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Abstract

This paper introduces a new annotated cor-
pus based on an existing informal text corpus:
the NUS SMS Corpus (Chen and Kan, 2013).
The new corpus includes 76,490 noun phrases
from 26,500 SMS messages, annotated by uni-
versity students. We then explored several
graphical models, including a novel variant
of the semi-Markov conditional random fields
(semi-CREF) for the task of noun phrase chunk-
ing. We demonstrated through empirical eval-
uations on the new dataset that the new vari-
ant yielded similar accuracy but ran in signif-
icantly lower running time compared to the
conventional semi-CRF.

1 Introduction

Processing user-generated text data is getting more
popular recently as a way to gather information,
such as collecting facts about certain events (Rit-
ter et al., 2015), gathering and identifying user pro-
files (Layton et al., 2010; Li et al., 2014; Spitters et
al., 2015), or extracting information in open domain
(Ritter et al., 2012; Mitchell et al., 2015).

Most recent work focus on the texts generated
through Twitter, which, due to the design of Twitter,
contain a lot of announcement-like messages mostly
intended for general public. In contrast, SMS was
designed as a way to communicate short personal
messages to a known person, and hence SMS mes-
sages tend to be more conversational and more in-
formal compared to tweets.

As conversational texts, SMS data often contains
references to named entities such as people and lo-
cations relevant to certain events. Recognizing those
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Hmm Dr teh says the research presentation
should still prepare, butshe’s not to sure
whether they’d time to present

Figure 1: Sample SMS, with NPs underlined

references will be useful for further NLP tasks. One
way to recognize those named entities is to first cre-
ate a list of candidates, which can be further filtered
to get the desired named entities. Nadeau (Nadeau
and Sekine, 2007) lists several methods that work
upon candidates for NER. As all named entities are
nouns, recognizing noun phrases (NP) is therefore a
task that can be potentially useful for further steps in
the NLP pipeline to build upon. Figure 1 shows an
example SMS message within which noun phrases
are highlighted. As can be seen from this example,
recognizing the NP information on such a dataset
presents some additional challenges over conven-
tional NP recognition tasks. Specifically, the texts
are highly informal and noisy, with misspelling er-
rors and without grammatical structures. The correct
casing and punctuation information is often missing.
The lack of spaces between adjacent words makes
the detection of NP boundaries more challenging.

Furthermore, the lack of available annotated data
for such informal datasets prevents researchers from
understanding what effective models can be used to
resolve the above issues. In this work, we focus
on tackling these issues while making the following
two main contributions:

e We build a new corpus of SMS data that is fully
annotated with noun phrase information.

e We propose and build a new variant of semi-
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Markov CRF (Sarawagi and Cohen, 2004) for
the task of NP chunking on our corpus, which
is faster and yields a performance similar to the
conventional semi-Markov CRF models.

2 NP-annotated SMS Corpus

Our text corpus comes from the NUS SMS Corpus
(Chen and Kan, 2013), containing 55,835 SMS mes-
sages from university students, mostly in English.
We used the 2011 version of the corpus, containing
45,718 messages, as it is more relevant to modern
phone models using full keyboard layout.

We note that there are a small portion of the
messages written in non-English language, such as
Tamil and Chinese. As we are focusing on English,
we excluded messages written by non-native En-
glish speakers based on the metadata (21.3% of all
messages). We also excluded messages which con-
tain only one word (6.1%) and we remove duplicate
messages (8.1%). !

We assigned the remaining 27,700 messages to 64
university students who conduct annotations, each
annotating 500 with 100 messages co-annotated by
two other annotators. After manual verification we
excluded annotations with low quality from 3 stu-
dents. We used the resulting 26,500 messages as our
dataset. The students were asked to annotate the top-
level noun phrases found in each message using the
BRAT rapid annotation tool?, where they were in-
structed to highlight character spans to be marked
as noun phrases. The number of noun phrases per
message can be found in Table 1.

Due to the noisy nature of SMS messages, there
may not be proper capitalization or punctuation, and
in some cases there might be missing spaces be-
tween words. Figure 1 shows a sample SMS mes-
sage taken from the corpus. We can see that “Dr teh”
is not properly capitalized and “she” in “butshe’s”
is missing spaces around it. NPs which do not have
clear boundaries (improper NPs) constitutes 4.0% of
all NPs.

We then use this dataset to evaluate some models
on base NP chunking task, where, given a text, the

'We also manually excluded some messages (ID 1017-
4016) which are mostly not written in English (4.0% of all mes-
sages).

http://brat.nlplab.org
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#SMS #NPS‘ #improper‘ #tokens
total | 26,500 76,490 | 3,066 (4.0) | 359,009

train | 21,200 61,212]2,406 (3.9)| 287,590
dev| 2,650 7,617| 338(4.4)| 35470
test| 2,650 7,661 | 322(4.2)| 35,949

Table 1: Number of messages, NPs, number of improper NPs
(as percentage in brackets), which are NPs that end in a middle

of a word, and number of tokens.

system should return a list of character spans denot-
ing the noun phrases found in the text.

3 Models

In this paper, we will build our models based on
a class of discriminative graphical models, namely
conditional random fields (CRFs) (Lafferty et al.,
2001), for extracting NPs. The edges in the graph
represents the dependencies between states and the
features are defined over each edge in the graph.
Though CRFs are undirected graphical models, we
can use directed acyclic graphs with a root, a leaf,
and some inner nodes to represent label sequences”.
A path in the graph from the root to the leaf rep-
resents one possible label assignment to the input.
In the labeled instance, there will be only one sin-
gle path from the root to the leaf, while for the un-
labeled instance, the graph will compactly encode
all possible label assignments. The learning proce-
dure is essentially the process that tries to tune the
feature weights such that the true structures get as-
signed higher weights as compared to all other alter-
native structures in the graph.

In general, a CREF tries to maximize the following
objective function:

L(T) =

Sl Y wlt(e) —log Zuw(x) | — Allwl|]® (1)

(x,y)eT | ec&(x,y)

where 7 is the training set, (x,y) is a training in-
stance consisting of the sentence x and the label
sequence y € Y" for a label set ), w is the fea-
ture weight vector, £(x, y) is the set of edges which
form the path in the labeled instance, f(e) is the fea-
ture vector of the edge e, Zw(x) is the normaliza-

3Extension to directed hypergraphs is possible. See (Lu and
Roth, 2015).



tion term which sums over all possible paths from
the root to the leaf node, and ) is the regularization
parameter.

The set of edges and features defined in each
model affects the feature expectation and the nor-
malization term. Computation of the normalization
term, being the highest in time complexity, will de-
termine the overall complexity of training the model.
The set of edges and the normalization term in each
model will be described in the following sections.

3.1 Linear CRF

A linear-chain CREF, or linear CRF is a standard ver-
sion of CRF which was introduced in (Lafferty et
al., 2001), where each word in the sentence is given
a set of nodes representing the possible labels, and
edges are present between any two nodes from ad-
jacent words, forming a trellis graph. Here we con-
sider only the first-order linear CRF.
The normalization term Zy, (x) is calculated as:

DX Wity yd)

=1 yeyy' ey
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where fy (v, y, 7) represents the feature vector on the
edge connecting state 3/ at position ¢ — 1 to state y
at position ¢. The time complexity of the inference
procedure for this model is O(n |V|?).

3.2 Semi-CRF

In semi-CRF (Sarawagi and Cohen, 2004), in addi-
tion to the edges defined in linear CREF, there are ad-
ditional edges from a node to all nodes up to L next
words away, representing a segment within which
the words will be labeled with a single label.

The normalization term Zy, (x) is calculated as:

n L
DD whek yi—ki) ()

i=1 yeY k=1y'€y

where gx (', y, i —k, 7) represents the feature vector
on the edge connecting state ' at position ¢ — & to
state y at position 7. The time complexity for this
model is O(nL |YV|?).

3.3 Weak Semi-CRF

Note that in semi-CRF, each node is connected to
L x |Y| next nodes. Intuitively, the model tries to
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decide the next segment length and type at the same
time. We propose a weaker variant that makes the
two decisions separately by restricting each node to
connect to either only the nodes of the same label up
to L next words away, or to all the nodes only in the
next word. We call this Weak Semi-CRF.

To implement this, we need to split the original
nodes into Begin and End nodes, representing the
start and end of a segment. The End nodes connect
only to the very next Begin nodes of any label, while
the Begin nodes connect only to the End nodes of
same label up to next L words. The term Zy, (x) is:

n L
SO S W i)+ W ey i — ki)
k=1

i=1yeY|y ey
4)

where g« (y, i — k, i) represents the feature vector on
the edge connecting the Begin node with state y at
position ¢ — k to the End node with the same state y
at position ¢. Note that, different from the gx func-
tion defined in Equation (3), this new gy function is
defined over a single (current) y label only, making
the time complexity O(n |V|* + nL|Y|). Theoret-
ically this model is slightly more efficient than the
conventional semi-CRF model.

Unlike conventional (first-order) semi-Markov
CREF, this new model does not allow us to capture
the dependencies between one segment and its ad-
jacent segment’s label information. We argue that,
however, such dependencies can be less crucial for
our task. We will empirically assess this aspect
through experiments. Figure 2 illustrates the differ-
ences among the three models.

4 Features

In linear CREF, the baseline feature set considers the
previous word, current word, and the tag transition.
In semi-CRF, following (Sarawagi and Cohen,
2004) we put all words not part of a noun phrase in
its own segment, and put each noun phrase in one
segment, possibly spanning over multiple words.
Here we set L. = 6 and ignored NPs with more than
six words during training, which is less than 0.5% of
all NPs. For each segment, we defined the following
features as the baseline: (1) indexed words inside
current segment, running from the start and from the
end of the segment, (2) the word before and after



Linear CRF

Weak Semi-CRF

Figure 2: Graphical illustrations of the differences between three models. The bold arrows represent the path in each model to

label “Dr Teh” as a noun phrase. For Linear CREF, this is a simplified diagram; in the implementation we used the “BIO” approach

to represent text chunks. The underlined nodes in Weak Semi-CRF are the Begin nodes.

current segment, and (3) the labels of last segment
and current segment.

In weak semi-CRF we use the same feature set as
semi-CREF, adjusting the features accordingly where
segment-specific features (1) are defined only in the
Begin-End edges, and transition features (3) are de-
fined only in the End-Begin edges.

For each model we then add the character pre-
fixes and suffixes up to length 3 for each word (+a),
Brown cluster (Brown et al., 1992) for current word
(+b), and word shapes (+s). For Brown cluster fea-
tures we used 100 clusters trained on the whole NUS
SMS Corpus. The cluster information is then used
directly as a feature.

Word shapes can be considered a generic repre-
sentation of words that retains only the “shape” in-
formation, such as whether it starts with capital let-
ter or whether it contains digits. The Brown clusters
and word shapes features are applied to each of the
word features described in each model.

5 Experiments

All models were built by us using Java, and were
optimized with L-BFGS. Models are all tuned in the
development set for optimal A. The optimal A values
are noted in Table 2.

Since the models that we consider are all word-
based #, we tokenize the corpus using a regex-based
tokenizer similar to the wordpunct_tokenize
function in Python NLTK package. We also in-
cluded some rules to consider special anonymization
tokens in the SMS dataset (Chen and Kan, 2013).

The gold character spans are converted into word

*We experimented with character-based models, but they do
not perform well. We leave them for future investigations.
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Linear CRF | Semi-CRF | Weak Semi-CRF

base | 0.125 2.0 2.0
+s | 0.25 1.0 2.0

+b 0.5 1.0 2.0
+b+s | 0.5 2.0 2.0
+a 1.0 2.0 2.0
+a +s | 2.0 1.0 2.0
+a+b 1.0 2.0 2.0
+a+b+s | 2.0 2.0 2.0

Table 2: Tuned regularization parameter A from the set {0.125,
0.25,0.5, 1.0, 2.0} for various feature sets. +a, +b, and +s refer
to the affix, Brown cluster, and word shape features respectively.

labels in BIO format, reducing or extending the
character spans as necessary to the closest word
boundaries. The converted annotations are regarded
as gold word spans. Note that this conversion is
lossy due to the presence of improper NPs, which
makes it impossible for the converted format to rep-
resent the original gold standard.

We evaluated the models in the original character-
level spans and also in the converted word-level
spans, to see the impact of the lossy conversion on
the scores. In character-level evaluation, the system
output is converted back into character boundaries
and compared with the original gold standard, while
in the word-level evaluation, the system output is
compared directly with the gold word spans. For this
reason, we anticipate that the scores in word-level
evaluation will be higher than in the character-level
evaluation. The results are shown in Table 3. The
scores for “Gold” in the character-level evaluation
mark the upperbound of word-based models due to
the presence of improper NPs.

The average time per training iteration on the base
models is 1.311s, 2.072s, and 1.811s respectively for
Linear CRF, Semi-CRF, and Weak Semi-CRF.



Character-level Eval. Word-level Eval.
Prec [ Rec [ F Prec [ Rec [ F
Linear CRF

base | 7229 | 70.13 | 71.19 74.04 | 71.93 | 72.97
+s | 72.56 | 70.50 | 71.52 74.38 | 72.38 | 73.36

+b 7248 | 71.82 | 72.15 74.32 | 73.77 | 74.04
+b+s | 7290 | 72.10 | 72.50 7470 | 73.99 | 74.34
+a 72.56 | 72.41 | 72.49 74.66 | 74.62 | 74.64
+a +s | 72.65 | 71.93 | 72.29 74.69 | 74.07 | 74.38
+a+b 72.63 | 72.80 | 72.71 7470 | 75.00 | 74.85
+a+b+s | 72.63 | 72.74 | 72.68 7477 | 74.99 | 74.88

Semi-CRF

base | 7494 | 73.80 | 74.37 76.50 | 75.45 | 75.97
+s | 75.14 | 7348 | 74.30 76.81 | 75.23 | 76.01

+b 73.95 | 7450 | 74.22 75.82 | 76.50 | 76.15
+b+s | 73.79 | 74.08 | 73.93 75.67 | 76.09 | 75.88
+a 7431 | 75.08 | 74.69 76.20 | 77.11 | 76.65
+a +s | 7436 | 7449 | 74.42 76.32 | 76.57 | 76.44
+a+b 7430 | 74.88 | 74.58 76.20 | 76.92 | 76.55
+a+b+s | 74.24 | 74.93 | 74.58 76.23 | 77.06 | 76.64

Weak Semi-CRF

base | 74.84 | 73.94 | 74.39 76.47 | 75.67 | 76.07
+s | 74.84 | 72.67 | 73.74 76.50 | 74.40 | 75.43

+b 7413 | 74.12 | 74.12 75.97 | 76.08 | 76.02
+b+s | 74.19 | 7421 | 74.20 76.06 | 76.19 | 76.13
+a 74.07 | 75.13 | 74.60 76.02 | 77.23 | 76.62
+a +s | 7447 | 7449 | 74.48 76.44 | 76.58 | 76.51
+a+b 74.08 | 74.57 | 74.32 76.01 | 76.64 | 76.32
+a+b+s | 74.19 | 7443 | 74.31 76.15 | 76.52 | 76.33

Gold | 95.96 | 95.81 | 95.88 |[ 100.0 | 100.0 | 100.0

Table 3: Scores on test set (both character-level and word-level
evaluation) using optimal A. +a, +b, and +s refer to the affix,
Brown cluster, and word shape features respectively. Best F1
scores are underlined, and values which are not significantly

different in 95% confidence interval are in bold

5.1 Discussion

First, we see that the two semi-CRF models perform
better compared to the baseline linear CRF model,
showing the benefit of using segment features over
only single word features.

It is also interesting that, while being a weaker
version of the semi-CRF, the weak semi-CRF can
actually perform in the same level within 95% con-
fidence interval as the conventional semi-CRF. This
shows that some of the dependencies in the con-
ventional semi-CRF do not really contribute to the
strength of semi-CRF over standard linear CRF. As
noted in Section 3.3, weak semi-CRF makes the de-
cision on the segment type and length separately.
This means there is enough information in the lo-
cal features to decide the segment type and length
separately, and so we can remove some combined
features while retaining the same performance.

This result, coupled with the fact that the weak
semi-CRF requires 12.5% less time than the conven-
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tional semi-CRF (1.811s vs 2.072s), shows the po-
tentials of using this weak semi-CRF as an alterna-
tive of the conventional semi-CRF. With more label
types (here only two), the difference will be larger,
since the weak semi-CRF is linear in number of label
types, while conventional semi-CRF is quadratic.

6 Related Work

Ritter et al. (2011) previously showed that off-the-
shelf NP-chunker performs worse on informal text.
Then they trained a linear-CRF model on additional
in-domain data, reducing the error up to 22%. How-
ever no results on semi-CRF was given.

Semi-CRF has proven effective in chunking tasks.
Other variants of semi-CRF models also exist.
Nguyen et al. (2014) explored the use of higher-
order dependencies to improve the performance of
semi-CRF models on synthetic data and on hand-
writing recognition. They exploited the sparsity of
label sequence in order to make the training efficient.

It is also known that feature selection is an impor-
tant aspect when trying to use semi-CRF models to
improve on the linear CRF. Andrew (2006) reported
an error reduction of up to 25% when using features
that are best exploited by semi-CRF.

7 Conclusion and Future Work

In this paper we present a new NP-annotated SMS
corpus, together with a novel variant of the semi-
CRF model, which runs in significantly lower
time while maintaining similar accuracy on the NP
chunking task on the new dataset. Future work in-
cludes the application of the weak semi-CRF model
to other structured prediction problems, as well as
performing investigations on handling other types of
informal or noisy texts such as speech transcripts.
We make the code and data available for download
athttp://statnlp.org/research/ie/.
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