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Abstract

This paper presents the first study using neu-
ral machine translation (NMT) for grammati-
cal error correction (GEC). We propose a two-
step approach to handle the rare word problem
in NMT, which has been proved to be useful
and effective for the GEC task. Our best NMT-
based system trained on the CLC outperforms
our SMT-based system when testing on the
publicly available FCE test set. The same sys-
tem achieves an F0.5 score of 39.90% on the
CoNLL-2014 shared task test set, outperform-
ing the state-of-the-art and demonstrating that
the NMT-based GEC system generalises ef-
fectively.

1 Introduction

Grammatical error correction (GEC) is the task
of detecting and correcting grammatical errors in
text written by non-native English writers. Un-
like building machine learning classifiers for spe-
cific error types (e.g. determiner or preposition er-
rors) (Tetreault and Chodorow, 2008; Rozovskaya
and Roth, 2011; Dahlmeier and Ng, 2011), the
idea of ‘translating’ a grammatically incorrect sen-
tence into a correct one has been proposed to handle
all error types simultaneously (Felice et al., 2014;
Junczys-Dowmunt and Grundkiewicz, 2014). Sta-
tistical machine translation (SMT) has been suc-
cessfully used for GEC, as demonstrated by the
top-performing systems in the CoNLL-2014 shared
task (Ng et al., 2014).

Recently, several neural machine translation
(NMT) models have been developed with promis-
ing results (Kalchbrenner and Blunsom, 2013; Cho

et al., 2014; Sutskever et al., 2014; Bahdanau et
al., 2014). Unlike SMT, which consists of com-
ponents that are trained separately and combined
during decoding (i.e. the translation model and lan-
guage model) (Koehn, 2010), NMT learns a single
large neural network which inputs a sentence and
outputs a translation. NMT is appealing for GEC as
it may be possible to correct erroneous word phrases
and sentences that have not been seen in the train-
ing set more effectively (Luong et al., 2015). NMT-
based systems thus may help ameliorate the lack of
large error-annotated learner corpora for GEC.

However, NMT models typically limit vocabu-
lary size on both source and target sides due to the
complexity of training (Sutskever et al., 2014; Bah-
danau et al., 2014; Luong et al., 2015; Jean et al.,
2015). Therefore, they are unable to translate rare
words, and out-of-vocabulary (OOV) words are re-
placed with UNK symbol. This problem is more se-
rious for GEC as non-native text contains not only
rare words (e.g. proper nouns), but also misspelled
words (i.e. spelling errors). By replacing all the
OOV words with the same UNK symbol, useful in-
formation is discarded, resulting in systems that are
not able to correct misspelled words or even keep
some of the error-free original words, as in the fol-
lowing examples (OOV words are underlined):

Original sentence

... I am goign to make a plan ...

System hypothesis

... I am UNK to make a plan ...

Gold standard
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... I am going to make a plan ...

Original sentence

I suggest you visit first the cathedral of “ Le Seu
d’Mrgell ” because it is the most emblematic
building in the area .

System hypothesis

I suggest you visit first the cathedral of “ Le
UNK UNK ” because it is the most UNK build-
ing in the area .

Gold standard

I suggest you visit first the cathedral of “ Le Seu
d’Mrgell ” because it is the most emblematic
building in the area . (unchanged)

Inspired by the work of Luong et al. (2015), we
propose a similar but much simpler two-step ap-
proach to address the rare word problem: rather than
annotating the training data with alignment infor-
mation, we apply unsupervised alignment models to
find the sources of the words in the target sentence.
Once we know the source words that are responsible
for the unknown target words, a word level transla-
tion model learnt from parallel sentences is used to
translate these source words.

This paper makes the following contributions.
First, we present the first study using NMT for GEC,
outperforming the state-of-the-art. Second, we pro-
pose a two-step approach to address the rare word
problem in NMT for GEC, which we show yields a
substantial improvement. Finally, we report results
on two well-known publicly available test sets that
can be used for cross-system comparisons.

2 Neural machine translation

NMT systems apply the so-called encoder-decoder
mechanism proposed by Cho et al. (2014) and
Sutskever et al. (2014). An encoder reads and en-
codes an entire source sentence x = (x1, x2, ..., xT )
into a vector c:

c = q(h1, h2, ..., hT ) (1)

where a hidden state ht at time t is defined as:

ht = f(xt, ht−1) (2)

A decoder then outputs a translation y =
(y1, y2, ..., yT ′) by predicting the next word yt based
on the encoded vector c and all the previously pre-
dicted words {y1, y2, ..., yt−1}:

p(y) =
T ′∏
t=1

p(yt|{y1, y2, ..., yt−1}, c) =
T ′∏
t=1

g(yt−1, st, c)

(3)
where st is the hidden state of the decoder.
Different neural network models have been

proposed, for example, Kalchbrenner and Blun-
som (2013) proposed a hybrid of a recurrent neural
network (RNN) and a convolutional neural network,
Sutskever et al. (2014) used a Long Short-Term
Memory (LSTM) model, Cho et al. (2014) proposed
a similar but simpler gated RNN model, and Bah-
danau et al. (2014) introduced an attentional-based
architecture.

In this work, we use the RNNsearch model of
Bahdanau et al. (Bahdanau et al., 2014), which con-
tains a bidirectional RNN as an encoder and an
attention-based decoder. The bidirectional RNN en-
coder has a forward and a backward RNN. The for-
ward RNN reads the source sentence from the first
word to the last, and the backward RNN reads the
source sentence in reverse order. By doing this,
it captures both historical and future information.
The attention-based model allows the decoder to fo-
cus on the most relevant information in the source
sentence, rather than remembering the entire source
sentence.

3 Handling rare words

The rare word problem in NMT has been noticed by
(Sutskever et al., 2014; Bahdanau et al., 2014; Lu-
ong et al., 2015; Jean et al., 2015). Jean et al. (2015)
proposed a method based on importance sampling
that uses a very large target vocabulary without in-
creasing training complexity. However, no matter
how large the target vocabulary size is, there are still
OOV words. We also notice that in GEC, the source
side vocabulary size is much larger than that of the
target side as there are many incorrect words in the
source (e.g. spelling mistakes and word form errors)
(see Section 4.1). Luong et al. (2015) introduced
three new annotation strategies to annotate the train-
ing data, so that unknown words in the output can be
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traced back to their origins. The training data was
first re-annotated using the output of a word align-
ment algorithm. NMT systems were then built using
this new data. Finally, information about the OOV
words in the target sentence and their corresponding
words in the source sentence was extracted from the
NMT systems and used in a post-processing step to
translate these OOV words using a dictionary.

We propose a similar two-step approach: 1) align-
ing the unknown words (i.e. UNK tokens) in the tar-
get sentence to their origins in the source sentence
with an unsupervised aligner; 2) building a word
level translation model to translate those words in
a post-processing step. In order to locate the source
words that are responsible for the unknown target
words, we apply unsupervised aligners directly and
use only the NMT model output instead of first
re-annotating training data, and then building new
NMT models using this newly annotated data as pro-
posed by Luong et al. (2015). Our approach is much
simpler as we avoid re-annotating any data and train
only one NMT model. Due to the nature of error cor-
rection (i.e. both source and target sentences are in
the same language), most words translate as them-
selves, and errors are often similar to their correct
forms. Thus, unsupervised aligners can be success-
fully used to align the unknown target words. Two
automatic alignment tools are used: GIZA++ (Och
and Ney, 2003) and METEOR (Banerjee and Lavie,
2005). GIZA++ is an implementation of IBM Mod-
els 1-5 (Brown et al., 1993) and a Hidden-Markov
alignment model (HMM) (Vogel et al., 1996), which
can align two sentences from any languages. Un-
like GIZA++, METEOR aligns two sentences from
the same language. The latest METEOR 1.5 only
supports a few languages, and English is one of
them. METEOR identifies not only words with ex-
act matches, but also words with identical stems,
synonyms, and unigram paraphrases. This is use-
ful for GEC as it can deal with word form, noun
number, and verb form corrections that share iden-
tical stems, as well as word choice corrections with
synonyms or unigram paraphrases. To build a word
level translation model for translating the source
words that are responsible for the target unknown
words, we need word-aligned data. The IBM Mod-
els are used to learn word alignment from parallel
sentences.

4 Experiments

4.1 Dataset

We use the publicly available FCE dataset (Yan-
nakoudakis et al., 2011), which is a part of the
Cambridge Learner Corpus (CLC) (Nicholls, 2003).
The FCE dataset contains 1,244 scripts produced by
learners taking the First Certificate in English (FCE)
examination between 2000 and 2001. The texts have
been manually annotated by linguists using a taxon-
omy of approximately 80 error types. The publicly
available FCE dataset contains about 30,995 pairs
of parallel sentences for training (approx. 496,567
tokens on the target side) and about 2,691 pairs of
parallel sentences for testing (approx. 41,986 tokens
on the target side). Since the FCE training set is
too small to build good MT systems, we add train-
ing examples extracted from the CLC. Overall, there
are 1,965,727 pairs of parallel sentences in our train-
ing set. The source side contains 28,823,615 words
with 248,028 unique words, and the target side con-
tains 29,219,128 words with 143,852 unique words.
As we can see, the source side vocabulary size is
much larger than that of the target side. Training
and test data is pre-processed using RASP (Briscoe
et al., 2006).

4.2 Evaluation

System performance is evaluated using three au-
tomatic evaluation metrics: I-measure (Felice and
Briscoe, 2015), M2 Scorer (Dahlmeier and Ng,
2012) and GLEU (Napoles et al., 2015). In the
I-measure, an Improvement (I) score is computed
by comparing system performance with that of a
baseline which leaves the original text uncorrected
(i.e. the source). The M2 Scorer was the official
scorer in the CoNLL shared tasks (Ng et al., 2013;
Ng et al., 2014), with F0.5 being the reported met-
ric in the 2014 edition. GLEU is a simple variant
of BLEU (Papineni et al., 2002), which shows better
correlation with human judgments on the CoNLL-
2014 shared task test set.

4.3 SMT baseline

Following previous work (e.g. Brockett et al. (2006),
Yuan and Felice (2013)), we build a phrase-based
SMT error correction system as the baseline. Pi-
align (Neubig et al., 2011) is used to create a phrase
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translation table. In addition to default features,
we add character-level Levenshtein distance to each
mapping in the phrase table as proposed by Fe-
lice et al. (2014). Decoding is performed using
Moses (Koehn et al., 2007). The language model
used during decoding is built from the corrected
sentences in the learner corpus, to make sure that
the final system outputs fluent English sentences.
The IRSTLM Toolkit (Federico et al., 2008) is used
to buid a 5-gram language model with modified
Kneser-Ney smoothing (Kneser and Ney, 1995).

4.4 NMT training details
Our training procedure and hyper-parameters for the
NMT system are similar to those used by Bahdanau
et al. (2014). We train models with sentences of
length up to 100 words, which covers about 99.96%
of all the training examples. In terms of vocabulary
size, we limit the target vocabulary size to 30K, and
experiment with three different source vocabulary
sizes: 30K, 50K and 80K.1 Each model is trained
for approximately 5 days using a Tesla K20 GPU.

The output sentences from the NMT systems are
aligned with their source sentences using GIZA++.
In addition, alignment information learnt by ME-
TEOR is used by GIZA++ during aligning. All the
UNK tokens in the output sentences are replaced
with the translation of the source words that are re-
sponsible for those UNK tokens. The translation
is performed using a word level model learnt from
IBM Model 4.

4.5 Results
From the results in Table 1, we can see that NMT-
based systems alone are not able to achieve compa-
rable results to an SMT-based system. It is proba-
bly because of the rare word problem, as increasing
the source side vocabulary size helps. The perfor-
mance of the best NMT system alone (NMT 80K-
30K), without replacing UNK tokens, is still worse
than the SMT baseline. When we replace the UNK
tokens in the NMT output, using GIZA++ for un-
known word alignment improves the system per-
formance for all three NMT systems in all three
evaluation metrics. We can see that our proposed
approach is more useful for NMT systems trained

1Preliminary experiments show that increasing the source
side vocabulary size is more useful than target side.

System GLEU F0.5 (M2) I-measure
Source 60.39 0 0
SMT baseline 70.15 52.90 2.87
NMT-based systems
NMT 30K-30K 69.04 46.10 -1.30
+ GIZA++ 70.89 52.79 3.89
+ METEOR 71.16 53.49 3.94
NMT 50K-30K 68.95 46.78 -1.14
+ GIZA++ 70.31 52.02 2.86
+ METEOR 70.40 52.35 2.89
NMT 80K-30K 70.02 49.17 -1.04
+ GIZA++ 71.18 53.48 2.40
+ METEOR 71.18 53.49 2.41

Table 1: System performance on the FCE test set (in percent-

ages). The results of our best system are marked in bold.

on a small source side vocabulary (e.g. 30K) than
a large vocabulary (e.g. 50K, 80K). The larger the
vocabulary size, the smaller the gain after replac-
ing UNK tokens. The introduction of the METEOR
alignment information to GIZA++ yields further im-
provements. Our best system (NMT 30K-30K +
GIZA++ + METEOR) achieves an F0.5 score of
53.49%, an I score of 3.94%, and a GLEU score
of 71.16%, outperforming the SMT baseline in all
three evaluation metrics.

Comparing the output of the SMT baseline with
that of the NMT system reveals that there are some
learner errors which are missed by the SMT system
but are captured by the NMT system. One possi-
ble reason is that the phrase-based SMT system is
trained on surface forms and therefore unaware of
syntactic structure. In order to make a correction,
it has to have seen the exact correction rule in the
training data. Since the NMT system does not rely
on any correction rules, in theory, it should be able
to make any changes as long as it has seen the words
in the training data. For example:

Original sentence

There are kidnaps everywhere and not all of the
family can afford the ransom ...

SMT hypothesis

There are kidnaps everywhere and not all of the
families can afford the ransom ...

NMT hypothesis
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There are kidnappings everywhere and not all
of the families can afford the ransom ...

Gold standard

There are kidnappings everywhere and not all
of the families can afford the ransom ...

The SMT system fails to correct the word form er-
ror as the correction rule (kidnaps→ kidnappings) is
not in the SMT phrase table learnt from the training
data. Since these two words (kidnaps and kidnap-
pings) have been seen in the training data, the NMT
system corrects this error successfully.

5 CoNLL-2014 shared task

The CoNLL-2014 shared task on grammatical er-
ror correction required participating systems to cor-
rect all errors present in learner English text. The
official training and test data comes from the Na-
tional University of Singapore Corpus of Learner
English (NUCLE) (Dahlmeier et al., 2013). F0.5
was adopted as the evaluation metric, as reported by
the M2 Scorer. In order to test how well our sys-
tem generalises, we apply our best system trained on
the CLC to the CoNLL-2014 shared task test data
directly without adding the NUCLE training data
or tuning for the NUCLE. The state-of-the-art F0.5
score was reported by Susanto et al. (2014) after the
shared task. By combining the outputs from two
classification-based systems and two SMT-based
systems, they achieved an F0.5 score of 39.39%. Re-
sults of the uncorrected baseline, our best NMT-
based system, Susanto et al. (2014)’s system and the
top three systems in the shared task are presented
in Table 2. We can see that our NMT-based sys-
tem outperforms the top three teams, achieving the
highest F0.5, I and GLEU scores. It also outperforms
the state-of-the-art combined system from Susanto
et al. (2014). Our system achieves the best F0.5 score
of 39.90% even though it is not trained on the NU-
CLE data. This result shows that our system gen-
eralises well to other datasets. We expect these re-
sults might be further improved by retokenising the
test data to be consistent with the tokenisation of the
CLC.2

2The NUCLE data was preprocessed using the NLTK
toolkit, whereas the CLC was tokenised with RASP.

System GLEU F0.5 (M2) I-measure
Source 64.19 0 0
Our NMT-based system
30K-30K + GIZA++ + ME-
TEOR

65.59 39.90 -3.11

Top 3 systems in CoNLL-2014
CAMB (Felice et al., 2014) 64.32 37.33 -5.58
CUUI (Rozovskaya et al., 2014) 64.64 36.79 -3.91
AMU (Junczys-Dowmunt and
Grundkiewicz, 2014)

64.56 35.01 -3.31

State-of-the-art
Susanto et al. (2014) n/a 39.39 n/a

Table 2: System performance on the CoNLL-2014 test set with-

out alternative answers (in percentages).

6 Conclusions

We have shown that NMT can be successfully ap-
plied to GEC once we address the rare word prob-
lem. Our proposed two-step approach for UNK re-
placement has been proved to be effective, and to
provide a substantial improvement. We have de-
veloped an NMT-based system that generalises well
to another dataset. Our NMT system achieves an
F0.5 score of 53.49%, an I score of 3.94%, and a
GLEU score of 71.16% on the publicly available
FCE test set, outperforming an SMT-based system
in all three metrics. When testing on the official
CoNLL-2014 test set without alternative answers,
our system achieves an F0.5 score of 39.90%, out-
performing the current state-of-the-art. In future
work, we would like to explore other ways to ad-
dress the rare word problem in NMT-based GEC,
such as incorporating the soft-alignment information
generated by the attention-based decoder, or using
character-based models instead of word-based ones.
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