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Abstract

Property norms have the potential to aid a
wide range of semantic tasks, provided that
they can be obtained for large numbers of
concepts. Recent work has focused on text
as the main source of information for auto-
matic property extraction. In this paper we ex-
amine property norm prediction from visual,
rather than textual, data, using cross-modal
maps learnt between property norm and visual
spaces. We also investigate the importance of
having a complete feature norm dataset, for
both training and testing. Finally, we evalu-
ate how these datasets and cross-modal maps
can be used in an image retrieval task.

1 Introduction

Many cognitive theories of conceptual organisation
assume that concepts are distributed representations
over semantic primitives, often referred to as fea-
tures or properties1 (Tyler et al., 2000; Randall et al.,
2004). That is, we can understand the meaning of a
concept through its properties. For example, under-
standing the meaning of BANANA is closely related
to understanding that it has properties such as is a
fruit, is yellow, is long, is sweet, and knowing how
these properties overlap with or differ from the prop-
erties of other concepts.

A number of property norm datasets, where hu-
mans were asked to list attributes of given concepts,
have been collected to test this hypothesis (McRae
et al., 2005; Vinson and Vigliocco, 2008; Devereux

1Throughout the paper we will be using the terms properties,
features norms and attributes interchangeably.

et al., 2013). After having been used to test mod-
els of conceptual representation in cognitive science
for decades (Randall et al., 2004; Cree et al., 2006),
these datasets have proved to be useful in a wide
range of semantic NLP tasks as well, including text
simplification for limited vocabulary groups. More
recently, property norms have been used as a proxy
for perceptual information in a number of studies on
multi-modal semantics (Andrews et al., 2009; Ri-
ordan and Jones, 2011; Silberer and Lapata, 2012;
Roller and Im Walde, 2013; Hill and Korhonen,
2014). Such models aim to addres the grounding
problem (Harnad, 1990) that distributional semantic
models of language (Turney and Pantel, 2010; Clark,
2015) suffer from.

Property norms are a valuable source of seman-
tic information, and can potentially be applied to a
variety of NLP tasks, but are expensive to obtain
because they involve intensive human annotation.
The largest property norm dataset to date consists
of just 638 concepts (Devereux et al., 2013), and the
most widely cited one presents properties for only
541 concepts (McRae et al., 2005). If we are to
use these datasets in large-scale semantic tasks, we
would need to extend the currently available prop-
erty norms by obtaining annotations for more than
just a few hundred words.

The alternative to collecting more data through
human annotation is to increase the coverage of
property norms datasets by automatically inferring
properties of concepts from easily accessible re-
sources, such as textual data. Considering the fact
that concepts, as well as their properties, are in lin-
guistic form, the task then becomes a bootstrapping
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one where we take advantage of the abundance of
freely available textual corpora.

There are two strands of research that attempt
to automatically obtain property norm data for new
concepts. One approach is to automatically generate
feature norms from text corpora by mining text data
for a set of generalised property patterns (Kelly et
al., 2014; Baroni et al., 2010; Barbu, 2008). An-
other avenue of research is inspired by Lazaridou
et al. (2014) and Mikolov et al. (2013b) and tries
to increase the coverage of feature norms through
cross-modal mapping from linguistic information
(Fagarasan et al., 2015).

Here, we follow recent trends in multi-modal se-
mantics and explore automatic property norm ex-
traction from visual, rather than textual, data. Ob-
taining property norms from visual information
makes intuitive sense: information contained in the
property norm datasets can often be attributed to
extra-linguistic modalities—a large proportion of
relevant properties are visual, auditory or tactile,
rather than linguistic (e.g. is round, makes noise,
is yellow).

We show that such conceptual properties can
be more accurately predicted through cross-modal
mappings from raw perceptual information (i.e. im-
age data) or multi-modal models (i.e. text and image
data combined) rather than from purely textual in-
formation (Section 3). Furthermore, we analyse the
quality of human collected property norm datasets
and conclude that these are sparse and incomplete,
meaning that there will be a lot of property annota-
tions missing for a given concept (e.g. has legs is
not listed as a property of TORTOISE). We show that
having a complete dataset can drastically increase
the performance of automatic feature prediction, re-
sulting in a truer evaluation (Section 3.5). Lastly,
we demonstrate how property norm datasets could
be used in an image retrieval task (Section 4), which
opens up intriguing possibilities for retrieving con-
cepts based on their visual properties.

2 Property norms

Property norming studies are set up in the following
way: participants are asked to freely write down a
list of properties for a given concept, whilst being
encouraged to consider different kinds of properties

BANANA CELLO

is yellow, 29 a musical instrument, 26
a fruit, 25 has strings, 16
is edible, 13 made of wood, 16
is soft, 12 found in orchestras, 13
grows on trees, 11 is large, 13
eaten by peeling, 10 requires a bow, 9

Table 1: Examples of features together with their
production frequencies from MCRAE

(how the concept feels, smells, what it is used for
etc).

Besides collecting lists of properties for the con-
cepts of interest, a number of useful property statis-
tics are also collected during these studies. For ex-
ample, the number of participants that have pro-
duced the same property for a given concept (also
called production frequency) and the number of con-
cepts for which a particular property is listed in the
dataset (number of concepts per feature) have been
proposed as fundamental organising principles of
cognitive models (Cree et al., 2006).

One of the most widely used property norm
datasets is the one collected by McRae et al. (2005),
henceforth MCRAE. It contains feature norms for a
set of 541 concrete nouns. Each concept was seen
by 30 participants and only features that were listed
by at least 5 participants were recorded. The pub-
lished dataset contains a total of 2526 features, with
a mean of 13.7 features per concept. The numbers
of features registered for a given concept range be-
tween 6 (for concepts like COLANDER or HARMON-
ICA) and 26 (for FAWN). Table 1 lists some exam-
ples of properties that have been produced for BA-
NANA and CELLO, taken from the MCRAE dataset.

The largest feature norm dataset published to date
was developed by the Cambridge Centre for Speech,
Language and Brain (Devereux et al., 2013). It
contains semantic properties for 638 concrete con-
cepts, with 415 of these also appearing in MCRAE.
The data collection experiment was done similarly
to McRae et al. (2005), using a production frequency
cutoff of 5. The final dataset lists a total of 4359 fea-
tures for the 638 concepts, with an average of 2.15
features per concept more than MCRAE. Although
most property norm datasets have only collected
property norms for nouns, Vinson and Vigliocco
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Property type Count Examples
ENCYCLOPAEDIC 739 associated with vampires
FUNCTION 794 used for cutting
SMELL 7 is musty, smells bad
SOUND 55 barks, produces music
TACTILE 39 is scaly, is hot, is soft
TASTE 12 is delicious, tastes sour
TAXONOMIC 207 an insect, a vegetable
VISUAL(COLOUR) 34 is black, is white
VISUAL(FORM) 544 has a motor, made of lace
VISUAL(MOTION) 95 flies, jumps, runs fast
TOTAL 2526 -

Table 2: Property types and associated examples
from MCRAE

(2008) also include verbs in their study.
All the experiments presented in this paper were

conducted on MCRAE. Our choice is motivated by
the fact that this dataset has also been used in pre-
vious work on automated property norm prediction
(Kelly et al., 2014; Fagarasan et al., 2015), besides
being one of the largest publicly-available property
norm datasets.

One aspect of feature norms that previous work
(Kelly et al., 2014; Baroni et al., 2010; Barbu, 2008;
Fagarasan et al., 2015) fails to capture is their multi-
modal nature. Even though the attributes are elicited
in a linguistic form, and some properties (e.g. what
things look like) are easier to verbalise than others
(e.g. what things smell like), these datasets contain
a variety of property types, ranging from visual and
auditory to encyclopaedic and behavioural. Table 2
shows some examples for each of the 10 property
types as defined and annotated in MCRAE. More
than 25% of all features are visual (e.g. is yellow,
is round, made of metal); hence a natural question
that follows is whether images can be used in the
property norm prediction task and how their per-
formance compares to that of predicting properties
from text.

3 Predicting feature norms from images
through cross-modal mapping

Cross-modal maps represent a formalisation of the
reference problem. For example, by inducing cross-
modal maps between visual vectors and linguistic
ones we can learn which images (represented as vi-
sual vectors) refer to which concepts (represented as

is yellow a fruit is edible is soft
BANANA 29 25 13 12

APPLE 7 24 0 0
BED 0 0 0 13

Table 3: Subspace of PROPNORM. Important to
note that MCRAE is not complete, meaning that even
though some properties are true of a given concept,
they have not been produced by the human partic-
ipants (e.g. the is edible property for APPLE holds
the value 0).

text-based distributional vectors) (Lazaridou et al.,
2014). This represents an extension of the object
recognition problem, since we want to associate im-
ages with semantic representations of their depicted
objects, rather than just with their label (Frome et
al., 2013; Socher et al., 2014).

The benefit of this approach lies in its generali-
sation power: once a function between the two se-
mantic spaces is learnt, it can be used to see how
an unseen concept relates to other concepts, just by
looking at an image of that concept. This is referred
to as the zero-shot learning task (Palatucci et al.,
2009; Lazaridou et al., 2014). Our task is to increase
the coverage of the property norm datasets, meaning
that we want to predict properties for new (unseen)
concepts. For example, the concept WOLF is not in-
cluded in MCRAE, but it would be desirable to know
which of the properties in the dataset apply to it (e.g.
is animal, has 4 legs) and which don’t (e.g. a bird,
made of metal).

3.1 Building modality-specific representations

We obtain distributed representations of concepts
in the property-norm semantic space (henceforth
PROPNORM) by simply treating MCRAE as a bag
of 2526 properties, with the production frequencies
representing the “co-occurrence counts” (Table 3).

Our visual space (henceforth VISUAL) consists of
visual representations for all the 541 concepts in
MCRAE, built as follows. First, we retrieve 10 im-
ages per concept from Google Images,2 following
previous work (Bergsma and Goebel, 2011; Kiela
and Bottou, 2014). The image representations are
then obtained by extracting the pre-softmax layer

2www.google.com/imghp (images were retrieved on
10 April 2015)
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from a forward pass in a convolutional neural net-
work that has been trained on the ImageNet classifi-
cation task using Caffe (Jia et al., 2014). We aggre-
gate images associated with a concept into an overall
visually grounded representation by taking the mean
of the individual image representations. The dimen-
sionality of the visual vectors is 4096.

We also build three linguistic spaces (DISTRIB,
SVD and EMBED), along the lines of Fagarasan
et al. (2015). DISTRIB is a 10K-dimensional
“vanilla” distributional semantic space, where the
contexts are the top 10K most frequent lemmatised
words (excluding stopwords) from the October 2013
Wikipedia dump. We use raw frequency counts with
context windows being defined as sentence bound-
aries. SVD is a 300-dimensional SVD-reduced ver-
sion of DISTRIB where PPMI has been applied to
the raw counts. EMBED stands for the continu-
ous vector representations from the log-linear skip-
gram model of Mikolov et al. (2013a). We used the
publicly-available3 representations that were trained
on part of the Google News dataset (about 100 bil-
lion words).

We will also employ three multi-modal seman-
tic spaces (VISUAL+DISTRIB, VISUAL+SVD, VI-
SUAL+EMBED), in which the visual (VISUAL) and
respective linguistic representations (DISTRIB, SVD,
EMBED) are combined into a multi-modal rep-
resentation by concatenating their respective L2-
normalized representations.

3.2 Method and evaluation
Following previous work (Fagarasan et al., 2015;
Kiela et al., 2015) we use partial least squares re-
gression (PLSR)4 to learn cross-modal maps to the
property-norm space (PROPNORM) from the visual
(VISUAL), linguistic (DISTRIB, SVD, EMBED) and
multi-modal semantic spaces (VISUAL+DISTRIB,
VISUAL+SVD, VISUAL+EMBED). At training time,
we take advantage of the fact that we possess both
visual/linguistic/multi-modal and property norm in-
formation for the concepts in MCRAE. Let’s con-
sider the VISUAL→PROPNORM setting as an exam-
ple. We use this cross-modal vocabulary to learn
a mapping function between VISUAL and PROP-

3https://code.google.com/p/word2vec/
4The number of components in the linear regression was set

to 100 for all experiments.

NORM: this function will learn to map visual dimen-
sions to property dimensions. During testing, we
use the learnt function to map the visual informa-
tion of a previously unseen concept (e.g. CAT) to the
property norm space and obtain a predicted prop-
erty vector for that concept. Ideally, we want this
predicted property vector to be closer to the gold-
standard property vector for CAT than to any other
property vector (i.e. the label of its nearest neigh-
bour in PROPNORM to be CAT).

We use the standard evaluation metric for this
task: average percentage correct at N (P@N) (Fa-
garasan et al., 2015; Lazaridou et al., 2014; Kiela et
al., 2015). This measures how many of the test in-
stances were ranked within the top N highest ranked
nearest neighbors (using the cosine measure). All
the results reported in Table 4 use the zero-shot
learning procedure—for each of the 541 concepts
in MCRAE, we train a mapping on the remaining
540 concepts and record whether the correct label
is retrieved among the top N neighbours—and are
averaged over the entire dataset. We also compare
to a random baseline, for which a concept’s nearest
neighbours list is obtained by randomly ranking the
list of target words.

Since the cross-modal map allows us to obtain
property vectors for any concept, we were also able
to evaluate these semantic representations on a stan-
dard NLP task, such as the well known conceptual
similarity and relatedness task. The MEN test col-
lection (Bruni et al., 2014) contains human similar-
ity ratings for 3000 concept pairs. Performance on
this dataset is usually measured by computing the
Spearman ρs correlation between the ranking pro-
duced by the similarity scores of the learnt property
vectors and that produced by the human-annotated
concept similarity scores. Similarity between con-
cept pairs is calculated using cosine similarity.

For each of the semantic spaces presented in Table
5 we learn a cross-modal map to PROPNORM using
all the concepts in MCRAE at training time. Dur-
ing testing, we predict property vectors for all con-
cepts in MEN-NOUNS, a subset of the MEN dataset
consisting of 1285 noun pairs that don’t occur in
MCRAE. Table 5 reports the Spearman ρs correla-
tion of the predicted property vectors and the gold-
standard relatedness scores on MEN-NOUNS (col-
umn→PROPNORM), as well as the correlation of the
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From P@1 P@5 P@10 P@20

DISTRIB 1.30 6.88 16.54 26.58

SVD 2.79 22.12 38.10 57.99

EMBED 3.90 23.42 36.80 55.02

VISUAL 3.35 28.44 47.96 64.50

VISUAL+DISTRIB 2.60 23.23 39.41 56.13

VISUAL+SVD 2.97 28.44 50.74 65.43

VISUAL+EMBED 3.16 28.44 51.12 65.06

RANDOM 0.0 0.74 2.42 3.90

Table 4: Zero-shot learning performance when map-
ping to the property-norm space (PROPNORM)

Semantic space (SS) SS →PROPNORM

Linguistic

DISTRIB 0.68 0.42

SVD 0.68 0.58

EMBED 0.75 0.69

Visual VISUAL 0.56 0.60

Multi-modal

DISTRIB+VISUAL 0.56 0.45

SVD+VISAL 0.57 0.60

EMBED+VISUAL 0.56 0.60

Table 5: Performance (Spearman ρs correlation) of
various uni-modal and multi-modal semantic spaces
(column SS), together with that of the property vec-
tors they predict (column →PROPNORM) on a se-
mantic relatedness task (MEN-NOUNS)

original semantic spaces (e.g. DISTRIB or SVD) and
the gold standard scores (column SS).

3.3 Quantitative results

The results presented in Table 4 show that visual in-
formation is a overall better predictor of a concept’s
properties than linguistic information. The cross-
modal maps from the visual space VISUAL outper-
form all those from linguistic spaces DISTRIB, SVD,
EMBED, and the addition of linguistic information
to the visual one (maps from VISUAL+DISTRIB, VI-
SUAL+SVD, VISUAL+EMBED) seem to only slightly
improve the performance.

It is also important to point out that, even though
the P@1 numbers may appear small, similar results
have been reported for other zero-shot cross-modal
maps (Lazaridou et al., 2014; Kiela et al., 2015).
Overall results are good for higher values of N and

the qualitative results (Table 6) demonstrate how
well the mapping is performing.

A model will achieve a perfect score on this task
if it is able to predict, for a given concept, exactly
those features (and associated production frequen-
cies) listed in MCRAE. However, close-to-perfect
performance in this task is impossible, since almost
30% of the features only occur with one concept,
and hence can’t be reconstructed for that particular
concept. Consider the case of the a baby deer prop-
erty: this only occurs in the MCRAE dataset as an
attribute of FAWN. When predicting properties of
FAWN as part of the zero-shot learning procedure,
the a baby deer property can’t be learned, since it
doesn’t occur with any other concept.

Columns SS and →PROPNORM in Table 5 re-
port correlations with the MEN-NOUNS ratings. The
predicted property vectors obtain a high correlation
with the MEN scores, showing that the property vec-
tors do capture lexical similarity well, although not
as well as the linguistic vectors, which was expected
(Bruni et al., 2012). An useful finding is that in some
cases, the predicted property vectors obtain a better
correlation with the MEN scores than their predic-
tors (i.e. the VISUAL and multi-modal vectors). This
shows a potential strength of the attribute-centric se-
mantic representations: their capability to perform
better on some lexical similarity/relatedness tasks
than representations that contain raw perceptual in-
formation.

3.4 Qualitative results

In order to gain more insight into the differences be-
tween the from vision and from language mappings,
we performed two types of qualitative analysis: we
looked at the differences in nearest neighbours of the
predicted property-norm representations (Table 6),
as well as the top predicted properties of a concept
(Table 6). In the from language setting we learned
the mapping using the EMBED space, as it was the
best performing linguistic space at P@1 and P@5
as shown in Table 4. We obtained the list of near-
est neighbours as follows: at test time, we use the
learnt cross-modal map to project the visual or lin-
guistic representation of the unseen concept onto a
property-norm representation. Using cosine similar-
ity, we then obtain a ranked list of neighbours from
all the 541 gold-standard property vectors. By in-
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Concept Nearest neighbours (from VISION) Nearest neighbours (from LANGUAGE)

banana banana, lemon, corn, pear, grapefruit, pineapple pear, apple, avocado, plum, peach, lime, pineapple

cabbage lettuce, asparagus, spinach, celery, broccoli, cucumber asparagus, turnip, cauliflower, cabbage, celery, spinach

crocodile alligator, crocodile, frog, turtle, iguana, toad alligator, walrus, otter, platypus, crocodile, gorilla, buffalo

cello violin, guitar, banjo, harp, harpsichord, cello, flute harpsichord, harp, clarinet, flute, banjo, guitar, piano

drum pot, pan, coin, skillet, bucket, peg, cap (bottle) tuba, clarinet, trombone, flute, harpsichord, trumpet, harp

fox fox, cougar, coyote, deer, mink, elk, chipmunk blackbird, raven, sparrow, pigeon, starling, chickadee

harpoon sword, machete, harpoon, dagger, rifle, knife, gun spear, dagger, harpoon, rifle, bazooka, crossbow, sword

muzzle donkey, horse, ox, dog, cat, goat, cow peg, fox, pin, crowbar, gun, dog, harpoon

pants jeans, trousers, pants, shirt, blouse, jacket, coat shirt, blouse, shawl, coat, sweater, dress, pants

prune plum, blueberry, nectarine, peach, tangerine, raisin pear, apple, avocado, lime, peach, pineapple, plum

rice cauliflower, turnip, pie, rice, cabbage, biscuit, plate turnip, lettuce, eggplant, peas, potato, corn, asparagus

stool stool (furniture), table, peg, chair, gate, desk, door chair, couch, stool (furniture), sofa, bench, desk, peg

swan pelican, goose, dove, seagull, partridge, raven, falcon raven, blackbird, goose, sparrow, pelican, partridge

tortoise turtle, tortoise, crocodile, alligator, otter, frog, walrus cat, fox, cougar, squirrel, hamster, donkey, turtle

worm eel, rattlesnake, worm, shrimp, bat (baseball), python plum, tangerine, mandarin, nectarine, minnow, peach

Concept Top predicted features (from VISION) Top predicted features (from LANGUAGE)

banana is yellow, is black*, is round, is long, a fruit a fruit, is green*, tastes sweet*, grows on trees, is edible

cabbage is green, a vegetable, is edible, eaten in salads a vegetable, is green, is white, is edible, eaten in salads

crocodile is green, an animal, lives in water, beh - swims an animal, is long, beh - swims, lives in water, is large

cello has strings, a musical instrument, made of wood a musical instrument, inbeh - produces music,

drum made of metal, is round, used for cooking*, a musical instrument, is large*, made of metal, is loud

fox an animal, is fast, is small, has fur, has a tail an animal, a bird*, beh - flies*, has a tail, is green*

harpoon made of metal, a weapon, is sharp, is dangerous* a weapon, is large*, used for killing, is dangerous*

muzzle an animal*, has legs*, has 4 legs*, is large* made of metal*, an animal*, is small*, has 4 legs*

pants clothing, has buttons, is blue*, different colours clothing, worn by women, worn for warmth, has buttons

prune a fruit, is small, tastes sweet, is round*, is edible* a fruit, is green*, grows on trees, tastes sweet, is juicy

rice is edible, is white, is round, a vegetable*, is yellow* is edible, a vegetable*, is yellow*, is brown, has wheels*

stool made of wood, made of metal, has 4 legs, has legs, made of metal, used by sitting on, has legs, has 4 legs

swan a bird, is white, beh - flies, has a beak, has feathers a bird, an animal*, has feathers, beh - flies, is white

tortoise an animal, has a shell, is green, lives in water an animal, has legs*, is green, is large, is small*

worm is long, is edible*, made of wood*, has strings* a fruit*, is small, an insect*, is black*, a fish*

Table 6: Comparison of the top predicted features and nearest neighbours when mapping from VISION or
from LANGUAGE. Properties marked with * don’t appear as attributes of the associated concept in MCRAE.

specting the nearest neighbour predictions, we can
check where the unseen concept is mapped to (e.g.
BANANA is mapped close to yellow fruits). In or-
der to retrieve the top predicted properties of a con-
cept, we rank the dimensions of PROPNORM accord-
ing to the weights in the predicted property vector
(e.g. the predicted property vector for BANANA has

high weights for a fruit and is green when mapped
from language).

By looking at the nearest neighbour predictions,
we observe that, when mapping from visual input,
the predicted vector will be mapped into a subspace
containing visually-similar things. When mapping
from linguistic input, the neighbours tend to be con-
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cepts that are semantically related or denoted by
words that occur in the same context as the target
concept (e.g. worms are found in plums and nec-
tarines).

A notable result is that when mapping from vi-
sion, the top neighbours tend to share the same
colour (top neighbours for BANANA are yellow
fruits, for SWAN are white birds) or shape as the
target concept (top neighbours for WORM are long
things with no legs). One possible clue as to why
vision is better at predicting a concept’s properties
is given by the fact that it obtains better results on
concepts such as PANTS or STOOL, where the only
difference to very similar concepts like TROUSERS

or CHAIR are visual (a STOOL has no backrest as
opposed to a CHAIR).

However, there are cases in which the visual at-
tributes of an object are not very useful in predicting
its most important features: e.g. DRUM is mapped
into a subspace of round objects (from vision), and
not instruments (from language).

Besides the difference in top predicted features,
Table 6 also indicates a shortcoming of MCRAE,
specifically that this is not complete, meaning that
not all properties that apply to a given concept were
produced by the human annotators. Most of the top
predicted attributes that don’t occur in the dataset
(those marked with * in Table 6) are highly plausi-
ble properties for the given concepts: tastes sweet
for BANANA or has legs for TORTOISE. This also
means that the model is being unfairly penalised.

In order to obtain a complete version of MCRAE,
every possible (CONCEPT, property) pair would
have to be checked for validity and annotated ac-
cordingly depending on whether property is a valid
attribute of CONCEPT.

3.5 Importance of complete data
We were interested in measuring the impact that
a complete dataset of features would have on the
performance of the cross-modal zero-shot learning
task. Silberer et al. (2013) conducted a study using
a subset of the concepts and properties in MCRAE,
whereby every property was annotated if it was a
plausible attribute of the concept.

The published dataset (SILBERER) consists of vi-
sual attribute annotations for 512 concepts (that also
occur in MCRAE ) and 693 visual properties. The an-

Dataset #concs #props #(conc,prop) pairs

SILBERER 512 693 7743

SILB-VIS 512 283 5335

M-VIS 512 283 2140

MCRAE 541 2526 7259

Table 7: Comparison of various datasets, according
to the number of concepts and properties covered, as
well as the pairs of (CONCEPT, property) contained

Train Test P@1 P@5 P@10 P@20

M-VIS M-VIS 0.59 7.91 15.02 19.97

M-VIS SILB-VIS 7.11 27.67 43.68 56.92

SILB-VIS SILB-VIS 5.93 35.77 54.74 71.54

Table 8: Zeroshot learning performance for the vi-
sion to norms cross-modal map on different training
and test sets

notation was done on a per-concept basis by looking
at 10 images retrieved from ImageNet (Deng et al.,
2009) and selecting all the attributes that were con-
sidered to be generally true for the given concept,
even if not depicted in the images. For example,
has a pit is a valid visual attribute for PLUM, even
though not all retrieved images of plums show the
pit.

Since not all of the 693 visual properties covered
in SILBERER can be found in MCRAE, we will only
be concerned with the subset of SILBERER which
contains only those visual properties that also occur
in MCRAE, henceforth SILB-VIS. These datasets are
complete, since they were exhaustively annotated as
explained above.

Let us also define M-VIS as the subset of MCRAE

that contains the 512 concepts listed in SILBERER

and the 283 properties that are common to SIL-
BERER and MCRAE, together with their produc-
tion frequencies as in MCRAE. This will act as
our incomplete dataset. Table 7 lists all the afore-
mentioned datasets, together with statistics related
to their number of concepts, features and concept-
feature pairs. It also demonstrates the sparsity of
MCRAE: it contains fewer (CONCEPT, property)
pairs than SILBERER, even though it contains 4
times more properties.

All the experiments performed using these
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Figure 1: Nearest neighbours of the predicted visual vectors

datasets are listed in Table 8. These are identical
in methodology to the zero-shot cross-modal maps
from VISUAL to PROPNORM; the only difference be-
ing the datasets that these are run on.

The row (train:M-VIS, test:M-VIS) represents the
setting where the cross-modal map learning and test-
ing are both done on the incomplete set of data, just
like we would do using MCRAE. We notice a huge
improvement in performance by using the complete
data only at test-time (row (train:M-VIS, test:SILB-
VIS)). Note that, in this scenario, the learning is
carried out in the same way, but the model can’t
be penalised for ranking plausible features near the
top during test time, since we are testing against a
complete dataset. This new setting provides a truer
evaluation scenario and demonstrates the weakness
in using MCRAE as a test set.

Performance improves even more if the complete
dataset is used at training time as well (the row
(train:SILB-VIS, test:SILB-VIS)), showing the bene-
fit of also learning the mapping from complete data,
as well as evaluating on it.

From P@1 P@5 P@10 P@20 P@50

PROPNORM 6.13 36.43 54.46 68.40 81.97

DISTRIB 4.08 10.78 17.29 26.21 40.89

SVD 7.81 34.57 47.77 60.60 79.00

EMBED 9.48 31.60 47.21 62.08 78.81

Table 9: Zero-shot learning performance when map-
ping to the visual space (VISUAL)

4 Property based query engine

An interesting question follows from the good per-
formance of the cross-modal mapping in Section 3,
and that is whether we can reliably predict what con-
cepts look like based on their semantic properties.
For example, does something that flies, has wings
and a beak look like a bird?

This task could be formalised as a property-based
query engine, where we can train the cross-modal
mapping to learn which concepts refer to which im-
ages. We follow the same experimental setup as
detailed in Section 3.2 in order to learn a cross-
modal map from PROPNORM to VISUAL. We also
learn cross-modal maps from the linguistic spaces
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(DISTRIB, SVD, EMBED) to VISUAL in order to see
whether conceptual properties or linguistic input are
better at predicting visual information.

Table 9 shows the results of our quantitative eval-
uation: the average precentage of correctly retrieved
mean visual representations at N.

A qualitative analysis of the PROPNORM to VI-
SUAL cross-modal map is shown in Figure 1. Be-
cause there are no images associated with the
predicted mean visual representation, we retrieve
and display the top neighbouring images. These
images look surprisingly good, considering that
the representation for TAXI in PROPNORM is a
sparse vector where only the features is yellow,
requires drivers, used for transportation, a car,
requires money, found in New York, is expensive,
used for passengers, a cab, is fast are activated.

5 Conclusions

We have studied the automatic prediction of prop-
erty norms for unseen concepts, through learning the
cross-modal mapping from image data. Following
previous work, we evaluated on a zero-shot learning
task and show that raw visual information (images)
is a better predictor for conceptual properties than
linguistic input (text). We also presented a short case
study demonstrating the importance of having com-
plete annotations in the property norm datasets, for
both testing and training. Lastly, we demonstrated
a possible use case for property norm datasets in an
image retrieval task.

Our contributions are two-fold: first, we show that
property norms can be successfully predicted from
non-linguistic modalities and secondly, we quantify
the need to have complete property norm datasets,
where a production frequency of 0 for a (CONCEPT,
property) pair can always be interpreted as “property
is not true of CONCEPT”.
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