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Abstract

We present a neural network based shift-
reduce CCG parser, the first neural-network
based parser for CCG. We also study the im-
pact of neural network based tagging mod-
els, and greedy versus beam-search parsing,
by using a structured neural network model.
Our greedy parser obtains a labeled F-score
of 83.27%, the best reported result for greedy
CCG parsing in the literature (an improve-
ment of 2.5% over a perceptron based greedy
parser) and is more than three times faster.
With a beam, our structured neural network
model gives a labeled F-score of 85.57%
which is 0.6% better than the perceptron based
counterpart.

1 Introduction

Shift-reduce parsing is interesting for practical real-
world applications like parsing the web, since pars-
ing can be achieved in linear time. Although
greedy parsers are fast, accuracies of these parsers
are typically much lower than graph-based parsers.
Conversely, beam-search parsers achieve accura-
cies comparable to graph-based parsers (Zhang and
Nivre, 2011) but are much slower than their greedy
counterparts. Recently, Chen and Manning (2014)
have showed that fast and accurate parsing can be
achieved using neural network based parsers. Im-
proving their work, Weiss et al. (2015) presented a
structured neural network model which gave state-
of-the-art results for English dependency parsing.
There has been increasing interest in Combina-
tory Categorial Grammar (CCG) (Steedman, 2000)
parsing due to the simplicity of its interface between
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syntax and semantics. In addition to predicate-
argument structure, CCG captures the unbounded
dependencies found in grammatical constructions
like relativization, coordination, etc. We present a
neural network based shift-reduce CCG parser, the
first neural network based parser for CCG. We first
adapt Chen and Manning (2014)’s shift-reduce de-
pendency parser for CCG parsing. We then develop
a structured neural network model based on Weiss et
al. (2015), in order to explore the impact of a beam-
search on the parser. We also analyze the impact
of neural network taggers (for both POS-tagging
and CCG supertagging) as compared to maximum
entropy taggers. Our greedy neural network parser
achieves unlabeled and labeled F-scores of 89.78%
and 83.27% respectively, an improvement of around
2.5% over a perceptron based greedy parser, and is
more than three times faster. Due to its relevance for
large-scale parsing, we make this parser available
for public usage. By using a beam search, our
structured neural network model gave even better
results of 91.95% and 85.57% unlabeled and labeled
F-scores respectively. To the best of our knowledge,
ours is the first neural network based parser for
CCG and also the first work on exploring neural
network taggers for shift-reduce CCG parsing.

2 Related Work

2.1 CCG Parsers

Due to the availability of English CCGbank (Hock-
enmaier and Steedman, 2007), several wide-
coverage CCG parsers have been developed (Hock-
enmaier and Steedman, 2002; Clark and Curran,
2007; Auli and Lopez, 2011; Zhang and Clark,
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2011; Lewis and Steedman, 2014a). While the ma-
jority of CCG parsers are chart-based (Clark and
Curran, 2007; Lewis and Steedman, 2014a), there
has been some work on shift-reduce CCG pars-
ing (Zhang and Clark, 2011; Xu et al., 2014; Am-
bati et al., 2015). Zhang and Clark (2011) used
a global linear model trained discriminatively with
the averaged perceptron (Collins, 2002) and beam
search for their shift-reduce CCG parser. A depen-
dency model for shift-reduce CCG parsing using
a dynamic oracle technique (Goldberg and Nivre,
2012) was developed by Xu et al. (2014). Am-
bati et al. (2015) presented an incremental algorithm
for transition based CCG parsing which introduced
two novel revealing actions to overcome the conse-
quences of the greedy nature of the previous parsers.

2.2 Neural Network Parsers

Neural Network parsers are attracting interest for
both speed and accuracy. There has been some
work on neural networks for constituent based
parsing (Collobert, 2011; Socher et al., 2013;
Watanabe and Sumita, 2015). Chen and Man-
ning (2014) developed a neural network architecture
for dependency parsing. This parser was fast and
accurate, parsing around 1000 sentences per second
and achieving an unlabeled attachment score of
92.0% on the standard Penn Treebank test data for
English. Chen and Manning (2014)’s parser used a
feed forward neural network. Several improvements
were made to this architecture in terms of using
Long Short-Term Memory (LSTM) networks (Dyer
et al., 2015), deep neural networks (Weiss et al.,
2015) and structured neural networks (Weiss et al.,
2015; Zhou et al., 2015; Alberti et al., 2015).

3 Our Neural Network Parser (NNPar)

The architecture of our neural network based
shift-reduce CCG parser is similar to that of Chen
and Manning (2014). We present the details of the
network and the model settings in this section. We
also discuss our structured neural network model.

3.1 Architecture

Figure 1 shows the architecture of our neural net-
work parser. There are three layers in the parser:
input, hidden and output layers. We first extract dis-
crete features like words, POS-tags and CCG su-
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Figure 1: Our Neural Network Architecture
(adapted from Chen and Manning (2014)).

pertags from the parser configuration. For each of
these discrete features we obtain a continuous vec-
tor representation in the form of their corresponding
embeddings and use them in the input layer. Fol-
lowing Chen and Manning (2014), we use a cube
activation function and softmax for output layer.

3.2 Feature and Model Settings

We extract features from a) top four nodes in the
stack, b) next four nodes in the input and c) left and
right children of the top two nodes in the stack. We
obtain words and POS-tags of all these 12 nodes. In
case of CCG supertags, in addition to the CCG cate-
gories of the nodes in the stack (top four nodes, left
and right children of top two nodes), we also obtain
the lexical head categories for the top two nodes. We
use a special token ‘NULL’ if a feature is not present
in the parser configuration. So, in total we have 34
features: 12 word, 12 POS-tag and 10 CCG supertag
features. For each of these 34 features we obtain
their corresponding embeddings. We use Turian em-
beddings of dimensionality 50 (Turian-50)!. For the
words which are not in the word embeddings dictio-
nary, embeddings of ‘-UNKNOWN-’ token are used
as a backoff. For POS-tags and CCG supertags, the
parameters are randomly initialized with values be-
tween -0.01 and 0.01.

Our input layer is a 34 (feature templates) X 50
(embedding size) dimensional vector. We use 200

"Lewis and Steedman (2014b) explored different publicly
available word embeddings (Mnih and Hinton, 2009; Turian et
al., 2010; Collobert et al., 2011; Mikolov et al., 2013) for CCG
supertagging and showed that Turian-50 gave best results.



hidden units in the the hidden layer. For the output
layer we compute softmax probabilities only for
the actions which are possible in a particular parser
configuration instead of all the actions. We use the
training settings of Chen and Manning (2014) for
our parser. The training objective is to minimize
the cross-entropy loss with an [o-regularization and
the training error derivatives are backpropagated
during training. For optimization we use AdaGrad
(Duchi et al., 2011). 108 and 0.01 are the values
for regularization parameter and Adagrad initial
learning rate respectively. Parameters that give the
best labeled F-score on the development data are
used for testing data.

3.3 Structured Neural Network

Chen and Manning (2014)’s parser is a greedy parser
and it is not straight forward to add a beam during
training into their parser. As a way of introducing a
beam, Weiss et al. (2015) presented a structured per-
ceptron training for the neural network parser. They
first pre-trained their neural network model. For the
final layer, they trained a structured perceptron using
beam search decoding which takes the neural net-
work hidden and output layers as the input. This
method, known as a structured neural network, gave
the state-of-the-art results for English dependency
parsing. In addition to using a softmax for the output
layer, we also applied this structured neural network
approach for our experiments using a beam. Unlike
Weiss et al. (2015)’s neural network architecture,
which consists of two hidden layers with 2048 hid-
den units each, we use the Chen and Manning (2014)
style architecture described in the previous sections.

3.4 Comparison to Chen and Manning (2014)

Our neural network parser differs from Chen and
Manning (2014) in a number of respects. We use
CCG supertags in the input layer rather than depen-
dency labels. For word embeddings, we use Turian
embeddings (Turian et al., 2010) whereas they use
Collobert et al. (2011). We have a slightly smaller
set of 34 feature templates as compared to their 48
templates. Our parser has 2296 actions when instan-
tiated by specific categorial types: 1285 Shift,
340 Reduce-Left, 593 Reduce-Right and
78 Reduce-Unary actions. In comparison, Chen
and Manning (2014) have a much smaller number
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of actions (35 for CoNLL and 91 for Stanford
dependencies). Because there are many more CCG
categories (~ 500) compared to dependency labels,
there are relatively more operations in a CCG parser.

4 Experiments and Results

We first compare our neural network parser
(NNPar)?> with a perceptron based parser in the
greedy settings. Then we analyze the impact of
beam using neural network (NNPar) and structured
neural network (Structured NNPar) models.

The perceptron based parser is a re-
implementation of Zhang and Clark (2011)’s
parser (Z&C¥*). A global linear model trained with
the averaged perceptron (Collins, 2002) is used
for this parser and an early-update (Collins and
Roark, 2004) strategy is used during training. In
the greedy setting (beam=1), when the predicted
action differs from the gold action, decoding stops
and weights are updated accordingly. When a beam
is used (beam=16), weights are updated when the
gold parse configuration falls out of the beam. For
Z.&C*, the feature set of Zhang and Clark (2011),
which comprises of 64 feature templates is used.
For NNPar, the 34 feature templates described in
section 3.2 are used. We employ an arc-standard
style shift-reduce algorithm for CCG parsing,
similar to Zhang and Clark (2011), for all our
experiments.

4.1 Data and Settings

We use the standard CCGbank training (sections 02
— 21), development (section 00) and testing (section
23) splits for our experiments. All the experiments
are performed using automatic POS-tags and CCG
supertags. We compare performance using two
types of taggers: maximum entropy and neural
network based taggers (NNT). The C&C taggers >
(Clark and Curran, 2004) are used for maximum en-
tropy taggers. For neural network taggers, SENNA
tagger* (version 3.0) (Collobert et al., 2011) is used

2We used Chen and Manning (2014)’s classifier for imple-
menting our NNPar

*http://svn.ask.it.usyd.edu.au/trac/
candc/wiki

*nttp://ronan.collobert.com/senna/



for POS-tagging and EasyCCG tagger’ (Lewis and
Steedman, 2014a) is used for supertagging. Both
these taggers use a feed-forward neural network
architecture with a single hidden layer similar to our
NNPar architecture.

In the case of POS-tags, we consider the first best
tag given by the POS tagger. For CCG supertags, we
use a multitagger which gives n-best supertags for a
word. Following Zhang and Clark (2011) and Xu
et al. (2014), only during training, the gold CCG
lexical category is added to the list of supertags for
a word if it is not present in the list assigned by the
multitagger.

4.2 Greedy Setting

In this section, we compare the performance of
perceptron (Z&C*) and neural network (NNPar)
parsers in the greedy setting. Table 1 presents the
unlabeled F-score (UF), labeled F-score (LF) and
lexical category accuracy (Cat.) for the Z&C* and
NNPar on the CCGbank development data.

NNPar outperformed Z&C* on all the metrices.
There is an improvement of 2.14% in UF and 2.4%
in LF, when both the parsers used maximum-entropy
(C&C) taggers. We also experimented with the re-
vealing based incremental algorithm of Ambati et al.
(2015). Neural network parser gave better results
than the perceptron parser for the incremental algo-
rithm as well. Using the incremental algorithm, our
NNPar obtained UF and LF of 89.08% and 81.07%
which is 0.3% and 1.6% respectively lower than the
results with the non-incremental algorithm. So, for
the rest of the experiments we use non-incremental
parsing algorithm of Z&C*.

Using neural network based taggers (NNT) didn’t
give any improvement for Z&C* in the greedy
settings. Performance of NNT is slightly lower
than C&C tagger which could be the reason for
this (Lewis and Steedman, 2014a). But for NNPar,
NNT improved the performance over C&C by
0.7%. Lewis and Steedman (2014a) and Xu et
al. (2015) showed improvements in the performance
of C&C, a graph based parser, by using neural
network taggers. Our result with NNPar is in line
with theirs and shows that neural network taggers

Shttp://homepages.inf.ed.ac.uk/s1049478/
easyccg.html
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can improve the performance of shift-reduce CCG
parsers as well. We obtained final unlabeled and
labeled F-scores of 90.09% and 83.33% respec-
tively on the development data. To the best of our
knowledge these are the best reported results for
greedy shift-reduce CCG parsing.

’ Model \ Tagger \ UF \ LF \ Cat. ‘
Z&C* C&C | 87.24 | 80.25 | 91.09
Our NNPar | C&C 89.38 | 82.65 | 91.72
Z&C* NNT 87.00 | 79.78 | 90.52
Our NNPar | NNT | 90.09 | 83.33 | 92.03

Table 1: Performance of greedy CCG parsers on

CCGbank development data (Sec. 00).

4.3 Beam Search

We next analyze the impact of beam-search on the
various parsers. For Z&C* and Structured NNPar,
we use a beam of size 16 both during training and
testing; for NNPar, a beam (of 16) can be used only
during testing. Table 2 presents the results using a
beam size of 16. Results are presented with a beam
of size 16 to enable direct comparison with Zhang
and Clark (2011), since our parsing algorithm is sim-
ilar to theirs.

The top 3 rows of the table show the results of our
experiments and the last 2 rows contain published
results of Zhang and Clark (2011) and Xu et
al. (2014). Using a beam improved the performance
of both the perceptron and neural network parsers.
Since NNPar uses a beam only during testing, there
is only slight improvement in the f-score. Using a
structured neural network gave a significant boost
in performance. Structured NNPar is better than
NNPar on all the metrices which shows that Struc-
tured NNPar is a stronger model than NNPar. We
obtained a final LF of 85.69% on the development
data which is 1.3% better than the Z&C*, the
structured perceptron counter part, and 1.1% better
than NNPar. This is the best published result on the

development data for shift-reduce CCG parsing.
4.4 Final Test Results

Table 3 presents the results for the final test data.
The top 2 rows of the table present the results in
the greedy settings. The middle 3 rows of the table
show the results with a beam. The last 2 rows give
the published results of Zhang and Clark (2011)



Model | Beam | UF | LF | Cat. |

Our Structured NNPar 16

2&C* 1 87.28 | 80.78 | 91.44
Our NNPar 1 89.78 | 83.27 | 91.89
2&C* 16 91.28 | 85.00 | 92.79
Our NNPar 16 91.14 | 84.44 | 92.22

91.95 | 85.57 | 92.86

Zhang and Clark (2011) | 16
Xu et al. (2014) 128

- 85.48 | 92.77
- 86.00 | 92.75

Table 3: Results on CCGbank test data (Sec. 23).

| Model | UF | LF | Cat. |
7&C* 91.17 | 84.34 | 9242
Our NNPar 91.46 | 84.55 | 92.35
Our Structured NNPar 92.19 | 85.69 | 93.02
Zhang and Clark (2011) 85.00 | 92.77
Xu et al. (2014) 85.18 | 92.75

Table 2: Impact of the beam on CCGbank develop-
ment data (Sec. 00).

and Xu et al. (2014). With the greedy setting, our
NNPar outperformed Z&C* by around 2.5%, ob-
taining 89.78% and 83.27% UF and LF respectively.
These are the best reported result for greedy shift-
reduce CCG parsing.

In the case of the beam search parsers, we
achieved final best scores of 91.95% in UF and
85.57% in LF with our Structured NNPar. Struc-
tured NNPar gave improvements of 1.1% over the
NNPar and 0.6% over the structured perceptron
model, Z&C*. Structured NNPar gets better cate-
gory accuracy, but lower LF than Xu et al.(2014).
Note however that we use a much smaller beam size
of 16 (similar to Z&C) as compared to theirs (128).
Increasing the beam size improved the accuracy but
significantly reduced the parsing speed. Testing with
a beam of size 128 gave 0.2% improvement in la-
belled F-score but slowed the parser by ten times.

4.5 Speed

Beam-search parsers are more accurate than greedy
parsers but are very slow. With neural network mod-
els we can build parsers which give a nice trade-off
between speed and accuracy. Table 4 present the
speed comparison for both Z&C* and our NNPar
in greedy settings. NNPar is much faster, pars-
ing 350 sentences per second compared to Z&C*
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which parses 110 sentences per second. Parsers with
a beam of size 16 parse around 10 sentences per
second and parsers with a beam of size 128 parse
around 1 sentence per second. These numbers don’t
include POS tagging and supertagging time.

Model | Sentences/Second
7&C* 110
NNPar 350

Table 4: Speed comparison of perceptron and neural
network based greedy parsers.

5 Conclusion

We presented the first neural network based shift-
reduce parsers for CCG, a greedy and a beam-
search parser. On the standard CCGbank test data,
we achieved a labeled F-score of 85.57% with our
structured neural network parser, an improvement of
0.6% over the structured perceptron parser (Z&C¥*).
Our greedy parser gets UF and LF of 89.78% and
83.27% respectively, the best reported results for a
greedy CCG parser, and is more than three times
faster. In future we plan to explore more sophis-
ticated tagging and parsing models like deep neu-
ral networks (Weiss et al., 2015), recurrent neu-
ral networks (Dyer et al., 2015), and bi-directional
LSTMs (Lewis et al., 2016) for shift-reduce CCG
parsing.
The parser code can be downloaded at

https://github.com/bharatambati/tranccg.
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