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Abstract

This paper provides a binary, token-based
classification of German particle verbs (PVs)
into literal vs. non-literal usage. A random
forest improving standard features (e.g., bag-
of-words; affective ratings) with PV-specific
information and abstraction over common
nouns significantly outperforms the major-
ity baseline. In addition, PV-specific classifi-
cation experiments demonstrate the role of
shared particle semantics and semantically
related base verbs in PV meaning shifts.

1 Introduction

Automatic detection of non-literal expressions (in-
cluding metaphors and idioms) is critical for many
natural language processing (NLP) tasks such as
information extraction, machine translation, and
sentiment analysis. For this reason, the last decade
has seen an increase in research on identifying
literal vs. non-literal meaning (Birke and Sarkar,
2006; Birke and Sarkar, 2007; Li and Sporleder,
2009; Sporleder and Li, 2009; Turney et al., 2011;
Shutova et al., 2013; Tsvetkov et al., 2014), as well
as the establishment of workshops on metaphori-
cal language in NLP.1

In this paper, we explore the prediction of lit-
eral vs. non-literal language usage of a compu-
tationally challenging class of multiword expres-
sions: German particle verbs (PVs) such as an-
lachen (laugh at) are compositions of a base verb

1sites.google.com/site/metaphorinnlp2016/

(BV) such as lachen (smile/laugh) and a verb par-
ticle such as an. German PVs are highly produc-
tive (Springorum et al., 2013b; Springorum et al.,
2013a), and the particles are notoriously ambigu-
ous (Lechler and Roßdeutscher, 2009; Haselbach,
2011; Springorum, 2011). Furthermore, the par-
ticles often trigger (regular) meaning shifts when
they combine with base verbs (Springorum et al.,
2013b), so the resulting PVs represent frequent
cases of non-literal meaning. The contributions of
this paper are as follows:

1. We present a random forest classifier that cor-
rectly identifies 86.8% of literal vs. non-literal
language usage within a novel dataset of 6436
annotated sentences, in comparison to a ma-
jority baseline of 64.9%.

2. We successfully incorporate salient PV-
specific features and noun clusters in
addition to standard bag-of-words features
and affective ratings.

3. We demonstrate that PVs with semantically
similar particles and semantically similar
base verbs can predict each others’ literal vs.
non-literal language usage.

4. We illustrate the potential and the limits of
the most salient classification features in pre-
dicting PV non-literal language usage.

In the remainder of this paper we describe pre-
vious work on non-literal language identification
and computational models of German particle
verbs (Section 2), before we introduce our dataset
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on German particle verbs (Section 3), the particle
verb features (Section 4), and the experiments, re-
sults and analyses (Section 5).

2 Related Work

Previous work relevant to this paper includes re-
search on identifying non-literal language usage,
and computational work on (German) particle
verb meaning.

Identification of non-literal language usage:
Birke and Sarkar (2006), Birke and Sarkar (2007), Li
and Sporleder (2009) and Sporleder and Li (2009)
performed binary token-based classifications for
English datasets, relying on various contextual in-
dicators. Birke & Sarkar exploited seed sets of
literal vs. non-literal sentences, and used distri-
butional similarity to classify English verbs. Li
& Sporleder defined two models of text cohesion
(a cohesion chain and a cohesion graph) to clas-
sify V+NP and V+PP combinations. Shutova et
al. (2013) performed both metaphor identification
and interpretion (by paraphrasing), focusing on
English verbs. She relied on a seed set of annotated
metaphors and standard verb and noun cluster-
ing, to classify literal vs. metaphorical verb senses.
Gedigian et al. (2006) also predicted metaphorical
meanings of English verb tokens, however heav-
ily relying on manual rather than unsupervised
data (i.e. labeled sentences and PropBank anno-
tation) and a maximum entropy classifier. Turney
et al. (2011) assumed that metaphorical word us-
age is correlated with the degree of abstractness
of the word’s context, and classified word senses
in a given context as either literal or metaphori-
cal. Their targets were adjective–noun combina-
tions and verbs. Tsvetkov et al. (2014) presented
a language-independent approach to metaphor
identification. They used affective ratings, Word-
Net categories and vector-space word representa-
tions to train a metaphor-detecting classifier on
English samples, and then applied it to a different
target language using bilingual dictionaries.

Computational research on particle verbs was
initially concerned with the automatic acquisition
of particle verbs from corpora (Baldwin and Villav-
icencio, 2002; Baldwin, 2005; Villavicencio, 2005).

Afterwards, the main focus has been on modelling
the degree of compositionality of particle verbs as
based on distributional features (McCarthy et al.,
2003; Baldwin et al., 2003; Bannard, 2005). All
these approaches were type-based, and predicting
the compositionality was mainly concerned with
PV–BV similarity, not taking the contribution of the
particle into account. In cases where the particle
semantics was respected (such as Bannard (2005)),
the results were disappointing because modelling
particle senses is still an unsolved problem.

Regarding German particle verbs, there has also
been a focus on modelling PV compositionality
(Kühner and Schulte im Walde, 2010; Bott and
Schulte im Walde, 2014; Bott and Schulte im
Walde, 2015). As in English, the approaches were
all type-based and mainly concerned with PV–BV
similarity. Another line of research categorized
particle meanings by relating formal semantic def-
initions to automatic classifications (Rüd, 2012;
Springorum et al., 2012). Furthermore, Springo-
rum et al. (2013b) recently provided a corpus-
based study on regular meaning shift conditions
for German particle verbs.

3 Particle Verb Dataset

We selected 165 particle verbs across 10 parti-
cles, based on previous experiments and datasets
that incorporated German particle verbs with reg-
ular meaning shifts, various degrees of ambigu-
ity, and across frequency ranges (Springorum et
al., 2013b; Springorum et al., 2013a; Bott and
Schulte im Walde, 2015). For the 165 PVs, we ran-
domly extracted 50 sentences from DECOW14AX,
a German web corpus containing 12 billion to-
kens (Schäfer and Bildhauer, 2012; Schäfer, 2015).
The sentences were morphologically annotated
and parsed using SMOR (Faaß et al., 2010), Mar-
MoT (Müller et al., 2013) and the MATE depen-
dency parser (Bohnet, 2010). Combining part-
of-speech and dependency information, we were
able to reliably sample both separated and non-
separated PV occurrences (“Der Ast bricht ab”
vs. “Der Ast ist abgebrochen”).

Three German native speakers with a linguis-
tic background annotated each of the 8128 sen-
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tences2 on a 6-point scale [0,5], ranging from
clearly literal (0) to clearly non-literal (5) usage.
The total agreement of the annotators on all six
categories was 43%, Fleiss’ κ = 0.35. Dividing
the scale into two disjunctive ranges with three
categories each ([0,2] and [3,5]), the total agree-
ment of the annotators on the two categories was
79%, Fleiss’ κ = 0.70. In the experiments we used
the binary-class distinction, and disregarded all
cases of disagreement. This final dataset com-
prises 6436 sentences: 4174 literal and 2262 non-
literal uses across 159 particle verbs and 10 parti-
cles.3 Figure 1 shows the distribution of literal and
non-literal sentences across the particles.
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Figure 1: Lit/Non-lit distribution across particles.

4 Particle Verb Features

Our feature space includes standard features to
detect non-literal language uses (bags-of-words
and affective ratings) as well as PV-specific fea-
tures and abstraction over common nouns.

4.1 Unigrams

As a standard feature in vector space models, we
used all words in the particle verb sentences, i.e., a
bag-of-words model relying on unigrams. We ex-
pected this standard information to be useful, be-
cause some words such as the abstract noun Hoff-
nung (hope) and the concrete noun Geld (money)
frequently occur with non-literal rather than literal
language usage:

1. (non-lit.) “Die Hoffnung keimte früh auf.”
That hope arose (lit: sprouted) early.

2. (non-lit.) “Er versucht das Geld abzugraben.”
He tries to demand (lit: dig off) the money.

2Some PVs appeared < 50 times in the corpus.
3The dataset is accessible from http://www.ims.

uni-stuttgart.de/data/pv_nonlit.

To overcome data sparseness, we did not use
the unigrams as individual features (|V | = feature
space), but implemented this feature as the out-
put of a text-classifier. We relied on the Multino-
mial Naive Bayes (MNB) classifier by McCallum
and Nigam (1998). While the classifier was de-
signed for document classification, we considered
a sentence as a document and the possible class
outcomes were literal and non-literal.

Noun Clusters Because of the severe data sparse-
ness in our PV feature sets, we performed noun
generalization and applied the generalized infor-
mation to all nouns in our PV contexts. Using all
approx. 430000 nouns that appeared >100 times
in the DECOW14AX corpus, we applied k-Means
clustering with k ∈ [2,10000]. As an alternative
to the standard unigrams, we then replaced every
noun in the PV sentences with its corresponding
cluster tag.

4.2 Affective Ratings

Previous work on detecting non-literal language
often makes use of psycholinguistic attributes,
namely abstractness and concreteness ratings
(Turney et al., 2011), and imageability ratings
(Tsvetkov et al., 2014). Words with high abstract-
ness ratings refer to entities that cannot be per-
ceived with our senses; a large subset of which
are non-visual (i.e., receive low imageability). It
has been shown that non-literal expressions tend
to occur with abstract words (dark humor versus
dark hair). We thus expected affective ratings to
be useful for particle verbs as well:

1. (lit.) “Den Lippenstift kannst du dir ab-
schminken.” You can remove the lipstick.

2. (non-lit.) “‘Den Job kannst du dir ab-
schminken.” You can forget about the job.

We reimplemented the algorithm from (Turney
and Littman, 2003) to create large-scale abstract-
ness and imageability ratings for German (Köper
and Schulte im Walde, 2016). Based on these rat-
ings, we defined the following (partially redun-
dant) features for the PV sentential contexts:

1. Rating of the PV subject

2. Rating of the PV object
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3. Average rating of all nouns (excluding proper
names)

4. Average rating of all proper names

5. Average rating of all verbs, excluding the PV

6. Average rating of all adjectives

7. Average rating of all adverbs

While features 3–7 have been adopted from (Tur-
ney et al., 2011), features 1–2 represent additional,
PV-specific features.

4.3 Distributional Fit of PV, BV and Context

Particle verbs with a meaning shift are non-
compositional regarding their base verbs. We thus
implemented a PV-specific feature that measures
the distributional fit of PVs and their BVs in the
PV contexts. For example, looking at the follow-
ing two PV sentences containing the BV klingen
(to sound), the context of the first, literal sentence
fits well to the BV meaning, but the context of the
second, non-literal sentence does not. The distri-
butional fit of the BV in the literal context should
therefore be high, but the distributional fit of the
BV in the non-literal context should be low.

1. (lit.) “Der Ton der Gitarre klingt aus.”
The tone of the guitar fades.

2. (non-lit.) “Den Abend lassen wir mit Wein
ausklingen.” We end the evening with wine.

To measure the distributional fit of PVs and BVs
to PV contexts, we created 400-dimensional word
representations using the hyperwords toolkit (Levy
et al., 2015) and the DECOW14AX corpus. We re-
lied on a symmetrical window of size 3 and applied
positive pointwise mutual (PPMI) feature weight-
ing together with singular value decomposition
(SVD). Based on the word representations, we cal-
culated cosine similarities between the PVs and
their contexts, and likewise between the respec-
tive BVs and the PV contexts. The contexts we
used were the same seven dimensions we used for
the affective ratings (cf. Section 4.2). For exam-
ple, regarding the sentence “Die Katze springt auf
den Tisch” (The cat jumps on the table), we calcu-
lated the distributional similarity between the PV

”aufspringen” and the subject ”Katze”, and the dis-
tributional similarity between the BV ”springen”
and the subject ”Katze”, etc. Each PV–context and
each BV–context dimension represents an individ-
ual feature.

5 Classification Experiments

In this section, we present a series of binary clas-
sification experiments to distinguish literal and
non-literal PV usage. Section 5.1 presents the main
experiments comparing our features in a global
classification setup, and Section 5.2 presents PV-
specific additional experiments that zoom into the
role of particle types and into the role of semanti-
cally related PVs and BVs. Section 5.3 provides a
qualitative analysis of the features.

5.1 Main Experiments

We used a random forest with multiple (in our case
100) random decision trees,4 with each tree voting
for an overall classification result. The unigram in-
formation was represented by stacking the output
of a multinomial naive bayes text classifier as a sin-
gle feature into the random forest. For all machine
learning algorithms we relied on the WEKA toolkit
(Witten et al., 2011).

The experiments were performed in two modes,
(a) without knowledge of the particle (i.e., the indi-
vidual particle was not provided as a feature), and
(b) with explicit knowledge of the particle. In this
way, we could identify the contribution of the par-
ticle.

The classification results are shown in Table 1.
We report on the feature type, and on the size5

of the feature set f . We further present literal
and non-literal f-scores F1, and accuracy with and
without particle knowledge. We compare against
the majority baseline (literal). The right-most
columns indicate whether the differences in per-
formance are statistically significant, using the χ2

4Experiments with other classification methods showed
similar but inferior performance. Simple Logistic Regression
performed 2nd best.

5Remember from Section 4.1 that the unigram information
is based on all tokens (12427) but we implemented the uni-
grams as a single feature (using the output of a classifier), thus
the combined setting is only based on 22 features.
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Feature Type | f | Lit. F1 Non-Lit. F1 Acc. Acc.+P

1 Majority Baseline 0 78.7 0.0 64.9 -
2 Unigram 12427 83.2 55.5 75.6 76.5
3 Unigram + NN Clusters 6305 81.6 66.7 76.3 79.3
4 AC Ratings 7 81.3 60.7 74.7 76.3
5 IMG Ratings 7 77.5 48.1 68.6 71.6
6 Distributional Fit 14 83.0 61.8 76.5 80.2
7 Comb. (2+4+6) 22 88.6 77.1 84.8 86.6
8 Comb. (3+4+6) + NN Clusters 22 88.8 77.3 85.0 86.8

(a) Results across feature types and their combinations.

1 2 3 4 5 6 7 8

1
2 */*
3 */* -/∗
4 */* -/- ◦/*
5 */* */* */* */*
6 */* */* -/- ◦/* */*
7 */* */* */* */* */* */*
8 */* */* */* */* */* */* -/-

(b) Statistical significance of differences Acc/Acc +P .

Table 1: Main classification results.

test and ∗ for p < 0.001 and ◦ for p < 0.05 to mark
significance.

The results demonstrate that the classification
results across all feature types are significantly bet-
ter than the majority baseline. The single best
performing feature type (cf. lines 1–6) is the un-
igram information; in combination with the par-
ticle information (+P ), the distributional PV/BV–
context fit is best. Combining the best feature
types (2+4+6) once more improves the results, and
ditto when adding noun cluster information.6 We
can also see that abstractness (AC) ratings outper-
form imageability (IMG) ratings.

So overall, the best performing feature set
successfully combines unigrams that incorporate
clusters for noun generalization; abstractness rat-
ings; and PV-specific information regarding the
distributional PV/BV–context fit and knowledge
about the particle. This setup correctly classifies
literal sentences with an f-score of 88.8 and non-
literal sentences with an f-score of 77.3; overall ac-
curacy is 86.8 over a baseline of 64.9.

It is difficult to compare our results against
previous approaches on different datasets and
in different languages. Regarding the closest
approaches to our work, Tsvetkov et al. (2014)
report an accuracy score of 82.0 using 10-fold
cross-validation on a training dataset with a ma-
jority baseline of 59.2, combining multiple lexi-
cal semantic features on a dataset of 1609 En-
glish subject–verb–object triples. Birke and Sarkar
(2007) trained a single classifier for each of twenty-
five verbs in the English TROFI verb dataset and
reported only an average f-score: 64.9 against a

6The best cluster analysis in our experiments contained
750 noun clusters.

majority baseline of 62.9. Turney et al. (2011) ob-
tained an average f-score of 63.9 and addition-
ally report an accuracy score of 73.4 on the same
dataset, using abstractness ratings.

In contrast to our work, the two approaches by
Birke and Sarkar (2007) and Turney et al. (2011)
treated each group of sentences for a given tar-
get verb as a separate learning problem, while we
learn one classifier across different verbs. Our
method 4 (AC Ratings) can be considered a Ger-
man re-implementation of the approach by Tur-
ney et al. (2011). In comparison to the results of
previous work, our approach can safely be consid-
ered state-of-the-art.

5.2 PV-Specific Experiments

5.2.1 Incorporating Standard Measures of
Multiword Idiomaticity

One traditional line of research to identify type-
based multiword collocations or idiomatic expres-
sions relies on the association strength between
the multiword parts (Evert and Krenn, 2001; Krenn
and Evert, 2001; Stevenson et al., 2004): The
stronger the association between the parts of a
multiword expression (as determined by raw fre-
quency, some variant of mutual information, etc.),
the stronger the collocation/idiomaticity of the
combination of the parts. Based on this assump-
tion, we calculated the association strength be-
tween PVs and their contextual subjects/objects,
using local mutual information (LMI), cf. Evert
(2005). The LMI scores were based on type-based
frequency counts in the DECOW14AX corpus and
added as features to the respective contexts, as-
suming that large LMI scores indicate non-literal
PV usage.
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Adding the LMI values to the overall best fea-
ture set from the main experiments decreased ac-
curacy from 86.8 → 86.0. Using the LMI associ-
ation strength values of the PV–subject and PV–
object pairs by themselves provided slightly but
non-significantly better results in comparison to
the majority baseline: 65.9 > 64.9.7 Manual inves-
tigations revealed that verb–noun pairs with high
LMI scores represent collocations in many cases,
but the collocations are not only used in non-
literal language but also in literal language, e.g.,
”Sendung ausstrahlen” (“broadcast a program”).

5.2.2 Non-Literality across Particles

In order to explore the predicability of literal vs.
non-literal uses with respect to specific particles,
we trained the best classifier from the main exper-
iments on all particle verbs with particle X and ap-
plied the classifier to all particle verbs with particle
Y . Our hypothesis was that pairs of particles with
similar ambiguities might predict each other bet-
ter than pairs with different particle meanings.

This PV-specific setup could also be applied
within a PV group with the same particle: We
trained the classifier on all PVs with particle X ex-
cept for one, and then applied the trained classi-
fier to the missing PV with particle X . The setup
was repeated for all PVs with particle X , and the
average accuracy was calculated.

Figure 2 provides the results as a heat map, with
red indicating high and blue indicating low accu-
racy scores. The vertical particles on the left corre-
spond to the training particles, and the horizontal
particles at the bottom correspond to the test par-
ticles. The bottom line shows the majority base-
line. For example, training a classifier on ”ein” PVs
and evaluating it on ”aus” PVs results in an accu-
racy of 76.56, which is significantly better (∗∗∗ for
p < 0.001) than the baseline for ”aus” (65.55).

The diagonal in the heat map (showing the
within-particle setup) provides particularly high
accuracy scores, so the PVs with the same parti-
cle predict (non-)literality within the group very
well. This demonstrates that the meanings and
the meaning shifts across PVs with the same par-
ticle (e.g., aufdecken and auftischen) are quite reg-

7We also experimented with the other five contextual fea-
ture dimensions, but the results were even worse.

ular. A comparably strong prediction is found be-
tween ”vor” (before/in front of) and ”nach” (af-
ter/behind), with both particles carrying highly
similar temporal and local senses. Other exam-
ples of strongly related antonymous particle pairs
are ”auf”/”zu”, ”ein”/”aus”, and ”aus”/”an”. Exam-
ples of strongly related synonymous particle pairs
are ”an”/”ein”, and ”aus”/”zu”. ”durch” correlates
poorly with all other particles, which is probably
due to the few sentences we collected from the
corpus. ”mit” also correlates poorly with all other
particles, because it is the only particle with little
ambiguity. So overall, the heat map corresponds to
intuitions about semantic relatedness across par-
ticle pairs.
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Figure 2: Train a classifier on PVs with particle X
and test it on PVs with particle Y .

5.2.3 Non-Literality across Particle Verbs

An even more fine-grained experiment setting
explored the predictability of a specific particle
verb based on the classifier trained on a differ-
ent particle verb. Our hypothesis was that pairs
of PVs that predict each other particularly well
share some meaning aspects, either (i) because
the training and the test verb share the same BV
(SameBV: abgraben:aufgraben), or (ii) the PVs are
synonymous according to the German Duden8

8http://www.duden.de
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dictionary (PVSyn: auftragen:auftischen), or (iii)
because the BVs of two PVs with identical particles
are synonymous according to the Duden (BVSyn:
aufreissen:aufplatzen).

Figure 3 shows the f-scores for predicting liter-
ality and non-literality across the three settings, in
comparison to the main experiments (”All”). The
number of PV pairs in the settings and the majority
accuracy for these PV pairs are also provided, be-
cause the experiment sets differ in size. We can see
that PVs with the same BV (SameBV) predict each
other’s classifications well regarding literal but not
regarding non-literal sentences. This behaviour il-
lustrates the contribution of the particle to the PV
meaning: The same BVs with different particles
potentially differ strongly, if the particles do not
agree on one or more senses. Synonymous PVs
(PVSyn) predict each other as well in literal as in
non-literal cases. Since the PVs in all cases are sup-
posed to have the same meaning, this behaviour
is also reasonable. An increase in both literal and
non-literal F1 is reached for PV pairs with the same
particle and synonymous BVs (BVSyn), because
the BVs are supposed to carry the same meaning,
and the identical particles trigger similar mean-
ing shifts. Overall, the experiment demonstrates
that synonymous verbs undergo similar meaning
shifts, and that a particle initiates similar meaning
shifts when applied to synonymous BVs.

●●●●●●●●●●●●

●

●●●●0.00

0.25

0.50

0.75

1.00

All BVSyn PVSyn SameBV

Lit. F1 Non−Lit. F1

Pairs 22 650 51 104 276

Figure 3: Prediction for semantically related PVs.

5.3 Indicators of Non-Literality

In the final part of the paper, we perform a quali-
tative analysis of the most salient features.

5.3.1 Information Gain

First of all, we looked into the feature space by
computing the information gain within the best
random forest classifier. The information gain (I-
Gain) provides the improvement in information
entropy regarding our feature space and the class
labels, as defined by equation (1).

I-Gain(Class,Feat) = H(Class)−H(Class|Feat) (1)

The information gain does not take feature in-
teraction into account, but determines the im-
portance of the individual features. Applying this
method reveals the three most salient features:
unigrams (0.31), abstractness ratings of the con-
text nouns (0.17), and distributional fit of the
base verbs (0.11). The information gain therefore
confirms our results from the main experiments,
where these three features worked best.

In addition, we noticed that for all features
higher weights were given to dimensions that de-
pend on nouns (such as the common nouns in the
PV contexts, and the subject and object nouns),
in comparison to proper names, verbs, adjectives
and adverbs. For example, the abstractness ratings
of the adverbs were ranked second lowest with a
score of 0.005, and the distributional fit between
BVs and adjectives was ranked last with a zero
score, indicating that this feature provides no ad-
ditional information for our dataset.

5.3.2 Distributional Fit

We now take a look at the distributional fit fea-
ture, which was the best performing feature in
the main experiments, when combined with par-
ticle knowledge. Figure 4 focusing on the distribu-
tional fit between BVs and common nouns (as de-
termined third best by the information gain) con-
firms that the feature is helpful in distinguishing
literal vs. non-literal PV sentences across particles:
The medians in the boxplots for literal sentences
are clearly above those for non-literal sentences.
The plots confirm that BVs can be exploited to
identify compositional uses of PVs (which in turn
refer to literal usage).

Looking into individual PVs confirms that this
feature distinguishes well between the literal and
non-literal sentences. On the other hand, we also
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find PVs where this feature is not able to iden-
tify non-literal language use. Figure 5 presents the
boxplots with cosine values for aufblühen (blos-
som out) and auflodern (burn up), where the
feature works well, in comparison to absaufen
(drown), where the feature cannot distinguish
(non-)literal language usage.
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Figure 4: Distributional fit of BVs and context
nouns in (non-)literal sentences across particles.
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Figure 5: Example PVs and their distributional fit
of BVs and context nouns in (non-)literal use.

5.3.3 Abstractness of Contexts

Finally, we take a look at the abstractness fea-
ture, which was also among the best performing
features in the main experiments, and which is
generally assumed to represent a salient indicator
of non-literal language usage. Figure 6 focusing
on the abstractness of common nouns in the PV
sentences9 (as determined second best by the in-
formation gain) confirms that the feature is also
helpful in distinguishing literal vs. non-literal PV
sentences across particles: Again, the medians in
the boxplots for literal sentences are clearly above
those for non-literal sentences. The plots confirm

9High values indicate concreteness.

that contextual abstractness is a salient indicator
of non-literal language usage.
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Figure 6: Average abstractness ratings of context
nouns in (non-)literal sentences across particles.

Looking into individual PVs again confirms that
this feature distinguishes well between the literal
and non-literal sentences but also that there are
PVs where this feature is not able to identify non-
literal language use. Figure 7 presents the box-
plots with abstractness ratings for anstauen (ac-
cumulate) and durchsickern (leak through), where
the feature works well, in comparison to antanzen
(waltz in) and especially ausklingen (fade/finish),
where the feature cannot distinguish (non-)literal
language usage.
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Figure 7: Example PVs and their average abstract-
ness ratings of context nouns in (non-)literal use.

Two example sentences where the abstractness
feature goes wrong for a good reason are as fol-
lows. In (1) ”Aber wir sollten doch um fünf zum Es-
sen antanzen.” (But we should show up (lit: waltz
in) for dinner at five), the context nouns are con-
crete (we; dinner) but the language usage is non-
literal. In contrast, in (2) ”Ich liebe Emotionen, de-
shalb summen alle mit.” (I love emotions, there-
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fore everyone hums along), the object noun in the
sentence is highly abstract (emotion), but the lan-
guage usage is literal. These examples illustrate
that contextual abstractness is not a perfect indi-
cator of non-literal language usage.

6 Conclusion

We presented a classifier that predicts literal vs.
non-literal language usage for German particle
verbs, a semantically challenging type of multi-
word expressions. The classifier significantly out-
performed the baseline by improving standard
features with noun clusters and a PV-specific dis-
tributional fit feature. PV-specific experiments in-
dicated that PVs whose particles share aspects of
ambiguity and which incorporate semantically re-
lated BVs seem to undergo similar meaning shifts.
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