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Abstract

In a multi-label text classification task, in
which multiple labels can be assigned to one
text, label co-occurrence itself is informative.
We propose a novel neural network initializa-
tion method to treat some of the neurons in
the final hidden layer as dedicated neurons for
each pattern of label co-occurrence. These
dedicated neurons are initialized to connect
to the corresponding co-occurring labels with
stronger weights than to others. In experi-
ments with a natural language query classifi-
cation task, which requires multi-label clas-
sification, our initialization method improved
classification accuracy without any computa-
tional overhead in training and evaluation.

1 Introduction

In multi-label text classification, one text can
be associated with multiple labels (label co-
occurrence) (Zhang and Zhou, 2014). Since la-
bel co-occurrence itself contains information, we
would like to leverage the label co-occurrence to im-
prove multi-label classification using a neural net-
work (NN). We propose a novel NN initialization
method that treats some of the neurons in the final
hidden layer as dedicated neurons for each pattern
of label co-occurrence. These dedicated neurons
are initialized to connect to the corresponding co-
occurring labels with stronger weights than to oth-
ers. While initialization of an NN is an important
research topic (Glorot and Bengio, 2010; Sutskever
et al., 2013; Le et al., 2015), to the best of our knowl-
edge, there has been no attempt to leverage label co-
occurrence for NN initialization.

To validate our proposed method, we focus on
multi-label Natural Language Query (NLQ) classifi-
cation in a document retrieval system in which users
input queries in natural language and the system re-
turns documents that contain answers to the queries.
For NLQ classification, we first train a model from
training data that contains pairs of queries and cor-
responding one or more than one document labels,
and then predict the appropriate document labels for
new queries with the trained model.

Through experiments with a real-world document
retrieval system and publicly available multi-label
data set, simply and directly embedding label co-
occurrence information into an NN with our pro-
posed method improved accuracy of NLQ classifi-
cation.

2 Related Work

Along with the recent success in NNs (Collobert et
al., 2011; Kim, 2014), NN-based multi-label classi-
fication has been proposed. An NN for NLQ classi-
fication needs to accept queries with variable length
and output their labels. Figure 1 shows a typical NN
architecture (Collobert et al., 2011). This NN first
transforms words in the input query into word em-
beddings (Mikolov et al., 2013), then applies Con-
volutional Neural Network (CNN) and Max-pooling
over time to extract fixed-length feature vectors, and
feed them into the output layer to predict the label
for the query (Collobert and Weston, 2008; Col-
lobert et al., 2011; Yih et al., 2014). To take care
of multi-labels, label co-occurrence has been incor-
porated into loss functions such as pairwise ranking
loss (Zhang and Zhou, 2006). More recently, Nam et
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al. (2014) reported that binary cross entropy can out-
perform the pairwise ranking loss by leveraging rec-
tified linear units (ReLUs) for nonlinearity (Nair and
Hinton, 2010), AdaGrad for optimization (Duchi et
al., 2011), and dropout for generalization (Srivastava
et al., 2014). Considering the training efficiency and
superior performance, we used the binary cross en-
tropy as one of the baselines in our experiments in
Section 4 in addition to negative log-likelihood and
cross entropy.

Let x denote the feature vector of a query, y be
the vector representation of the label, o be the output
value of the NN, and Θ be the parameters of the NN.
Note that the representation of y differs depending
on the loss function. For simplicity in the following
explanation, assume that we have a finite set of la-
bels Λ = {λ1, λ2, λ3, λ4, λ5} and that a query x has
multiple labels {λ1, λ4}:

Negative Log Probability With minimization of
negative log probability, a single label is assumed.
To circumvent this limitation, we used copy trans-
formation (Tsoumakas et al., 2010) and obtained
two training examples ((x, y(1)), (x, y(2))), where
y(1) = (1, 0, 0, 0, 0) and y(2) = (0, 0, 0, 1, 0). The
loss for each example becomes l(Θ, (x, y(1))) =
− log(o1) and l(Θ, (x, y(2))) = − log(o4), where
softmax activation is used to calculate o in the out-
put layer.

Cross Entropy We assumed multi-labels as prob-
abilistic distribution as y = (0.5, 0, 0, 0.5, 0). The
cross entropy loss for the training example (x,y)
becomes l(Θ, (x, y)) = −y log(o), where softmax
activation is used in the output layer.

Binary Cross Entropy As Nam et al. (2014) in-
dicated, minimizing binary cross entropy is supe-
rior for handling multi-labels. By representing the
target labels as y = (1, 0, 0, 1, 0), the binary cross
entropy loss for the training example (x, y) be-
comes l(Θ, (x,y)) = −∑5

k=1(yk log(ok) + (1 −
yk) log(1 − ok)), where sigmoid activation is used
in the output layer.

3 Proposed Method

In this section, we explain our proposed method in
detail.
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Figure 1: Neural network for NLQ classification. Proposed

method is applied to the weight matrix between hidden and out-

put layers as detailed in Figure 2.
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Figure 2: Overview of the proposed method. Label co-

occurrence patterns of {λ1, λ4} and {λ2, λ4, λ5} are used in

weight initialization, as shown in the above. This initialization

corresponds to preparing dedicated neurons for each label co-

occurrence pattern, as shown in the below.

3.1 Weight Initialization Leveraging Label
Co-occurrence

We propose an NN initialization method to treat
some of the neurons in the final hidden layer as
dedicated neurons for each pattern of label co-
occurrence. These dedicated neurons simultane-
ously activate the co-occurring labels. Figure 2
shows the key idea of the proposed method. We first
investigate the training data and list up patterns of
label co-occurrence. Then, for each pattern of la-
bel co-occurrence, we initialize a matrix row so that
the columns corresponding to the co-occurring la-
bels have a constant weight C and the other columns
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Loss Function 1-best Accuracy Recall@5 Full Accuracy
Negative Log Likelihood 49.75 → 51.27 69.80 → 71.07 47.03 → 48.65

Cross Entropy 50.51 → 52.54 71.32 → 72.08 46.96 → 48.71
Binary Cross Entropy 49.75 → 50.51 70.81 → 71.32 48.09 → 48.34

Table 1: 1-best accuracy, recall@5, and full accuracy for evaluation data using different loss functions (Random initialization →
Proposed initialization). [%]

have a weight of 0, as shown in Figure 2 (above).
Note that the remaining rows that are not associated
with the pattern of label co-occurrence are randomly
initialized. This initialization is equivalent to treat-
ing some of the neurons in the final hidden layer
as dedicated neurons for each pattern of label co-
occurrence, where the dedicated neurons have con-
nections to the corresponding co-occurring labels
with an initialized weight C and to others with an
initialized weight of 0, as shown in Figure 2 (below).
Finally, we conduct normal back-propagation using
one of the loss functions, as discussed in the previ-
ous section. Note that all the connection weights in
the NN including the connection weights between
the dedicated neurons and all labels are updated
through back-propagation.

Since (1) computation of proposed initialization
itself is negligible and (2) computation of back-
propagation and the architecture of NN does not
change with or without the proposed initialization,
our proposed method does not increase computation
in training and evaluation.

3.2 Weight Setting for Dedicated Neurons

For the weight value C for initialization, we used
the upper bound UB of the normalized initializa-
tion (Glorot and Bengio, 2010), which is determined
by the number of units in the final hidden layer nh

and output layer nc as UB =
√

6√
nh+no

. Addition-
ally, we changed this value in accordance with the
frequency of the label co-occurrence patterns in the
training data. The background idea is that the pat-
terns of label co-occurrence that appear frequently
(i.e., the number of queries with this pattern of label
co-occurrence is large) are more important than less
frequent patterns. Assuming that a specific pattern
of label co-occurrence appears in the training data f
times, we try f×UB and

√
f×UB for initialization

to emphasize this pattern.

C 1-best Recall@5 Full
— 50.51 71.32 46.96
UB 52.54 72.08 48.71

f × UB 51.52 70.81 48.39√
f × UB 53.55 72.08 50.04

Table 2: 1-best accuracy, recall@5, and full accuracy for eval-

uation data with changing initialization value C. [%]

4 Experiments

We conducted experiments with the real-world NLQ
classification data and the publicly available data to
confirm the advantage of the proposed method.

4.1 Real-world NLQ classification Data

Experimental Setup We used NLQs for a docu-
ment retrieval system in the insurance domain for
the experiments. Users of the system input queries
in natural language, and the system returns the la-
bels of the documents that contain answers. We used
3, 133 queries for training and 394 queries for eval-
uation, 1, 695 and 158 of which had multiple labels,
respectively. The number of unique document labels
assigned to the training data was 526.

We used the NN shown in Figure 1. The dimen-
sion of word embedding was 100, number of ker-
nels for the CNN was 1, 000, which means 1, 000
units exist in the final hidden layer on top of Max-
pooling over time, and number of output units was
526. We used this NN configuration in common for
all the experiments. The word embedding was pre-
trained with the skip-gram model of word2vec using
the dumped English Wikipedia data and the docu-
ments of the target insurance domain (Mikolov et
al., 2013). The NN except the word embedding layer
was randomly initialized in accordance with the nor-
malized initialization (Glorot and Bengio, 2010).
We used the ReLU for nonlinearity, AdaGrad for op-
timization, and dropout for generalization. We fixed
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Loss # Survived Neurons Weights-Dedicated Weights-All
Function (# dedicated neurons:252) [Mean / Variance] [Mean / Variance]

Negative Log Likelihood 194 0.251 / 0.004 -0.024 / 0.023
Cross Entropy 197 0.267 / 0.005 -0.017 / 0.021

Binary Cross Entropy 168 0.279 / 0.015 -0.007 / 0.011
Table 3: Investigation of neural network after back-propagation training.

the number of training epochs to 1, 0001.
For the proposed method, we investigated the

1, 695 queries with multiple labels in the training
data and found 252 patterns of label co-occurrence.
We then embedded this information in a 1, 000×526
weight matrix between the final hidden and output
layers. In other words, we treated 252 neurons in
the final hidden layer as dedicated neurons in weight
initialization.

For the hyper-parameter settings, we first tuned
the hyper-parameters including L2-regularization
and learning rate so that the accuracy of the baseline
system with random initialization was maximized.
For the proposed initialization, we used the same
hyper-parameters obtained in the former tuning.

We used three evaluation metrics that are closely
related to the usability of the document retrieval sys-
tem: (1) 1-best accuracy judges if the 1-best result
of a system is included in the correct labels2. (2)
Recall@5 judges if the 5-best results of a system
contain at least one of the correct labels. (3) Full
accuracy investigates the j-best results of a system
and judges if they match the correct labels when j
labels are assigned to the query 3.

Different Loss Functions Table 1 shows the ex-
perimental results using three different loss func-
tions. Comparing the values to the left of the arrows,
which did not use the proposed initialization, supe-
riority of binary cross entropy (Nam et al., 2014)
was confirmed in full accuracy, while cross entropy

1We confirmed that NN training sufficiently saturated after
1, 000 epochs in preliminary experiments. We also compared
the best accuracy achieved in 1, 000 epochs for all experimen-
tal conditions and confirmed that the same improvement was
achieved with the proposed method.

2This metric is comparable with One-error (Tsoumakas et
al., 2010) by 1-best Accuracy = 100 - One-error.

3If a query has three labels, the system needs to return 3-best
results that contain the three correct labels of the query to obtain
100% full accuracy.

was the best in 1-best accuracy in this experiment.
As shown to the right of the arrows, we obtained
improvement for all loss functions with every eval-
uation metric with the proposed method. Overall,
cross entropy training with the proposed initializa-
tion achieved the best in all three metrics, where 1-
best accuracy improvement from 50.51% to 52.54%
was statistically significant (p < 0.05).

Different Weight Initialization Table 2 shows the
results of emphasizing the frequent patterns of la-
bel co-occurrence. We used the cross entropy loss
function, which was the best in the previous exper-
iments. Using

√
f × UB yielded further improve-

ment in 1-best accuracy and full accuracy, though
using f × UB deteriorated in all metrics compared
with UB. This suggests that there is room for im-
provement if we can appropriately emphasize fre-
quent patterns of label co-occurrence.

Analysis on Trained Neural Network We inves-
tigated if the dedicated neurons for patterns of la-
bel co-occurrences still simultaneously activate the
corresponding labels after back-propagation. Table
3 shows the analysis on the NNs trained in the ex-
periments for Table 1. In the # Survived Neurons
columns, we investigated if the dedicated neurons
initialized for the pattern of k-label co-occurrence
still had the k largest weights to the correspond-
ing k labels after back-propagation. Large por-
tions of dedicated neurons “survived” after back-
propagation. In the Weights columns, we calculated
the mean of the connection weights between the
dedicated neurons and corresponding co-occurring
labels and compared them with the mean of all con-
nections in this weight matrix. The trained weights
for the connections between the dedicated neurons
and corresponding co-occurring labels (Weights-
Dedicated) were much stronger than the average
weights (Weights-All). This analysis suggests that
the proposed initialization yields dedicated neurons
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that simultaneously activate the co-occurring labels
even after back-propagation.

There can be an overlap in label co-occurrence
patterns. One typical case is “A, B” and “A, B,
C”, and another case is “D, E”, “F, G”, and “D,
E, F, G”. While we prepared the dedicated neu-
rons for each co-occurrence pattern before back-
propagation, some overlapped co-occurrences might
be explained by the superset or combination of sub-
sets after back-propagation. Table 3 suggests that
some of the dedicated neurons did not survive af-
ter back-propagation. We confirmed that about half
of the label co-occurrence patterns whose dedicated
neurons did not survive were covered by the patterns
whose neurons survived. “Cover” means that if a
neuron for “A, B” did not survive, a neuron for “A,
B, C” survived, or if a neuron for “D, E, F, G” did not
survive, neurons for “D, E” and “F, G” survived. If
we change the network structure by connecting the
dedicated neurons only to the corresponding units or
preparing the special output units for co-occurring
labels (label powerset (Read, 2008)), this flexibility
might be lost.

4.2 Publicly Available Data

We used multi-label topic categorization data
(RCV1-v2) (Lewis et al., 2004) to validate our
method. We used the same label assignment and the
same training and evaluation data partition with the
LYRL2004 split (Lewis et al., 2004) where 23, 149
training texts and 781, 265 evaluation texts with 103
topic labels are available. We used the bag-of-word
(BoW) feature for each text prepared by Chang and
Lin (2011) whose dimension was 47, 236 and con-
structed a feed-forward NN that has an input layer
that accepts the BoW feature, hidden layer of 2, 000
units, and output layer of 103 output units with the
cross entropy loss function. By embedding the la-
bel co-occurrence information between the hidden
and output layers with the initial weights set to UB,
which corresponded to treating 758 neurons out of
2, 000 hidden units as the dedicated neurons, we im-
proved 1-best accuracy of topic label classification
from 93.95% to 94.60%, which was statistically sig-
nificant (p < 0.001).

To the best of our knowledge, 1-best accuracy

of 94.18% (5.82% one-error)4 (Rubin et al., 2012)
was the best published result with using the standard
LYRL2004 split of RCV1-v2. Our proposed method
has advantages in a sufficiently competitive setup.

5 Conclusion

We proposed an NN initialization method to lever-
age label co-occurrence information. Through ex-
periments using the data of a real-world document
retrieval system and publicly available data, we con-
firmed that our proposed method improved NLQ
classification accuracy. The advantage of the pro-
posed method also includes no computational over-
head during training and evaluation.

When we have large training data, the number
of label co-occurrence patterns can be larger than
that of hidden units. In such a case, one option is
to select an appropriate set of label co-occurrence
patterns with certain criteria such as the frequency
in the training data. Another option is to make a
larger weight matrix using all patterns and then to
reduce its dimension with such as Principal Com-
ponent Analysis (PCA) in advance of NN training.
Our future work also includes setting the initializa-
tion weight in a more sophisticated way and combin-
ing the proposed method with other NN-based meth-
ods (Kim, 2014; Johnson and Zhang, 2015).
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