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Abstract

Multitask learning has been proven a useful
technique in a number of Natural Language
Processing applications where data is scarce
and naturally diverse. Examples include learn-
ing from data of different domains and learn-
ing from labels provided by multiple annota-
tors. Tasks in these scenarios would be the
domains or the annotators. When faced with
limited data for each task, a framework for
the learning of tasks in parallel while using a
shared representation is clearly helpful: what
is learned for a given task can be transferred
to other tasks while the peculiarities of each
task are still modelled. Focusing on machine
translation quality estimation as application,
in this paper we show that multitask learning
is also useful in cases where data is abundant.
Based on two large-scale datasets, we explore
models with multiple annotators and multiple
languages and show that state-of-the-art mul-
titask learning algorithms lead to improved re-
sults in all settings.

1 Introduction

Quality Estimation (QE) models predict the qual-
ity of Machine Translation (MT) output based on
the source and target texts only, without reference
translations. This task is often framed as a super-
vised machine learning problem using various fea-
tures indicating fluency, adequacy and complexity
of the source-target text pair, and annotations on
translation quality given by human translators. Var-
ious kernel-based regression and classification algo-
rithms have been explored to learn prediction mod-
els.

The application of QE we focus on here is that
of guiding professional translators during the post-
editing of MT output. QE models can provide trans-
lators with information on how much editing/time
will be necessary to fix a given segment, or on
whether it is worth editing it at all, as opposed to
translating it from scratch. For this application,
models are learnt from quality annotations that re-
flect post-editing effort, for instance, 1-5 judgements
on estimated post-editing effort (Callison-Burch et
al., 2012) or actual post-editing effort measured as
post-editing time (Bojar et al., 2013) or edit distance
between the MT output and its post-edited version
(Bojar et al., 2014; Bojar et al., 2015).

One of the biggest challenges in this field is to
deal with the inherent subjectivity of quality labels
given by humans. Explicit judgements (e.g. the
1-5 point scale) are affected the most, with pre-
vious work showing that translators’ perception of
post-editing effort differs from actual effort (Kopo-
nen, 2012). However, even objective annotations
of actual post-editing effort are subject to natural
variance. Take, for example, post-editing time as
a label: Different annotators have different typing
speeds and may require more or less time to deal
with the same edits depending on their level of expe-
rience, familiarity with the domain, etc. Post-editing
distance also varies across translators as there are of-
ten multiple ways of producing a good quality trans-
lation from an MT output, even when strict guide-
lines are given.

In order to address variance among multiple trans-
lators, three strategies have been applied: (i) mod-
els are built by averaging annotations from multiple
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translators on the same data points, as was done in
the first shared task on the topic (Callison-Burch et
al., 2012); (ii) models are built for individual trans-
lators by collecting labelled data for each translator
(Shah and Specia, 2014); and (iii) models are built
using multitask learning techniques (Caruana, 1997)
to put together annotations from multiple translators
while keeping track of the translators’ identification
to account for their individual biases (Cohn and Spe-
cia, 2013; de Souza et al., 2015).

The first approach is sensible because, in the limit,
the models built should reflect the “average” strate-
gies/preferences of translators. However, its cost
makes it prohibitive. The second approach can lead
to very accurate models but it requires sufficient
training data for each translator, and that all trans-
lators are known at model building time. The last
approach is very attractive. It is a transfer learn-
ing (a.k.a. domain-adaptation) approach that allows
the modelling of data from each individual translator
while also modelling correlations between transla-
tors such that “similar” translators can mutually in-
form one another. As such, it does not require mul-
tiple annotations of the same data points and can be
effective even if only a few data points are available
for each translator. In fact, previous work on multi-
task learning for quality estimation has concentrated
on the problem of learning prediction models from
little data provided by different annotators.

In this paper we take a step further to investigate
multitask learning for quality estimation in settings
where data may be abundant for some or most an-
notators. We explore a multitask learning approach
that provides a general, scalable and robust solution
regardless of the amount of data available. By test-
ing models on single translator data, we show that
while building models for individual translators is
a sensible decision when large amounts of data are
available, the multitask learning approach can out-
perform these models by learning from data by mul-
tiple annotators. Additionally, besides having trans-
lators as “tasks”, we address the problem of learning
from data for multiple language pairs.

We devise our multitaslk approach within the
Bayesian non-parametric machine learning frame-
work of Gaussian Processes (Rasmussen and
Williams, 2006). Gaussian Processes have shown
very good results for quality estimation in previous

work (Cohn and Specia, 2013; Beck et al., 2013;
Shah et al., 2013). Our datasets – annotated for post-
editing distance – contain nearly 100K data points,
two orders of magnitude larger than those used in
previous work. To cope with scalability issues re-
sulting from the size of these datasets, we apply a
sparse version of Gaussian Processes. We perform
extensive experiments on this large-scale data aim-
ing to answer the following research questions:

• What is the best approach to build models to
be used by individual translators? How much
data is necessary to build independent models
(one per translator) that can be as accurate as
(or better than) models using data from multi-
ple translators?

• When large amounts of data are available, can
we still improve over independent and pooled
models by learning from metadata to exploit
transfer across translators?

• Can crosslingual data help improve model per-
formance by exploiting transfer across lan-
guage pairs?

In the remainder of the paper we start with an
overview on related work in the area of multitask
learning for quality estimation (Section 2), to then
describe our approach to multitask learning in the
context of Gaussian Processes (Section 3). In Sec-
tion 4 we introduce our data and experimental set-
tings. Finally in Sections 5 and 6 we present the
results of our experiments to answer the above men-
tioned questions for cross-annotator and crosslin-
gual transfer, respectively.

2 Related Work

As was discussed in Section 1, the problem of vari-
ance among multiple translators in QE has recently
been approached in three ways. The first two ap-
proaches essentially refer to preparation of the data.
At WMT12, the first shared task on QE (Callison-
Burch et al., 2012), the official dataset was created
by collecting three 1-5 (worst-best) discrete judge-
ments on “perceived” post-editing effort for each
translated segment. The final score was a scaled av-
erage of the three scores, and about 15% of the la-
belled data was discarded as annotators diverged in
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their judgemetns by more than one point. While this
type of data proved useful and certainly reliable in
the limit of the number of annotators, it is too ex-
pensive to collect.

Shah and Specia (2014) built QE models using
data from n annotators by either pooling all the data
together or splitting it into n datasets for n individ-
ual annotator models. These models were tested in
blind versus non-blind settings, where the former
refers to test sets whose annotator identifiers were
unknown. They observed a substantial difference in
the error scores for each of the individual models.
They showed that the task is much more challenging
for QE models trained independently when training
data for each annotator is scarce. In other words,
sufficient data needs to be available to build individ-
ual models for all possible translators.

The approach of using multitask learning to build
models addresses the data scarcity issue and has
been shown effective in previous work. Cohn and
Specia (2013) first introduced multitask learning for
QE. Their goal was to allow the modelling of vari-
ous perspectives on the data, as given by multiple an-
notators, while also recognising that they are rarely
independent of one another (annotators often agree)
by explicitly accounting for inter-annotator correla-
tions. A set of task-specific regression models were
built from data labelled with post-editing time and
perceived post-editing effort (1-5). “Tasks” included
annotators, the MT system and the actual source sen-
tence, as their data included same source segments
translated/edited by multiple systems/editors.

Similarly, de Souza et al. studied multitask learn-
ing to deal with data coming from different train-
ing/test set distributions or domains, and generally
scenarios in which training data is scarce. Offline
multitask (de Souza et al., 2014a) and online multi-
task (de Souza et al., 2015; de Souza et al., 2014b)
learning methods for QE were proposed. The later
focused on continuous model learning and adapta-
tion from new post-edits in a computer-aided trans-
lation environment. For that, they adapted an on-
line passive-aggressive algorithm (Cavallanti et al.,
2010) to the multitask scenario. While their setting
is interesting and could be considered more chal-
lenging because of the online adaptation require-
ments, ours is different as we can take advantage of
already having collected large volumes of data.

Multitask learning has also been used for other
classification and regression tasks in language pro-
cessing, mostly for domain adaptation (Daume III,
2007; Finkel and Manning, 2009), but also more
recently for tasks such as multi-emotion analysis
(Beck et al., 2014), where the each emotion explain-
ing a text is defined as a task. However, in all previ-
ous work the focus has been on addressing task vari-
ance coupled with data scarcity, which makes them
different from the work we describe in this paper.

3 Gaussian Processes

Gaussian Processes (GPs) (Rasmussen and
Williams, 2006) are a Bayesian non-parametric
machine learning framework considered the state-
of-the-art for regression. GPs have been used
successfully for MT quality prediction (Cohn and
Specia, 2013; Beck et al., 2013; Shah et al., 2013),
among other tasks.

GPs assume the presence of a latent function f :
RF → R, which maps a vector x from feature space
F to a scalar value. Formally, this function is drawn
from a GP prior:

f(x) ∼ GP(0, k(x,x′)),

which is parameterised by a mean function (here,
0) and a covariance kernel function k(x,x′). Each
response value is then generated from the function
evaluated at the corresponding input, yi = f(xi)+η,
where η ∼ N (0, σ2

n) is added white-noise.
Prediction is formulated as a Bayesian inference

under the posterior:

p(y∗|x∗,D) =
∫

f
p(y∗|x∗, f)p(f |D),

where x∗ is a test input, y∗ is the test response value
and D is the training set. The predictive posterior
can be solved analitically, resulting in:

y∗ ∼ N (kT
∗ (K + σ2

nI)
−1y,

k(x∗, x∗)− kT
∗ (K + σ2

nI)
−1k∗),

where k∗ = [k(x∗,x1)k(x∗,x2) . . . k(x∗,xn)]T is
the vector of kernel evaluations between the training
set and the test input and K is the kernel matrix over
the training inputs (the Gram matrix).
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3.1 Multitask Learning
The GP regression framework can be extended to
multiple outputs by assuming f(x) to be a vector
valued function. These models are commonly re-
ferred as Intrinsic Coregionalization Models (ICM)
in the GP literature (Álvarez et al., 2012).

In this work, we employ a separable multitask ker-
nel, similar to the one used by Bonilla et al. (2008)
and Cohn and Specia (2013). Considering a set ofD
tasks, we define the corresponding multitask kernel
as:

k((x, d), (x′, d′)) = kdata(x,x′)×Md,d′ ,

where kdata is a kernel (Radial Basis Function, in
our experiments) on the input points, d and d′ are
task or metadata information for each input and
M ∈ RD×D is the multitask matrix, which encodes
task covariances. In our experiments, we first con-
sider each post-editor as a different task, and then
use crosslingual data to treat each combination of
language and post-editor as a task.

An adequate parametrisation of the multitask ma-
trix is required to perform learning process. We
follow the parameterisations proposed by Cohn and
Specia (2013) and Beck et al. (2014):

Individual: M = I. In this setting each task
is modelled independently by keeping corre-
sponding task identity.

Pooled: M = 1. Here the task identity is ignored.
This is equivalent to pooling all datasets in a
single task model.

Multitask: M = H̃H̃T + diag(α) , where H̃ is
a D ×R matrix. The vector α enables the de-
gree of independence for each task with respect
to the global task. The choice of R defines
the rank (= 1 in our case) which can be un-
derstood as the capacity of the manifold with
which we model the D tasks. We refer read-
ers to see Beck et al. (2014) for a more detailed
explanation of this setting.

3.2 Sparse Gaussian Processes
The performance bottleneck for GP models is the
Gram matrix inversion, which is O(n3) for stan-
dard GPs, with n being the number of training in-

stances. For multitask settings this becomes an is-
sue for large datasets as the models replicate the in-
stances for each task and the resulting Gram matrix
has dimensionality nd × nd, where d is the number
of tasks.

Sparse GPs (Snelson and Ghahramani, 2006)
tackle this problem by approximating the Gram ma-
trix using only a subset of m inducing inputs. With-
out loss of generalisation, consider thesem points as
the first instances in the training data. We can then
expand the Gram matrix in the following way:

K =
[

Kmm Km(n−m)

K(n−m)m K(n−m)(n−m)

]
.

Following the notation in (Rasmussen and Williams,
2006), we refer Km(n−m) as Kmn and its transpose
as Knm. The block structure of K forms the basis
of the so-called Nyström approximation:

K̃ = KnmK−1
mmKmn,

which results in the following predictive posterior:

y∗ ∼ N (kT
m∗G̃

−1Kmny,

k(x∗,x∗)− kT
m∗K

−1
mmkm∗+

σ2
nk

T
m∗G̃

−1km∗),

where G̃ = σ2
nKmm + KmnKnm and km∗ is the

vector of kernel evaluations between test input x∗
and the m inducing inputs. The resulting training
complexity is O(m2n).

In our experiments, the number of inducing points
was set empirically by inspecting where the learning
curves (in terms of Pearson’s correlation gains) flat-
ten, as shown in Figure 1. We used 300 inducing
points in experiments with all the settings (see Sec-
tion 4.3).

4 Experimental Settings

4.1 Data
Our experiments are based on data from two lan-
guage pairs: English-Spanish (en-es) and English-
French (en-fr). The data was collected and made
available by WIPO’s (World Intellectual Property
Organization) Brands and Design Sector. The do-
main of the data is trademark applications in En-
glish, using one or more of the 45 categories of the
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Figure 1: Number of inducing points versus Pear-
son’s correlation

NICE1 goods and services (e.g. furniture, clothing),
and their translations into one of the two languages.

An in-house phrase-based statistical MT system
was built by WIPO (Pouliquen et al., 2011), trained
on domain-specific data, to translate the English seg-
ments. The quality of the translations produced is
considered high, with BLEU scores on a 1K-single
reference test set reaching 0.71. This is partly at-
tributed to the short length and relative simplicity
of the segments in the sub-domains of goods and
services. The post-editing was done mostly inter-
nally and systematically collected between Novem-
ber 2014 and August 2015. The quality label for
each segment is post-editing distance, calculated as
the HTER (Snover et al., 2006) between the tar-
get segment and its post-edition using the TERCOM
tool.2

The data was split into 75% for training and 25%
for test, with each split maintaining the original data
distribution by post-editor. The number of training
and test <source, MT output, post-edited MT, HTER
score> tuples for each of the post-editors (ID) and
language pair is given in Table 1. There are 63,763
overlapping English source segments out of 77,656
entries for en-fr and 98,663 entries for en-es. This
information is relevant for the crosslingual data ex-
periments, as we discuss in Section 6.

It should be noted that the total number of seg-
ments as well as the number of segments per post-
editor is significantly higher than those used in pre-

1http://www.wipo.int/classifications/
nice/en/

2http://www.cs.umd.edu/˜snover/tercom/

Lang. Pair ID Total Train Test

en-es

1 28,423 21,317 7,105
2 12,904 9,678 3,226
3 3,939 2,954 984
4 16,518 12,388 4,129
5 14,187 10,640 3,546
6 9,395 7,046 2,348
7 402 301 100
8 9,294 6,970 2,323
9 845 633 211

10 2,756 2,067 689
All 98,663 73,997 24,665

en-fr

1 65,280 48,960 16,320
2 6,336 4,752 1,584
3 769 576 192
4 5,271 3,953 1,317

All 77,656 58,241 19,413

Table 1: Number of en-es and en-fr segments

vious work. For example, (Cohn and Specia, 2013)
used datasets of 6,762 instances (2,254 for each of
three translator) and 1,624 instances (299 for each of
eight translators), while (Beck et al., 2014) had ac-
cess to 1000 instances annotated with six emotions.

4.2 Algorithms

For all tasks we used the QuEst framework (Specia
et al., 2013) to extract a set of 17 baseline black-box
features3 (Shah et al., 2013) for which we had all the
necessary resources for the WIPO domain. These
baseline features have shown to perform well in
the WMT shared tasks on QE. They include simple
counts, e.g. number of tokens in source and target
segments, source and target language model prob-
abilities and perplexities, average number of possi-
ble translations for source words, number of punc-
tuation marks in source and target segments, among
other features reflecting the complexity of the source
segment and the fluency of the target segment.

All our models were trained using the GPy4

toolkit, an open source implementation of GPs writ-
ten in Python.

4.3 Settings

We built and tested models in the following condi-
tions:

3http://www.quest.dcs.shef.ac.uk/quest_
files/features_blackbox_baseline_17

4http://sheffieldml.github.io/GPy/
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One language Setting-1 Setting-2 Setting-3 Setting-4 Setting-5 Setting-6
ind trn-ind tst pol trn-ind tst mtl trn-ind tst ind trn-pol tst pol trn-pol tst mtl trn-pol tst

Model Individual Pooled Multitask Individual Pooled Multitask
Test Individual Individual Individual Pooled Pooled Pooled
Crosslingual (cl) Setting-7 Setting-8 Setting-9 Setting-10

cl pol trn-ind tst cl mtl trn-ind tst cl pol trn-pol tst cl mtl trn-pol tst
Model Pooled Multitask Pooled Multitask
Test Individual Individual Pooled Pooled
Non-overlapping (no) Setting-11 Setting-12 Setting-13

no cl pol trn-pol tst no mtl trn-pol tst no cl mtl trn-pol tst
Model Pooled Multitask Multitask
Test Pooled Pooled Pooled

Table 2: Various models and test settings in our experiments

• Setting-1: Individual models on individual test
sets: each model is trained with data from an
individual post-editor and tested on the test set
for the same individual post-editor.

• Setting-2: Pooled model on individual test
sets: model trained with data concatenated
from all post-editors and tested on test sets of
individual post-editors.

• Setting-3: Multitask model on individual test
sets: multitask models trained with data from
all post-editors and tested on test sets of indi-
vidual post-editors.

• Setting-4: Individual models tested on pooled
test set: each model is trained with data from
an individual post-editor and tested on a test set
with data from all post-editors. This setup aims
to find out the performance of individual mod-
els when the identifier of the post-editor is not
known (e.g. in crowdsourcing settings).

• Setting-5: Pooled model on pooled test set:
model trained with data concatenated from all
post-editors and tested on test set of all post-
editors.

• Setting-6: Multitask model on pooled test set:
Multitask model trained with data from all
post-editors and tested on test set from all post-
editors together.

• Setting-7 to 10: Similar to setting-2, 3, 5, 6 but
with additional crosslingual data where pooled
and multitask models are trained with both en-
es and en-fr datasets together.

• Setting-11-13: Similar to setting-9, 6, 10 re-
spectively, but with non-overlapping crosslin-
gual data only.

5 Results with Multiple Annotators

We report results in terms of Pearson’s correlation
between predicted and true quality labels, as was
done in the WMT QE shared tasks (Bojar et al.,
2015). The multitask learning models consistently
led to improvement over pooled models, and over
individual models in most cases. We present the
comparisons of the models for various settings in
the following. The bars marked with * in each com-
parison are significantly better than all others with
p < 0.01 according to the Williams significance
test (Williams, 1959).

Individual, pooled and multitask models on in-
dividual test sets Results for both language pairs
are shown in Figure 2. As expected, in cases where
a large number of instances is available from an in-
dividual post-editor, individual models tested on in-
dividual test sets perform better than pooled mod-
els. Overall, multitask learning models show im-
provement over both individual and pooled mod-
els, or the same performance in cases where large
amounts of data are available for an individual post-
editor. For example, in en-es, for post-editors 9 and
3, which have 845 and 3,939 instances in total, re-
spectively, multitask learning models are consider-
ably better. The same goes for post-editor 3 in en-fr,
which has only 769 instances. For very few post-
editors with a large number of instances (1,2 and
4 in en-es) multitask learning models perform the
same as individual or even pooled models. For all
other post-editors, multitask models further improve
correlation with humans. These results emphasize

563



1" 2" 3" 4" 5" 6" 7" 8" 9" 10"
ind_trn2ind_tst" 0.4379" 0.4412" 0.3211" 0.4487" 0.3802" 0.3519" 0.3310" 0.4410" 0.2513" 0.3310"
pol_trn2ind_tst" 0.4234" 0.4324" 0.3684" 0.4489" 0.3717" 0.3520" 0.3510" 0.4109" 0.3022" 0.3902"
mtl_trn2ind_tst" 0.4435" 0.4409" 0.4009" 0.4491" 0.3903" 0.3902" 0.3622" 0.4496" 0.3411" 0.4040"

*" *" *"
*"

*"

*"

*"

0.00"
0.05"
0.10"
0.15"
0.20"
0.25"
0.30"
0.35"
0.40"
0.45"
0.50"

r"

(a) en-es

1" 2" 3" 4"
ind_trn,ind_tst" 0.4512" 0.4212" 0.1023" 0.4265"
pol_trn,ind_tst" 0.4412" 0.4211" 0.1511" 0.4301"
mtl_trn,ind_tst" 0.4610" 0.4320" 0.1712" 0.4411"

*"
*"

*"

*"

0.00"
0.05"
0.10"
0.15"
0.20"
0.25"
0.30"
0.35"
0.40"
0.45"
0.50"

r"

(b) en-fr
Figure 2: Pearson’s correlation with various models
on individual test sets

the advantages of multitask learning models, even in
cases where the post-editors that will use the mod-
els are known in advance (first research question):
Clearly, the models for post-editors with fewer in-
stances benefit from the sharing of information from
the larger post-editor data sets. As for post-editors
with large numbers of instances, in the worst case
the performance remains the same.

Individual, pooled and multitask models on
pooled test set Here we focus on cases where
models are built to be used by any post-editor
(second research question). Results in Figure 3
show that when test sets for all post-editors are
put together, individual models perform distinctively
worse than pooled and multitask learning models.
Multitask learning models are significantly better
than pooled models for both languages (0.511 vs
0.469 for en-es, and 0.481 vs 0.441 for en-fr). In
the case of post-editor 3 for en-fr, the correlation is
negative for individual models given the very low
number of instances for this post-editor, which is not
sufficient to build a general enough model that also
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Figure 3: Pearson’s correlation with various models
on pooled test set

works for other post-editors.

Relationship among post-editors In order to gain
a better insight into the strength of the relationships
among various post-editors and thus into the ex-
pected benefits from joint modelling, we plot the
learned Corregionalisation matrix for all against all
post-editors in Figure 4.5 It can be observed that
there exist various degrees of mutual interdepen-
dences among post-editors. For instance, in the case
of en-es, post-editor 4 shows a strong relationship
with post-editors 6 and 7, a relatively weaker rela-
tionship with post-editors 1 and 9, and close to non-
existing with post-editors 3, 8 and 10. In the case
of en-fr, post-editor 3 shows very weak relationship
with all other post-editors, especially 4. This might
explain the low Pearson’s correlation with individual
models for post-editor 3 on pooled test sets.

5We note that the Corregionalisation matrix cannot be inter-
preted as a correlation matrix. Rather, it shows the covariance
between tasks.
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(a) en-es

(b) en-fr

Figure 4: Heatmap showing a learned Coregionali-
sation matrix over all post-editors

6 Results with Multiple Languages

To address the last research question, here we
present the results on crosslingual models in com-
parison to single language pair models. The train-
ing models contain data from both en-es and en-fr
language pairs in the various settings previously de-
scribed, where for the multitask settings, tasks can
be annotators, languages, or both.

Single versus crosslingual pooled and multitask
models on individual test sets Figure 5 shows a
performance comparison between single language
versus crosslingual models on individual test sets.
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Figure 5: Pearson’s correlation with single versus
crosslingual models on individual en-fr test sets

Due to space constraints, we only present results for
the en-fr test sets, but those for the en-es test sets fol-
low the same trend. Multitask models lead to further
improvements, particularly visible for post-editor 3
(the one with less training data), where the crosslin-
gual multitask learning model reaches 0.201 Pear-
son’s correlation, while the monolingual multitask
learning model performs at 0.171. The performance
of the pooled models with crosslingual data also im-
proves on this test set over monolingual pooled mod-
els, but the overall figures are lower than with mul-
titask learning, showing that the benefit does not
only come from adding more data, but from ade-
quate modelling of the additional data. This shows
the potential to learn robust prediction models from
datasets with multiple languages.

Single versus crosslingual pooled and multitask
models on pooled test set Figure 6 compares
single language and crosslingual models on the
pooled test sets for both languages. A pooled test
set with data from different languages presents a
more challenging case. Simply building crosslin-
gual pooled models deteriorates the performance
over single pooled models, whereas multitask mod-
els marginally improve the performance for en-es
and keep the performance of the single language
models for en-fr. This again shows that multitask
learning is an effective technique for robust predic-
tion models over several training and test conditions.

Single versus crosslingual pooled and multi-
task models on non-overlapping data on pooled
test set We posited that the main reason behind
the marginal or non-existing improvement of the
crosslingual transfer learning shown in Figure 6 is
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*%
*%

*%

0.30%

0.40%

0.50%

0.60%

r"

Figure 6: Pearson’s correlation with single vs
crosslingual models: en-es and en-fr pooled test sets

en#es% en#fr%
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Figure 7: Pearson’s correlation with non-
overlapping language data: single vs crosslingual
models on en-es and en-fr on pooled test sets

the large overlap between the source segments in the
datasets for the two language pairs, as mentioned in
Section 4: 63,763 instances, which comprise 82% of
the en-fr instances, and 65% of the en-es instances.
This becomes an issue because nearly half of the
quality estimation features are based on the source
segments. Therefore, we conducted an experiment
with only 41,930 non-overlapping segments in the
two languages. This experiment is only possible
with pooled test sets, as otherwise too few (if any)
instances are left for some post-editors. The re-
sults, shown in Figure 7, are much more promising.
The Figure compares single language and crosslin-
gual multitask and pooled models on the polled test
sets for both languages. It is interesting to note
that, while the absolute figures are lower when com-
pared to models trained on all data (Figures 5 and
6), the relative improvements of multitask crosslin-
gual models over multitask single language models
are much larger.

7 Conclusions

We investigated multitask learning with GP for QE
based on large datasets with multiple annotators and
language pairs. The experiments were performed
with various settings for training QE models to study
the cases where data is available in abundance, ver-
sus cases with less data. Our results show that mul-
titask learning leads to improved results in all set-
tings against individual and pooled models. Individ-
ual models perform reasonably well in cases where
a large amount of training data for individual anno-
tators is available. Yet, by learning from data by
multiple annotators, multitask learning models still
perform better (in most cases) or at least the same as
these models. Testing models on data for individual
annotators is a novel experimental setting that we
explored in this paper. Another novel finding was
the advantage of multitask models in crosslingual
settings, where individual models performed poorly
and pooled models brought little gain.
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