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Abstract
Recent approaches based on artificial neural
networks (ANNs) have shown promising re-
sults for short-text classification. However,
many short texts occur in sequences (e.g., sen-
tences in a document or utterances in a dia-
log), and most existing ANN-based systems
do not leverage the preceding short texts when
classifying a subsequent one. In this work,
we present a model based on recurrent neural
networks and convolutional neural networks
that incorporates the preceding short texts.
Our model achieves state-of-the-art results on
three different datasets for dialog act predic-
tion.

1 Introduction

Short-text classification is an important task in
many areas of natural language processing, includ-
ing sentiment analysis, question answering, or dia-
log management. Many different approaches have
been developed for short-text classification, such
as using Support Vector Machines (SVMs) with
rule-based features (Silva et al., 2011), combin-
ing SVMs with naive Bayes (Wang and Manning,
2012), and building dependency trees with Con-
ditional Random Fields (Nakagawa et al., 2010).
Several recent studies using ANNs have shown
promising results, including convolutional neural
networks (CNNs) (Kim, 2014; Blunsom et al., 2014;
Kalchbrenner et al., 2014) and recursive neural net-
works (Socher et al., 2012).

Most ANN systems classify short texts in iso-
lation, i.e., without considering preceding short
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texts. However, short texts usually appear in se-
quence (e.g., sentences in a document or utter-
ances in a dialog), and therefore using information
from preceding short texts may improve the clas-
sification accuracy. Previous works on sequential
short-text classification are mostly based on non-
ANN approaches, such as Hidden Markov Models
(HMMs) (Reithinger and Klesen, 1997; Stolcke et
al., 2000; Surendran and Levow, 2006), maximum
entropy (Ang et al., 2005), naive Bayes (Lendvai
and Geertzen, 2007), and conditional random fields
(CRFs) (Kim et al., 2010; Quarteroni et al., 2011).

Inspired by the performance of ANN-based sys-
tems for non-sequential short-text classification, we
introduce a model based on recurrent neural net-
works (RNNs) and CNNs for sequential short-text
classification, and evaluate it on the dialog act classi-
fication task. A dialog act characterizes an utterance
in a dialog based on a combination of pragmatic, se-
mantic, and syntactic criteria. Its accurate detection
is useful for a range of applications, from speech
recognition to automatic summarization (Stolcke et
al., 2000). Our model achieves state-of-the-art re-
sults on three different datasets.

2 Model

Our model comprises two parts. The first part gener-
ates a vector representation for each short text using
either the RNN or CNN architecture, as discussed in
Section 2.1 and Figure 1. The second part classifies
the current short text based on the vector representa-
tions of the current as well as a few preceding short
texts, as presented in Section 2.2 and Figure 2.

We denote scalars with italic lowercases (e.g.,
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Figure 1: RNN (left) and CNN (right) architectures for generating the vector representation s of a short text x1:`. For CNN, Conv
refers to convolution operations, and the filter height h = 3 is used in this figure.
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Figure 2: Four instances of the two-layer feedforward ANN used for predicting the probability distribution over the classes zi for
the ith short-text Xi. S2V stands for short text to vector, which is the RNN/CNN architecture that generates si from Xi. From left
to right, the history sizes (d1, d2) are (0, 0), (2, 0), (0, 2) and (1, 1). (0, 0) corresponds to the non-sequential classification case.

k, bf ), vectors with bold lowercases (e.g., s, xi),
and matrices with italic uppercases (e.g., Wf ). We
use the colon notation vi:j to denote the sequence of
vectors (vi,vi+1, . . . ,vj).

2.1 Short-text representation

A given short text of length ` is represented as the se-
quence of m-dimensional word vectors x1:`, which
is used by the RNN or CNN model to produce the
n-dimensional short-text representation s.

2.1.1 RNN-based short-text representation

We use a variant of RNN called Long Short Term
Memory (LSTM) (Hochreiter and Schmidhuber,
1997). For the tth word in the short-text, an LSTM
takes as input xt,ht−1, ct−1 and produces ht, ct

based on the following formulas:

it = σ(Wixt + Uiht−1 + bi)
ft = σ(Wfxt + Ufht−1 + bf )
c̃t = tanh(Wcxt + Ucht−1 + bc)
ct = ft � ct−1 + it � c̃t

ot = σ(Woxt + Uoht−1 + bo)
ht = ot � tanh(ct)

where Wj ∈ Rn×m, Uj ∈ Rn×n are weight matri-
ces and bj ∈ Rn are bias vectors, for j ∈ {i, f, c, o}.
The symbols σ(·) and tanh(·) refer to the element-
wise sigmoid and hyperbolic tangent functions, and
� is the element-wise multiplication. h0 = c0 = 0.

In the pooling layer, the sequence of vectors h1:`

output from the RNN layer are combined into a sin-
gle vector s ∈ Rn that represents the short-text, us-
ing one of the following mechanisms: last, mean,
and max pooling. Last pooling takes the last vector,
i.e., s = h`, mean pooling averages all vectors, i.e.,
s = 1

`

∑`
t=1 ht, and max pooling takes the element-

wise maximum of h1:`.

2.1.2 CNN-based short-text representation
Using a filter Wf ∈ Rh×m of height h, a convolu-
tion operation on h consecutive word vectors start-
ing from tth word outputs the scalar feature

ct = ReLU(Wf •Xt:t+h−1 + bf )

where Xt:t+h−1 ∈ Rh×m is the matrix whose ith

row is xi ∈ Rm, and bf ∈ R is a bias. The symbol •
refers to the dot product and ReLU(·) is the element-
wise rectified linear unit function.

We perform convolution operations with n dif-
ferent filters, and denote the resulting features as
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ct ∈ Rn, each of whose dimensions comes from a
distinct filter. Repeating the convolution operations
for each window of h consecutive words in the short-
text, we obtain c1:`−h+1. The short-text representa-
tion s ∈ Rn is computed in the max pooling layer,
as the element-wise maximum of c1:`−h+1.

2.2 Sequential short-text classification
Let si be the n-dimensional short-text representation
given by the RNN or CNN architecture for the ith

short text in the sequence. The sequence si−d1−d2 : i

is fed into a two-layer feedforward ANN that pre-
dicts the class for the ith short text. The hyperpa-
rameters d1, d2 are the history sizes used in the first
and second layers, respectively.

The first layer takes as input si−d1−d2 : i and out-
puts the sequence yi−d2 : i defined as

yj = tanh

(
d1∑

d=0

W−d sj−d + b1

)
, ∀j ∈ [i− d2, i]

where W0,W−1,W−2 ∈ Rk×n are the weight ma-
trices, b1 ∈ Rk is the bias vector, yj ∈ Rk is the
class representation, and k is the number of classes
for the classification task.

Similarly, the second layer takes as input the se-
quence of class representations yi−d2:i and outputs
zi ∈ Rk:

zi = softmax

 d2∑
j=0

W−j yi−j + b2


where U0, U−1, U−2 ∈ Rk×k and b2 ∈ Rk are the
weight matrices and bias vector.

The final output zi represents the probability dis-
tribution over the set of k classes for the ith short-
text: the jth element of zi corresponds to the proba-
bility that the ith short-text belongs to the jth class.

3 Datasets and Experimental Setup

3.1 Datasets
We evaluate our model on the dialog act classifica-
tion task using the following datasets:

• DSTC 4: Dialog State Tracking Challenge 4 (Kim
et al., 2015; Kim et al., 2016).

• MRDA: ICSI Meeting Recorder Dialog Act Cor-
pus (Janin et al., 2003; Shriberg et al., 2004). The
5 classes are introduced in (Ang et al., 2005).

• SwDA: Switchboard Dialog Act Corpus (Jurafsky
et al., 1997).

For MRDA, we use the train/validation/test splits
provided with the datasets. For DSTC 4 and SwDA,
only the train/test splits are provided.1 Table 1
presents statistics on the datasets.

Dataset |C| |V | Train Validation Test

DSTC 4 89 6k 24 (21k) 5 (5k) 6 (6k)

MRDA 5 12k 51 (78k) 11 (16k) 11 (15k)

SwDA 43 20k 1003 (193k) 112 (23k) 19 (5k)

Table 1: Dataset overview. |C| is the number of classes, |V |
the vocabulary size. For the train, validation and test sets, we
indicate the number of dialogs (i.e., sequences) followed by the
number of utterances (i.e., short texts) in parenthesis.

3.2 Training
The model is trained to minimize the negative log-
likelihood of predicting the correct dialog acts of the
utterances in the train set, using stochastic gradient
descent with the Adadelta update rule (Zeiler, 2012).
At each gradient descent step, weight matrices, bias
vectors, and word vectors are updated. For regular-
ization, dropout is applied after the pooling layer,
and early stopping is used on the validation set with
a patience of 10 epochs.

4 Results and Discussion

To find effective hyperparameters, we varied one hy-
perparameter at a time while keeping the other ones
fixed. Table 2 presents our hyperparameter choices.

Hyperparameter Choice Experiment Range
LSTM output dim. (n) 100 50 – 1000

LSTM pooling max max, mean, last

LSTM direction unidir. unidir., bidir.

CNN num. of filters (n) 500 50 – 1000

CNN filter height (h) 3 1 – 10

Dropout rate 0.5 0 – 1

Word vector dim. (m) 200, 300 25 – 300

Table 2: Experiments ranges and choices of hyperparameters.
Unidir refers to the regular RNNs presented in Section 2.1.1,
and bidir refers to bidirectional RNNs introduced in (Schuster
and Paliwal, 1997).

We initialized the word vectors with the 300-
dimensional word vectors pretrained with word2vec

1All train/validation/test splits can be found at https://
github.com/Franck-Dernoncourt/naacl2016
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d1

d2 LSTM CNN
0 1 2 0 1 2

DSTC4
0 63.1 (62.4, 63.6) 65.7 (65.6, 65.7) 64.7 (63.9, 65.3) 64.1 (63.5, 65.2) 65.4 (64.7, 66.6) 65.1 (63.2, 65.9)

1 65.8 (65.5, 66.1) 65.7 (65.3, 66.1) 64.8 (64.6, 65.1) 65.3 (64.1, 65.9) 65.1 (62.1, 66.2) 64.9 (64.4, 65.6)

2 65.7 (65.0, 66.2) 65.5 (64.4, 66.1) 64.9 (64.6, 65.2) 65.7 (64.9, 66.3) 65.8 (65.2, 66.1) 65.4 (64.5, 66.0)

MRDA
0 82.8 (82.4, 83.1) 83.2 (82.9, 83.4) 82.9 (82.4, 83.4) 83.2 (83.0, 83.4) 83.5 (82.9, 84.0) 83.8 (83.4, 84.2)

1 83.2 (82.6, 83.7) 83.8 (83.5, 84.4) 83.6 (83.2, 83.8) 84.6 (84.5, 84.9) 84.6 (84.4, 84.8) 84.1 (83.8, 84.4)

2 84.1 (83.5, 84.4) 83.9 (83.4, 84.7) 83.3 (82.6, 84.2) 84.4 (84.1, 84.8) 84.6 (84.5, 84.7) 84.4 (84.2, 84.7)

SwDA
0 66.3 (65.1, 68.0) 67.9 (66.3, 68.6) 67.8 (66.7, 69.0) 67.0 (65.3, 68.7) 69.1 (68.5, 70.0) 69.7 (69.2, 70.9)

1 68.4 (67.8, 68.8) 67.8 (65.5, 68.9) 67.3 (65.5, 69.5) 69.9 (69.1, 70.9) 69.8 (69.3, 70.6) 69.9 (68.8, 70.6)

2 69.5 (68.9, 70.2) 67.9 (66.5, 69.4) 67.7 (66.9, 68.9) 71.4 (70.4, 73.1) 71.1 (70.2, 72.1) 70.9 (69.7, 71.7)

Table 3: Accuracy (%) on different architectures and history sizes d1, d2. For each setting, we report average (minimum, maximum)
computed on 5 runs. Sequential classification (d1 + d2 > 0) outperforms non-sequential classification (d1 = d2 = 0). Overall,
the CNN model outperformed the LSTM model for all datasets, albeit by a small margin except for SwDA. We also tried gated
recurrent units (GRUs) (Cho et al., 2014) and the basic RNN, but the results were generally lower than LSTM.

on Google News (Mikolov et al., 2013a; Mikolov
et al., 2013b) for DSTC 4, and the 200-dimensional
word vectors pretrained with GloVe on Twit-
ter (Pennington et al., 2014) for MRDA and
SwDA, as these choices yielded the best results
among all publicly available word2vec, GloVe,
SENNA (Collobert, 2011; Collobert et al., 2011)
and RNNLM (Mikolov et al., 2011) word vectors.

The effects of the history sizes d1 and d2 for the
short-text and the class representations, respectively,
are presented in Table 3 for both the LSTM and
CNN models. In both models, increasing d1 while
keeping d2 = 0 improved the performances by 1.3-
4.2 percentage points. Conversely, increasing d2

while keeping d1 = 0 yielded better results, but the
performance increase was less pronounced: incor-
porating sequential information at the short-text rep-
resentation level was more effective than at the class
representation level.

Using sequential information at both the short-
text representation level and the class representa-
tion level does not help in most cases and may even
lower the performances. We hypothesize that short-
text representations contain richer and more gen-
eral information than class representations due to
their larger dimension. Class representations may
not convey any additional information over short-
text representations, and are more likely to propa-
gate errors from previous misclassifications.

Table 4 compares our results with the state-of-the-
art. Overall, our model shows competitive results,
while requiring no human-engineered features. Rig-

orous comparisons are challenging to draw, as many
important details such as text preprocessing and
train/valid/test split may vary, and many studies fail
to perform several runs despite the randomness in
some parts of the training process, such as weight
initialization.

Model DSTC 4 MRDA SwDA

CNN 65.5 84.6 73.1
LSTM 66.2 84.3 69.6

Majority class 25.8 59.1 33.7

SVM 57.0 – –

Graphical model – 81.3 –

Naive Bayes – 82.0 –

HMM – – 71.0

Memory-based Learning – – 72.3

Interlabeler agreement – – 84.0

Table 4: Accuracy (%) of our models and other methods from
the literature. The majority class model predicts the most fre-
quent class. SVM: (Dernoncourt et al., 2016). Graphical model:
(Ji and Bilmes, 2006). Naive Bayes: (Lendvai and Geertzen,
2007). HMM: (Stolcke et al., 2000). Memory-based Learn-
ing: (Rotaru, 2002). All five models use features derived from
transcribed words, as well as previous predicted dialog acts ex-
cept for Naive Bayes. The interlabeler agreement could not be
obtained for MRDA, and DSTC 4 was labeled by a single an-
notator. For the CNN and LSTM models, the presented results
are the test set accuracy of the run with the highest accuracy on
the validation set.

5 Conclusion

In this article we have presented an ANN-based ap-
proach to sequential short-text classification. We
demonstrate that adding sequential information im-
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proves the quality of the predictions, and the per-
formance depends on what sequential information is
used in the model. Our model achieves state-of-the-
art results on three different datasets for dialog act
prediction.
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Dzmitry Bahdanau, and Yoshua Bengio. 2014. On
the properties of neural machine translation: Encoder-
decoder approaches. arXiv preprint arXiv:1409.1259.

[Collobert et al.2011] Ronan Collobert, Jason Weston,
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