative Sparse Embedding
(NNSE) (Murphy et al., 2012). These models have
been augmented to incorporate different types of lin-
guistically motivated constraints, such as composi-
tionality of words into phrases (Fyshe et al., 2015),
or a hierarchical regularizer that captures knowledge
of word relations (Yogatama et al., 2015).

Sparse representations have also been used for
monolingual lexical entailment in the Boolean Dis-
tributional Semantic Model (Kruszewski et al.,
2015), which shares our hypothesis on the useful-
ness of sparsity in meaning representations. How-
ever, they are meant to be used in different settings:
while the boolean features can interestingly capture
formal semantics, they are not as useful in our unsu-
pervised setting, since they do not provide the fea-
ture rankings required to use the balAPinc metric.

Cross-Lingual Semantic Analysis To the best of
our knowledge, lexical entailment has not been pre-



viously addressed in a cross-lingual setting. The
long tradition of lexical semantic analysis in cross-
lingual settings has mostly focused on using trans-
lations to characterize word meaning (Diab and
Resnik, 2002; Carpuat and Wu, 2007; Lefever and
Hoste, 2010; McCarthy et al., 2013, among oth-
ers). An exception is Cross-lingual Textual Entail-
ment (Mehdad et al., 2010), which aims to detect
whether an English hypothesis H entails a text T’
written in another language. We plan to use our lex-
ical models to address this task in the future.

10 Conclusion

In this work, we introduced the task of cross-lingual
lexical entailment, which aims to detect whether the
meaning of a word in one language can be inferred
from the meaning of a word in another language. We
constructed a dataset with gold annotations through
crowdsourcing, and presented a top-performing so-
lution based on novel sparse bilingual word repre-
sentations that leverages both word co-occurrence
patterns in monolingual corpora and bilingual cor-
respondences learned in parallel text’.

A key limitation of this work is that we address
lexical entailment out of context, based on word rep-
resentations that collapse multiple word senses into
a single vector . These could be addressed in fu-
ture work by adapting existing methods for learn-
ing sense-specific representations for dense vectors
(Jauhar et al., 2015; Ettinger et al., 2016; Reisinger
and Mooney, 2010; Guo et al., 2014; Huang et al.,
2012; Neelakantan et al., 2015) to our sparse rep-
resentations, and target cross-lingual textual entail-
ment tasks, which focus on full sentences rather than
isolated words. We also plan to study lexical entail-
ment on more languages and example types, as well
as investigate the usefulness of our bilingual repre-
sentations in higher level multilingual applications
such as machine translation.
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