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Abstract

It has been shown that transition-based meth-
ods can be used for syntactic word order-
ing and tree linearization, achieving signifi-
cantly faster speed compared with traditional
best-first methods. State-of-the-art transition-
based models give competitive results on ab-
stract word ordering and unlabeled tree lin-
earization, but significantly worse results on
labeled tree linearization. We demonstrate that
the main cause for the performance bottle-
neck is the sparsity of SHIFT transition actions
rather than heavy pruning. To address this is-
sue, we propose a modification to the stan-
dard transition-based feature structure, which
reduces feature sparsity and allows lookahead
features at a small cost to decoding efficiency.
Our model gives the best reported accuracies
on all benchmarks, yet still being over 30
times faster compared with best-first-search.

1 Introduction

Word ordering is the abstract language modeling
task of making a grammatical sentence by ordering a
bag of words (White, 2004; Zhang and Clark, 2015;
De Gispert et al., 2014; Bohnet et al., 2010; Filip-
pova and Strube, 2007; He et al., 2009), which is
practically relevant to text-to-text applications such
as summarization (Wann et al., 2009) and machine
translation (Blackwood et al., 2010). Zhang (2013)
built a discriminative word ordering model, which
takes a bag of words, together with optional POS
and dependency arcs on a subset of input words, and
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yields a sentence together with its dependency parse
tree that conforms to input syntactic constraints. The
system is flexible with respect to input constraints,
performing abstract word ordering when no con-
straints are given, but gives increasingly confined
outputs when more POS and dependency relations
are specified. It has been applied to syntactic lin-
earization (Song et al., 2014) and machine transla-
tion (Zhang et al., 2014).

One limitation of Zhang (2013) is relatively low
time efficiency, due to the use of time-constrained
best-first-search (White and Rajkumar, 2009) for de-
coding. In practice, the system can take seconds to
order a bag of words in order to obtain reasonable
output quality. Recently, Liu et al. (2015) proposed
a transition-based model to address this issue, which
uses a sequence of state transitions to build the out-
put. The system of Liu et al. (2015) achieves signifi-
cant speed improvements without sacrificing accura-
cies when working with unlabeled dependency trees.
With labeled dependency trees as input constraints,
however, the system of Liu et al. (2015) gives much
lower accuracies compared with Zhang (2013).

While the low accuracy can be attributed to heavy
pruning, we show that it can be mitigated by modi-
fying the feature structure of the standard transition-
based framework, which scores the output transi-
tion sequence by summing the scores of each tran-
sition action. Transition actions are treated as an
atomic output component in each feature instance.
This works effectively for most structured prediction
tasks, including parsing (Zhang and Clark, 2011a).
For word ordering, however, transition actions are
significantly more complex and sparse compared
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with parsing, which limits the power of the tradi-
tional feature model.

We instead break down complex actions into
smaller components, merging some components
into configuration features which reduces sparsity in
the output action and allows flexible lookahead fea-
tures to be defined according to the next action to
be applied. On the other hand, this change in the
feature structure prevents legitimate actions to be
scored simultaneously for each configuration state,
thereby reducing decoding efficiency. Experiments
show that our method is slightly slower compared
with Liu et al. (2015), but achieves significantly bet-
ter accuracies. It gives the best results for all stan-
dard benchmarks, being over thirty times faster than
Zhang (2013). The new feature structures can be ap-
plied to other transition-based systems also.

2 Transition-based linearization

Liu et al. (2015) uses a transition-based model for
word ordering, building output sentences using a se-
quence of state transitions. Instead of scoring out-
put syntax trees directly, it scores the transition ac-
tion sequence for structural disambiguation. Liu et
al.’s transition system extends from transition-based
parsers (Nivre and Scholz, 2004; Chen and Man-
ning, 2014), where a state consists of a stack to hold
partially built outputs. Transition-based parsers use
a queue to maintain input word sequences. How-
ever, for word ordering, the input is a set without
order. Accordingly, Liu et al. uses a sef to maintain
the input. The transition actions are:

e SHIFT-Word-POS, which removes Word from
the set, assigns POS to it and pushes it onto the
stack as the top word Sp;

e LEFTARC-LABEL, which removes the second
top of stack S1 and builds a dependency arc
Sy LABEL So:

e RIGHTARC-LABEL, which removes the top
of stack Sy and builds a dependency arc
Sy LABEL So.

Using the state transition system, the bag of
words {John, loves, Mary} can be ordered by
(SHIFT-John-NNP, SHIFT-loves-VBZ, LEFTARC-
SBJ, SHIFT-Mary-NNP, RIGHTARC-OBJ).

Liu et al. (2015) use a discriminative perceptron

model with beam search (Zhang and Clark, 2011a),
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Unigrams

Sow; Sop; So,1w; So,1p; So,rw; So.rp;
So,12w; So,120; So,row; So,r2pP;

S1w; S1p; S1,w; S1,p; S1,rw; S1,0p5
S1,10w; S1,12p; S1,r2w; S1,r2D;

Bigram

SowSo,1w; SowSo,1p; SopSo,1w; SopSo,ip;
SowSo,w; SowSo »p; SopSo,rw; SopSo,rps
S1wS1 w; S1wS,p; S1pSiw; S1pSt,p;
S1wS1 yw; S1wS1,,p; S1p51,rw; S1pS1,+p;
SowS1w; SowS1p; SopS1w; SopSip

Trigram

SowSopSo,1w; SowSy, wSo,1p; SowSopSo,1p;
SopSo,1wSo,1p; SowSepSo,rw; SowSo,1wSo,rP;
SowSopSo.»p; SopSo,rwSo rp;

S1wS1pStw; S1wS1,wSyp; S1wS1pStip;
511751,11051,117; 51w51p51,rw; Slwsl,lwsl,rp;
S1wS1pS1,,p; S1pS1,rwS1 s

Linearization

Wo; Pos W—-1Wo; P—1Pos W—_2W_1Wo; P—2P—-1P0;
So,1wS0,12w; So,1pS0,120; So,r2wS0 rw; So,r20S0,rD;
S1,wS1 1pw; S1,1pS1,120; S1,r2wS1 yw; S1,r20S1 D5

Table 1: Base feature templates.

designing decoding algorithms that accommodate
flexible constraints. The features include word(w),
pos(p) and dependency label(/) information of words
on the stack (Sy, S1, ... from the top). For example,
the word on top of stack is Sopw and the POS of the
stack top is Sop. The full set of feature templates
can be found in Table 2 of Liu et al. (2015), repro-
duced here in Table 1. These templates are called
configuration features. When instantiated, they are
combined with each legal output action to score the
action. Therefore, actions are atomic in feature in-
stances.

Formally, given a configuration C, the score of a
possible action a is calculated as:

—

Score(a) =0 - ®(C,a),

where 6 is the model parameter vector of the model
and O ( é, a) denotes a sparse feature vector that con-
sists of features with configuration and action com-
ponents i.e @(é, a) is sparse. 6 has to be loaded for
each a.

For efficiency considerations and following
transition-based models, Liu et al. (2015) scores
all possible actions given a configuration simultane-
ously. This is effectively the same as formulating the



score into

Score(a) = 0, - @(b), a € A

—

Here A is the full set of actions and ®(C) is fixed,
and 6, for all a can be loaded simultaneously. In
a hash-based parameter model, it significantly im-
proves the time efficiency.

3 Feature structure modification

3.1 Two limitations of the baseline model

There are two major limitations in the feature struc-
ture of Liu et al. (2015). First, the SHIFT actions,
which consist of the word to shift and its POS, are
highly sparse. Since the action is combined with all
configuration features, there will be no active feature
for disambiguating the shift actions for OOV words.
This issue does not exist in transition-based parsers
because words are not a part of their transition ac-
tions. Second, input constraints are not leveraged by
the feature model. Although the dependency rela-
tions of the word to shift can be given as inputs, they
are used only as constraints to the decoder, but not
as features to guide the shift action. Such lookahead
information on the to-be-shifted word can be highly
useful for disambiguation.

For example, consider the bag of words {John,
loves, Mary}. Without constraints, both ‘John loves
Mary’ and ‘Mary loves John’ are valid word order-
ing results. However, given the constraint (John,
SBIJ, loves), the correct answer is reduced to the
former. The first action to build the two examples
are (SHIFT-John-NNP) and (SHIFT-Mary-NNP), re-
spectively. According to Liu et al.’s feature model,
there is no feature to disambiguate the first SHIFT
action if both ‘John’ and ‘Mary’ are OOV words.
The system has to maintain both hypotheses and rely
on the search algorithm to disambiguate them after
the dependency arcs (John, SBJ, loves) and (Mary,
OBYJ, loves) are built. However, given the syntac-
tic constraint that ‘John’ is the subject, the disam-
biguation can be done right when performing the
first SHIFT action. This requires the dependency arc
label to be extracted for the word to shift e.g.(John,
Mary), which is a lookahead feature. In addition, the
OOV word ‘John’ must be excluded from the feature
instance, which implies that the SHIFT-John-NNP
action must be simplified.
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set of label and POS of child nodes of L

Lcls; Lclns; chs; chns;

SOw-Lcls; SOchls§ Slecls§ Slchls;

SOchlns; SOchlns§ Sleclns; Slchlns;
SOchps; SOchps; Sl chps; Slchps;
SOU)chns; Sochpns; S Wchns§ Slchpns;

set of label and POS of siblings of L

les; lens; Lsps; Lspn?)

SOstls; SOples; Slesls; Slples;

SOWlens; SOplens; Sleslns; Slplens§
SOUJLsps; SOpLsps; Slesps; SlpLsps;
SOstpns; SOpLspns; SI'LULspns; SlpLspns;
parent label, POS and word of L

LysLip; LpsLpp; LpsLuwp;

S()wLpsLl;ﬂ SOprsLlp; 511ULpsLlp§ SlprsLlp;
SOWLpstp; SOprstp; SﬂULpstp; Slprstp;
SO’UJLpstp; SOprstp; Slepstp; Slprstp;
set of label and POS of child nodes of .S,

Scls; Sclns§ Scps; Scpns§

SOwSClS; SOpScls; Slecls; SlpScls;

SowSeins; SoPSecins; S1WSeins; S1PScins;
SOwScps; SOpScps; Sle(:ps; Slpscps;
SOwSCpns; SOpScpns; Slwscpns; SlpScpns;

set of label and POS of siblings of .S

Ssls? Sslns; Ssps§ Sspns?

SOstls; SOpSsls§ Slesls; SlpSsls§

SOwsslns; SOpSslns; Sleslns; Slpsslns;
SOwssps; SOpSsps; Slesps; Slpssps;
SOstpns; SOpSspns; Slwsspns; SlpSspns;
parent label and POS of .Sy

SpsSip; SpsSpp;

SOwspsSlp§ SOpSpsSlp§ Slwspsslp§ SlpSpSSlp§
SowSpsSpp; S0PSpsSpp; S1WSpsSpps S1PSpsSpp;

Table 2: Lookahead feature templates

As a second example, information about depen-
dents can also be useful for disambiguating SHIFT
actions. In the above case, the fact that the subject
has not been shifted onto the stack can be a useful
indicator for not shifting the verb ‘loves’ onto the
stack in the beginning. Inspired by the above, we
exploit a range of lookahead features from syntactic
constraints.

3.2 New feature structure for SHIFT actions

We modify the feature structure of Liu et al. (2015)
by breaking down the SHIFT-Word-POS action into
three components, namely SHIFT, Word and POS,
using only the action type SHIFT as the output ac-
tion component in feature instances, while combin-



no pos 50% pos all pos no pos 50% pos all pos no pos 50% pos all pos
no dep no dep no dep 50% dep | 50% dep | 50% dep all dep all dep all dep
BL Sp| BL SpP| BL SP| BL SP| BL SP| BL SP| BL SP| BL SP| BL SP
Z13 ||42.9 4872 |43.4 4856|44.7 4826|50.5 4790 |51.4 4737 |52.2 4720|73.3 4600 |74.7 4431|763 4218
L15 ||47.5 155(479 119|488 74|54.8 132|552 91|56.2 41|77.8 40|79.1 28|81.1
Ours [|48.0 175]|49.0 156|51.5 148|59.0 144|620 160|67.1 171|828 62|86.2 68|89.9

Table 3: Development partial-tree linearization results. BL — BLEU score; SP — number of milliseconds per
sentence. Z13 — best-first system of Zhang (2013) and L15 — transition-based system of Liu et al. (2015).

ing Word and POS with other configuration features
to form a set of lookahead features.

For example, consider the configuration feature
Sow, which captures the word on the top of the
stack. Under the feature structure of Liu et al., it is
combined with each possible action to form features
for scoring the action. As a result, for scoring the
action SHIFT-Lw-Lp, Sow is instantiated into Sgw-
SHIFT-Lw-Lp, where Lw is the word to shift and
Lp is its POS. Under our new feature structure, the
action component is reduced to SHIFT only, while
Lw and Lp should be used in lookahead features.
Now a effectively equivalent configuration feature
to Liu et al.’s Syw is Sgow-Lw-Lp, with the looka-
head Lw and Lp. It gives Sow-Lw-Lp-SHIFT when
combined with the action SHIFT.

This new feature structure reformulates the SHIFT
action features only. The LEFTARC/ RIGHTARC ac-
tions remain LEFTARC/ RIGHTARC-LABEL since
they are not sparse. Note that the change is in the
action features rather than the actions themselves.
Given the bag of words {John, loves, Mary}, the ac-
tion SHIFT-John-NNP is still different from the ac-
tion SHIFT-Mary-NNP. However, the action compo-
nent of the features becomes SHIFT only, and the
words John/ Mary must be used as lookahead con-
figuration features for their disambiguation.

The new feature structure can reduce feature spar-
sity by allowing lookahead features without word
information. For example, a configuration feature
Sow-Lp, which contains only the stack top word and
the POS of the lookahead word, can still fire even
if the word to shift is OOV, thereby disambiguating
OOV words of different POS. In addition, the looka-
head Lw and Lp do not have to be combined with
every other configuration feature, as with Liu et al.
(2015), thereby allowing more flexible feature com-
bination and a leaner model.

491

3.3 The new features

The new feature structure includes two types of fea-
tures. The first is the same feature set as Liu et al.
(2015), but with the SHIFT action component not
having Word and POS information. We call this type
of features as base features. The second is a set
of lookahead features, which are shown in Table 2.
Here L. represents set of arc labels on child nodes
(of the word L to shift) that have been shifted on
to the stack, L.,s represents set of labels on child
nodes that have not been shifted, L, the label set
of shifted sibling nodes, Lg,s the label set of un-
shifted sibling nodes, L.ys the POS set of shifted
child nodes, Lp,s the POS set of unshifted child
nodes, L), the POS set of shifted sibling nodes and
Lgpns the POS set of unshifted sibling nodes. Ly
is a binary feature indicating if the parent has been
shifted. L;, represents label on the parent, L, POS
of parent and L., the parent word form. We define
similar lookahead features for .Sy. These features are
instantiated only for SHIFT actions.

The new feature structure prevents all possible ac-
tions from being scored simultaneously, because the
lookahead Word and POS are now in configuration
features, rather than output actions, making it neces-
sary to score the shifting of different words or POS
separately. This leads to reduced search speed. Nev-
ertheless, our experiments show that they give a de-
sirable tradeoff between efficiency and accuracy.

Note that the new features are much less than a
full Cartesian product of lookahead features and the
original features. This is a result of manual feature
engineering, which allows similar accuracies to be
achieved using a much smaller model, thereby in-
creasing the time efficiency.



unlabeled labeled
nopos allpos all pos all pos
nodep nodep alldep alldep
W09 - 33.7 - -
Z11 - 40.1 - -
713 44.7 46.8 76.2 89.3
L15 49.4 50.8 82.3 82.9
This paper 50.5 53.0 91.0 91.8

Table 4: Final results. W09 — Wann et al. (2009),
Z11 — Zhang and Clark (2011b)

4 Experiments

Following previous work we conduct experiments
on the Penn TreeBank (PTB), using Wall Street
Journal sections 2-21 for training, 22 for develop-
ment and 23 for testing. Gold-standard dependency
trees are derived from bracketed sentences using
Penn2Malt, and base noun phrases are treated as a
single word. The BLEU score is used to evaluate
the performance of linearization.

Table 4 shows a difference in scores between
transition-based linearization system of Liu et al.
(2015) (L15) and best-first system of Zhang (2013)
(Z13). L15 performs better for word ordering with
unlabeled dependency arcs, but poorly for the task
of labeled syntactic linearization.

Table 3 shows a series of development experi-
ments comparing our system with Z13 and L15.
We vary the amount of input syntactic constraints
by randomly sampling from POS and dependency
labels of the development set. Our system gives
consistently higher accuracies when compared with
both Z13 and L15. Compared to L15, the increase
in scores for unconstrained word ordering is due to
the introduction of reduced feature sparsity. The im-
provements on tree linearization tasks involving par-
tial to full dependency constraints are also due to
lookahead features that leverage tree information to
reduce ambiguity early. Though slower than L15,
our system is over 30 times faster compared to Z13.

We compare final test scores with previous meth-
ods in the literature in Table 4. Our system im-
proves upon the previous best scores by 8.7 BLEU
points for the task of unlabeled syntactic lineariza-
tion. For the task of labeled syntactic linearization,
we achieve the score of 91.8 BLEU points, the high-
est results reported so far.

Table 5 contains examples of fully constrained
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Fully constrained output
ref. || The spinoff also will compete with Fujitsu
L15 || The spinoff with Fujitsu compete also will
Ours || The spinoff also will compete with Fujitsu
ref. || Dr. Talcott led a team of researchers from
the National Cancer Institute .
L15 || a team of researchers from the National
Cancer Institute led Dr. Talcott .
Ours || Dr. Talcott led a team of researchers from
the National Cancer Institute .

Table 5: Example outputs.

output . In the first example ‘will’ is the ROOT node
with two child nodes ‘also’ and ‘compete’. Looka-
head feature for child dependency labels L5, Lcins
on the node ‘will’ can help order the segment ‘also
will compete’ correctly in our system. Without such
features, the system of L15 yields an output that
starts with ‘The spinoff with Fujitsu’ which is locally
fluent, but leaving the words ‘also’ and ‘will’ diffi-
cult to handle. In the second example, ‘Dr. Talcott’
is OOV. Hence system of L15 is not able to score it
and thus order it correctly. Our system makes use of
both POS and dependency label of ‘Dr. Talcott’ to
order it correctly.

5 Conclusion

We identified a feature sparsity issue in state-of-the-
art transition-based word ordering, proposing a so-
lution by redefining the feature structure and intro-
ducing lookahead features. The new method gives
the best accuracies on a set of benchmarks, which
show that transition-based methods are a fast and
accurate choice for syntactic linearization. Future
work include the testing of this model in a lineariza-
tion shared task (Belz et al., 2011) and investigating
the integration of large scale training data (Zhang et
al., 2012; Liu and Zhang, 2015).

We release our source code under GPL at
https://github.com/SUTDNLP/ZGen/
releases/tag/v0.2.
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