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Abstract

We present a fast, simple, and high-accuracy
short answer grading system. Given a short-
answer question and its correct answer, key
measures of the correctness of a student re-
sponse can be derived from its semantic sim-
ilarity with the correct answer. Our super-
vised model (1) utilizes recent advances in
the identification of short-text similarity, and
(2) augments text similarity features with key
grading-specific constructs. We present exper-
imental results where our model demonstrates
top performance on multiple benchmarks.

1 Introduction

Short-answer questions are a useful device for elic-
iting student understanding of specific concepts in a
subject domain. Numerous automated graders have
been proposed for short answers based on their se-
mantic similarity with one or more expert-provided
correct answers (Mohler et al., 2011; Heilman and
Madnani, 2013; Ramachandran et al., 2015). From
an application perspective, these systems vary con-
siderably along a set of key dimensions: amount of
human effort involved, accuracy, speed, and ease of
implementation. We explore a design that seeks to
optimize performance along all these dimensions.
Systems developed for the more general task of
short-text semantic similarity provide a good start-
ing point for such a design. Major progress has been
made in this task in recent years, due primarily to
the SemEval Semantic Textual Similarity (STS) task
(Agirre et al., 2012; Agirre et al., 2013; Agirre et
al., 2014; Agirre et al., 2015). However, the utility
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of top STS systems has remained largely unexplored
in the context of short answer grading. We seek to
bridge this gap by adopting the feature set of the best
performing STS system at SemEval-2015 (Sultan et
al., 2015). Besides high accuracy, this system also
has a simple design and fast runtime.

Textual similarity alone, however, is inadequate
as a measure of answer correctness. For example,
while the Sultan et al. (2015) system makes the gen-
eral assumption that all content words! contribute
equally to the meaning of a sentence, domain key-
words (e.g., “mutation” for biological evolution) are
clearly more significant than arbitrary content words
(e.g., “consideration”) for academic text. As another
example, qguestion demoting (Mohler et al., 2011)
proposes discarding words that are present in the
question text as a preprocessing step for grading.
We augment our generic text similarity features with
such grading-specific measures.

We train supervised models with our final fea-
ture set; in two different grading tasks, these mod-
els demonstrate significant performance improve-
ment over the state of the art. In summary, our
contribution is a fast, simple, and high-performance
short answer grading system which we also release
as open-source software at: https://github.
com/ma-sultan/short-answer—-grader.

2 Related Work

A comprehensive review of automatic short answer
grading can be found in (Burrows et al., 2015). Here

'meaning-bearing words (e.g., nouns and main verbs), as
opposed to function words that play predominantly syntactic
roles in a sentence (e.g., auxiliary verbs and prepositions).
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we briefly discuss closely related work.

Early short answer grading work relied on pat-
terns (e.g., regular expressions) manually extracted
from expert-provided reference answers (Mitchell
et al., 2002; Sukkarieh et al., 2004; Nielsen et al.,
2009). Such patterns encode key concepts repre-
sentative of good answers. Use of manually de-
signed patterns continues to this day, e.g., in (Tan-
dalla, 2012), the winning system at the ASAP an-
swer scoring contest.> This is a step requiring hu-
man intervention that natural language processing
can help to eliminate. Ramachandran et al. (2015)
propose a mechanism to automate the extraction of
patterns from the reference answer as well as high-
scoring student answers. We adopt the simpler no-
tion of semantic alignment to avoid explicitly gener-
ating complicated patterns altogether.

Direct semantic matching (as opposed to pattern
generation) has been explored in early work like
(Leacock and Chodorow, 2003). With advances
in NLP techniques, this approach has gained pop-
ularity over time (Mohler et al., 2009; Mohler et
al., 2011; Heilman and Madnani, 2013; Jimenez et
al., 2013). Such systems typically use a large set
of similarity measures as features for a supervised
learning model. Features range from string similar-
ity measures like word and character n-gram over-
lap to deeper semantic similarity measures based
on resources like WordNet and distributional meth-
ods like latent semantic analysis (LSA). However,
a large feature set contributes to higher system run-
time and implementation difficulty. While following
this generic framework, we seek to improve on these
criteria by employing a minimal set of core similar-
ity features adopted from (Sultan et al., 2015). Our
features also yield higher accuracy by utilizing more
recent measures of lexical similarity (Ganitkevitch
et al., 2013; Baroni et al., 2014), which have been
shown to outperform traditional resources and meth-
ods like WordNet and LSA.

Short-text semantic similarity has seen major
progress in recent times, due largely to the SemEval
Semantic Textual Similarity (STS) task (Agirre et al.,
2012; Agirre et al., 2013; Agirre et al., 2014; Agirre
et al., 2015). STS systems can serve as a source of
important new features and design elements for au-

https://www.kaggle.com/c/asap-sas/
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tomatic short answer graders (Bér et al., 2012; Han
et al., 2013; Lynum et al., 2014; Hénig et al., 2015).

Surprisingly, few existing grading systems utilize
simple and computationally inexpensive grading-
specific techniques like question demoting (Mohler
et al.,, 2011) and term weighting. Our model aug-
ments the similarity features using these techniques.

3 Method

Following feature extraction, our system trains a su-
pervised model for grading. As we discuss in Sec-
tion 4, this can be a regressor or a classifier depend-
ing on the task. This section describes our features;
specifics of the models are given in Section 4.

3.1 Features
3.1.1 Text Similarity

Given reference answer R = (71, ..., 7y,) and stu-
dent response S = (s1, ..., S;m) (Where each r and
s is a word token), we compute three generic text
similarity features.

Alignment. This feature measures the proportion
of content words in R and S that have a semantically
similar word in the other sentence. Such pairs are
identified using a word aligner (Sultan et al., 2014).
The semantic similarity of a word pair (r;,s;) is a
weighted sum of their lexical and contextual simi-
larities. A paraphrase database (PPDB, Ganitkevitch
et al. (2013)) identifies lexically similar word pairs;
contextual similarity is computed as average lexical
similarity in (1) dependencies of 7; in R and s; in S,
and (2) content words in [-3, 3] windows around r;
in R and s; in S. Lexical similarity scores of pairs
in PPDB as well as weights of word and contextual
similarities are optimized on an alignment dataset
(Brockett, 2007).

To avoid penalizing long student responses that
still contain the correct answer, we also employ a
second version of this feature: the proportion of
aligned content words only in R. We will refer to
this feature as coverage of the reference answer’s
content by the student response.

Semantic Vector Similarity. This feature em-
ploys off-the-shelf word embeddings.> A sentence-
level semantic vector is computed for each input

3400-dimensional word embeddings reported by Baroni et
al. (2014).



sentence as the sum of its content word embeddings
(lemmatized). The cosine similarity between the R
and S vectors is then used as a feature. While the
alignment features distinguish only between para-
phrases and non-paraphrases, this feature enables in-
tegration of finer-grained lexical similarity measures
between related concepts (e.g., cell and organism).

3.1.2 Question Demoting

We recompute each of the above similarity fea-
tures after removing words that appear in the ques-
tion text from both the reference answer and the stu-
dent response. The objective is to avoid rewarding a
student response for repeating question words.

3.1.3 Term Weighting

To be able to distinguish between domain key-
words and arbitrary content words, in our next set
of features we assign a weight to every content word
in the reference and the student answer based on a
variant of tf-idf. While general short-text similar-
ity models typically use only idf (inverse document
frequency) to penalize general words, the domain-
specific nature of answer grading also enables the
application of a #f (term frequency) measure.

To fully automate the process for a question
and reference answer pair, we identify all content
words in the pair. The top ten Wikipedia pages re-
lated to these words are retrieved using the Google
API. Each page is read along with all linked pages
crawled using Scrapy (Myers and McGuffee, 2015).
The in-domain term frequency (¢f;) of a word in the
answer is then computed by extracting its raw count
in this collection of pages. We use the same set of
tools to automatically extract Wikipedia pages in 25
different domains such as Art, Mathematics, Reli-
gion, and Sport. A total of 14,125 pages are re-
trieved, occurrences in which are used to compute
the idf of each word.

We augment our alignment features—both orig-
inal and question-demoted—with term weights to
generate new features. Each word is assigned a
weight equal to its #fyXxidf score. The sum of
weights is computed for (1) aligned, and (2) all con-
tent words in the reference answer (after question
demoting, if applicable). The ratio of these two
numbers is then used as a feature. We compute only
coverage features (Section 3.1.1) to avoid comput-
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ing term weights for each student response. Thus
the process of crawling and reading the documents
is performed once per question; all the student re-
sponses can subsequently be graded quickly.

3.1.4 Length Ratio

We use the ratio of the number of words in the stu-
dent response to that in the reference answer as our
final feature. The aim is to roughly capture whether
or not the student response contains enough detail.

4 Experiments

We evaluate our features on two grading tasks. The
first task, proposed by Mohler et al. (2011), asks to
compute a real-valued score for a student response
on a scale of 0 to 5. The second task, proposed at
SemEval-2013 (Dzikovska et al., 2013), asks to as-
sign a label (e.g., correct or irrelevant) to a student
response that shows how appropriate it is as an an-
swer to the question. Thus from a machine learning
perspective, the first is a regression task and the sec-
ond is a classification task. We use the NLTK stop-
words corpus (Bird et al., 2009) to identify function
words. Results are discussed below.

4.1 The Mohler et al. (2011) Task

The dataset for this task consists of 80 undergradu-
ate Data Structures questions and 2,273 student re-
sponses graded by two human judges. These ques-
tions are spread across ten different assignments
and two tests, each on a related set of topics (e.g.,
programming basics, sorting algorithms). A refer-
ence answer is provided for each question. Inter-
annotator agreement was 58.6% (Pearson’s p) and
.659 (RMSE on a 5-point scale). Average of the two
human scores is used as the final gold score for each
student answer.

We train a ridge regression model (Scikit-learn
(Pedregosa et al., 2011)) for each assignment and
test using annotations from the rest as training ex-
amples. A dev assignment or test is randomly held
out for model selection. Out-of-range output scores,
if any, are rounded to the nearest in-range integer.
Following Mohler et al. (2011), we compute a single
Pearson correlation and RMSE score over all student
responses from all datasets. Average results across
1000 runs of the system are shown in Table 1. Our



System \ Pearson’s r RMSE
tf-idf 327 1.022
Lesk 450 1.050
Mohler et al. (2011) 518 978
Our Model 592 887

Table 1: Performance on the Mohler et al. (2011) dataset with
out-of-domain training. Performances of simpler bag-of-words

models are reported by those authors.

System \ 7 RMSE
Ramachandran et al. (2015) | .61 .86
Our Model .63 85

Table 2: Performance on the Mohler et al. (2011) dataset with

in-domain training.

model shows a large and significant performance im-
provement over the state-of-the-art model of Mohler
et al. (two-tailed ¢-test, p <.001). Their system em-
ploys a support vector machine that predicts scores
using a set of dependency graph alignment and lex-
ical similarity measures. Our features are similar in
intent, but are based on latest advances in identifica-
tion of lexical similarity and monolingual alignment.
Ramachandran et al. (2015) adopt a different
setup to evaluate their model on the same dataset.
For each assignment/test, they use 80% of the data
for training and the rest as test. This setup thus en-
ables in-domain model training. Their system auto-
matically generates regexp patterns intended to cap-
ture semantic variations and syntactic structures of
good answers. Features derived from match with
such patterns as well as term frequencies in the stu-
dent response are used to train a set of random for-
est regressors, whose predictions are then combined
to output a single score. Results in this setup are
shown in Table 2. Again, averaged over 1000 runs,
our model performs better on both evaluation met-
rics. The differences are smaller than before but still
statistically significant (two-tailed ¢-test, p <.001).

4.2 The SemEval-2013 Task

Instead of a real-valued score, this task asks to assign
one of five labels to a student response: correct, par-
tially correct/incomplete, contradictory, irrelevant,
and non-domain (an answer that contains no domain
content). We use the SCIENTSBANK corpus, con-
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System UA uQ UD | Wt. Mean
Lexical Overlap | .435 .402 .396 400
Majority 260 239 249 .249
ETS; 535 487 447 .460
SoftCardinality; | .537 .492 471 480
Our Model 582 554 545 550

Table 3: [} scores on the SemEval-2013 datasets.

taining 9,804 answers to 197 questions in 15 science
domains. Of these, 3,969 are used for model training
and the remaining 5,835 for evaluation. A reference
answer is provided for each question.

The test set is divided into three subsets with vary-
ing degrees of similarity with the training examples.
The Unseen Answers (UA) dataset consists of re-
sponses to questions that are present in the training
set. Unseen Questions (UQ) contains responses to
in-domain but previously unseen questions. Three of
the fifteen domains were held out for a final Unseen
Domains (UD) test set, containing completely out-
of-domain question-response pairs. For this task,
we train a random forest classifier with 500 trees in
Scikit-learn using our feature set.

Table 3 shows the performance of our model (av-
eraged over 100 runs) along with that of top sys-
tems* at SemEval-2013 (and of simpler baselines).
ETS (Heilman and Madnani, 2013) employs a lo-
gistic classifier combining lexical and text similar-
ity features. SoftCardinality (Jimenez et al., 2013)
employs decision tree bagging with similarity fea-
tures derived from a set cardinality measure—soft
cardinality—of the question, the reference answer,
and the student response. These features effectively
compute text similarity from commonalities and dif-
ferences in character n-grams.

Each cell on columns 2—4 of Table 3 shows a
weighted F-score on a test set computed over the
five classes, where the weight of a class is pro-
portional to the number of question-response pairs
in that class. The final column shows a similarly
weighted mean of scores computed over the three
test sets. On each test set, our model outperforms
the top-performing models from SemEval (signifi-
cant at p <.001). Its performance also suffers less
on out-of-domain test data compared to those mod-
els.

4Systems with best overall performance on SCIENTSBANK.



Features Pearson’s r RMSE
All 592 .887
w/o alignment 519 938
w/o embedding .586 .892
w/o question demoting 571 .903
w/o term weighting .590 .889
w/o length ratio 591 .888

Table 4: Ablation results on the Mohler et al. (2011) dataset.

4.3 Runtime Test

Given parsed input and having stop words removed,
the most computationally expensive step in our sys-
tem is the extraction of alignment features. Each
content word pair across the two input sentences is
assessed in constant time, giving the feature extrac-
tion process (and the whole system) a runtime com-
plexity of O(n.-m.), where n. and m, are the num-
ber of content words in the two sentences. Note that
all alignment features can be extracted from a single
alignment of the input sentences.

Run on the Mohler et al. dataset (unparsed;
about 18 words per sentence on average), our system
grades over 33 questions/min on a 2.25GHz core.

4.4 Ablation Study

Table 4 shows the performance of our regression
model on the Mohler et al. dataset without different
feature subsets. Performance falls with each exclu-
sion, but by far the most without alignment-based
features. Features implementing question demoting
are the second most useful. Length ratio improves
model performance the least.

Surprisingly, term weighting also has a rather
small effect on model performance. Further inspec-
tion reveals two possible reasons for this. First,
many reference answers are very short, only con-
taining words or small phrases that are necessary to
answer the question (e.g., “push”, “enqueue and de-
queue”, “by rows”). In such cases, term weighting
has little or no effect. Second, we observe that in
many cases the key words in a correct answer are ei-
ther not domain keywords or are unidentifiable using
tf-idf. Consider the following:

e Question: What is a stack?
e Answer: A data structure that can store ele-
ments, which has the property that the last item
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added will be the first item to be removed (or
last-in-first-out).

Important answer words like “last”, “added”, “first”,
and “removed” in this example are not domain key-
words and/or are too common (across different do-
mains) for a measure like #f-idf to work.

5 Conclusions and Future Work

We present a fast, simple, and high-performance
short answer grading system. State-of-the-art mea-
sures of text similarity are combined with grading-
specific constructs to produce top results on multi-
ple benchmarks. There is, however, immense scope
for improvement. Subtle factors like differences
in modality or polarity might go undetected with
coarse text similarity measures. Inclusion of text-
level paraphrase and entailment features can help
in such cases. Additional term weighting mecha-
nisms are needed to identify important answer words
in many cases. Our system provides a simple base
model that can be easily extended with new features
for more accurate answer grading.
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