
Proceedings of NAACL-HLT 2016, pages 232–237,
San Diego, California, June 12-17, 2016. c©2016 Association for Computational Linguistics

Supertagging with LSTMs

Ashish Vaswani1, Yonatan Bisk1, Kenji Sagae2, and Ryan Musa3

1University of Southern California, 2Kitt.ai
3University of Illinois at Urbana-Champaign
vaswani@usc.edu, ybisk@isi.edu

sagae@kitt.ai, ramusa2@illinois.edu

Abstract

In this paper we present new state-of-the-art
performance on CCG supertagging and pars-
ing. Our model outperforms existing ap-
proaches by an absolute gain of 1.5%. We an-
alyze the performance of several neural mod-
els and demonstrate that while feed-forward
architectures can compete with bidirectional
LSTMs on POS tagging, models that encode
the complete sentence are necessary for the
long range syntactic information encoded in
supertags.

1 Introduction

Morphosyntactic labels for words are commonly
used in a variety of NLP applications. For this rea-
son, part-of-speech (POS) tagging and supertagging
have drawn significant attention from the commu-
nity. Combinatory Categorial Grammar is a lexical-
ized grammar formalism that is widely used for syn-
tactic and semantic parsing. Supertagging (Clark,
2002; Bangalore and Joshi, 2010) assigns complex
syntactic labels to words to enable fast and accurate
parsing. The disambiguation of correctly labeling
a word with one of over 1,200 CCG labels is dif-
ficult compared to choosing on of the 45 POS la-
bels in the Penn Treebank (Marcus et al., 1993). In
addition to the large label space of CCG supertags,
labeling a word correctly depends on knowledge of
syntactic phenomena arbitrarily far in the sentence
(Hockenmaier and Steedman, 2007). This is be-
cause supertags encode highly specific syntactic in-
formation (e.g. types and locations of arguments)
about a word’s usage in a sentence.

In this paper, we show that Bidirectional Long
Short-Term Memory recurrent neural networks (bi–
LSTMs) (Graves, 2013; Zaremba et al., 2014),
which can use information from the entire sentence,

are a natural and powerful architecture for CCG su-
pertagging. In addition to the bi–LSTM, we create
a simple yet novel model that outperforms the pre-
vious state-of-the-art RNN model that uses hand-
crafted features (Xu et al., 2015) by 1.5%. Con-
current to this work (Lewis et al., 2016) introduced
a different training methodology for bi-LSTM for
supertagging. We provide a detailed analysis of
the quality of various LSTM architectures, forward,
backward, and bi-directional, shedding light over the
ability of the bi–LSTM to exploit rich sentential con-
text necessary for performing supertagging. We also
show that a baseline feed-forward neural network
(NN) architecture significantly outperforms previ-
ous feed-forward NN baselines, with slightly fewer
features, achieving better accuracy than the RNN
model from (Xu et al., 2015).

Recently, bi–LSTMs have achieved high accu-
racies in a simpler sequence labeling task: part-
of-speech tagging (Wang et al., 2015; Ling et al.,
2015) on the Penn treebank, with small improve-
ments over local models. However, we achieve
strong accuracies compared to (Wang et al., 2015)
using feed-forward neural network model trained on
local context, showing that this task does not require
bi–LSTMs. Our strong feed-forward NN baselines
show the power of feed-forward NNs for some tasks.

Our main contributions are the introduction of
a new bi–LSTM model for CCG supertagging that
achieves state-of-the-art, on both CCG supertagging
and parsing, and a detailed analysis of our results,
including a comparison of bi–LSTMs and simpler
feed forward NN models for supertagging and POS
tagging, which suggests that the added complexity
of bi–LSTMs may not be necessary for POS tagging,
where local contexts suffice to a much greater extent
than in supertagging.

232



2 Models And Training

We use feed-forward neural network models and
bidirectional LSTM (bi–LSTM) based models in
this work.

2.1 Feed-Forward
For both POS tagging and our baseline supertagging
model, we use feed-forward neural networks with
two hidden layers of rectified linear units (Nair and
Hinton, 2010). For supertagging, we use a slightly
smaller set than Lewis and Steedman (2014a), us-
ing a left and right 3-word window with suffix and
capitalization features for the center word. However,
unlike them, we train on the full set of supertag cat-
egories observed during training.

In POS tagging, when tagging word wi, we con-
sider only features from a window of five words,
with wi at the center. For each wj with i − 2 ≤
j ≤ i + 2, we add wj lowercased and a string that
encodes the basic “word shape” of wj . This is com-
puted by replacing all sequences of uppercase letters
with A, all sequences of lowercase letters with a, all
sequences of digits with 9, and all sequences of other
characters with ∗. Finally, we add two and three let-
ter suffixes and two letter prefix for wi only.

2.2 LSTM models
We experiment with two kinds of bi–LSTM models.
We train a basic bi–LSTM where the forward and
backward LSTMs take input words wi and produce
hidden state

−→
h i and

←−
h i. For each position, we pro-

duce h̃i, where

h̃i = σ(W←−
h

←−
h T

i +W−→
h

−→
h T

i ), (1)

where σ(x) = max(0, x) is a rectifier nonlinear-
ity, and where W←−

h
and W−→

h
are parameters to be

learned. The unnormalized likelihood of an output
supertag is computed using supertag embeddings
Dti and biases bti as p(ti | h̃i) = Dti h̃

T
i + bti . The

final softmax layer computes normalized supertag
probabilities.

Although bidirectional LSTMs can capture long
distance interactions between words, each output la-
bel is predicted independently. To explicitly model
supertag interactions, our next model combines two
models, the bi–LSTM and a LSTM language model
(LM) over the supertags (Figure 1). At position

… …

… …

…

Backward LSTM

Forward LSTM

Combiner Nodes

LSTM LM

Combiner Nodes

Output

Words

hLMi hLMi+1 hLMi+2

←−hi
←−−hi+1

←−−hi+2

−−→hi+2
−−→hi+1

−→hi

ti ti+1 ti+2

ti ti+1 ti+2

…

eat sushi with tuna

Figure 1: We add a language model between supertags.

i, the LM accepts an input supertag ti−1 produc-
ing hidden state hLM

i , and a second combiner layer,
parametrized by matrices WLM and Wh̃ transforms
h̃i and hLM

i to hi similar to the combiner for h̃i

(Equation 1). Output supertag probabilities are com-
puted just as before, replacing replacing h̃i with hi.
We refer to this model as bi–LSTM–LM. For all our
LSTM models, we only use words as input features.

2.3 Training

We train our models to maximize the log-likelihood
of the data with minibatch gradient ascent. Gradi-
ents of the models are computed with backpropa-
gation (Chauvin and Rumelhart, 1995). Since gold
supertags are available during training time and not
while decoding, a bi–LSTM–LM trained on gold su-
pertags might not recover from errors caused by us-
ing incorrectly predicted supertags. This results in
the bi–LSTM–LM slightly underperforming the bi–
LSTM (we refer to training with gold supertags as
g–train in Table 1). To bridge this gap between train-
ing and testing we also experiment with a sampling
training regime in addition to training.

Scheduled sampling: Following (Bengio et al.,
2015; Ranzato et al., 2015), for each output token,
with some probability p, we use the most likely pre-
dicted supertag (arg maxtiP (ti | hi)) from the
model in position i−1 as input to the supertag LSTM
LM in position i and use the gold supertag with
probability 1 − p. We denote this training as ss–
train–1. We also experiment with using the 5-best
previous predicted supertags from the output distri-
bution at position i − 1 and feed them to the LM as
input in position i as a bit vector. Additionally, we

233



Epoch g-train SS-train-1b SS-train-kb

1 1.663079261779785 1.493532538414001 1.471613883972168

2 1.59983241558075 1.397878646850586 1.391600012779236

3 1.584500551223755 1.343078851699829 1.331377267837524

4 1.565570712089539 1.313792586326599 1.307917714118958

5 1.568343997001648 1.305177807807922 1.298569440841675

6 1.585107803344727 1.30352258682251 1.290364503860474

7 1.562329530715942 1.279528975486755 1.276203751564026

8 1.612882614135742 1.2797691822052 1.279410839080811

9 1.588557481765747 1.278935551643372 1.273308753967285

10 1.612249255180359 1.28274667263031 1.272010803222656

11 1.594677925109863 1.282948136329651 1.272024273872375

12 1.617396116256714 1.281896352767944 1.278515696525574

13 1.610980749130249 1.285645723342896 1.274761080741882

14 1.621490359306335 1.28062105178833 1.275495886802673

15 1.628495216369629 1.285783290863037 1.272665500640869

16 1.639569163322449 1.284226417541504 1.276064276695251

17 1.638893842697144 1.286049485206604 1.275808334350586

18 1.630186915397644 1.284650564193726 1.275925874710083

19 1.633984208106995 1.286053538322449 1.276958823204041

20 1.628738522529602 1.284542202949524 1.27592945098877

21 1.627252221107483 1.284929633140564 1.276000380516052

22 1.627161264419556 1.28664767742157 1.276474475860596

23 1.626600503921509 1.286289811134338 1.275714635848999

24 1.630642294883728 1.284499049186707 1.275835752487183

25 1.626240372657776 1.285952687263489 1.275785207748413

Pe
rp
le
xi
ty

1.25

1.4

1.55

1.7

Epochs

1 5 9 13 17 21 25

g-train ss-train-1 ss-train-5

�1

Figure 2: Scheduled sampling improves the perplexity of the

gold sequence under predicted tags. We see that the perplexity

of the gold supertag sequence when using predicted tags for the

LM is lower for ss–train–1 and ss–train–5 than with g–train.

use their probabilities (re-normalized over the 5-best
tags) and scale the input supertag embeddings with
their re-normalized probability during look-up. We
refer to this setting as ss–train–5. In this work, we
use an inverse sigmoid schedule to compute p,

p =
k

k + e
s
k

,

where s is the epoch number and k is a hyperpa-
rameter that is tuned.1 In Figure 2, we see that for
the development set training with scheduled sam-
pling improves the perplexity of the gold supertag
sequence when using predicted supertags, indicat-
ing better recovery from conditioning on erroneous
supertags. For both ss-train and g-train, we use gold
supertags for the output layer and train the model to
maximize the log-likelihood of the data.2

2.4 Architectures

Our feed-forward models use 2048 rectifier units in
the first hidden layer, 50 and 128 rectifier units in the
second hidden layer for POS tagging and Supertag-
ging respectively, and 64 dim. input embeddings.

Our LSTM based models use 512 hidden states.
We pre-train our word embeddings with a 7-
gram feed-forward neural language model using the
NPLM toolkit3 on a concatenation of the BLLIP cor-
pus (Charniak et al., 2000) and WSJ sections 02–21
of the Penn Treebank.

1The reader should refer to (Bengio et al., 2015) for details.
2We use dropout for all our feed-forward (Srivastava, 2013)

and bi-LSTM based models (Zaremba et al., 2014). We carry
out a grid search over dropout probabilities and sampling sched-
ules. We train the LSTMs for 25 epochs and the feed-forward
models for 30 epochs, tuning on the development data.

3http://nlg.isi.edu/software/nplm/

Supertag Accuracy
Model All Seen Novel % P

Lewis et al. (2014) 91.30
Wenduan et al. (2015) 93.07

Feed Forward + g–train 93.29 93.77 91.53 70.3
Forward LSTM + g–train 83.70 85.76 46.22 20.7
Backward LSTM + g–train 88.82 90.06 66.22 40.6
bi–LSTM 94.08 95.03 76.36 81.1
bi–LSTM–LM + g–train 93.89 94.93 76.83 96.5
bi–LSTM–LM + ss–train–1 94.24 95.22 76.70 87.8
bi–LSTM–LM + ss–train–5 94.23 95.20 76.62 94.5

Table 1: Accuracies on the development section. The language

model provides a boost in performance, and large gains on the

parseability of the sequence (%P). The numbers for bi–LSTM–

LM + ss–train–1 and + g–train are with beam decoding. All

others use greedy decoding. Interestingly, greedy decoding with

ss–train–5 works as well as beam decoding with ss–train–1.

2.5 Decoding

We perform greedy decoding. For each position i,
we select the most probable supertag from the output
distribution. For the bi–LSTM–LM models trained
with g–train and ss–train–1, we feed the most likely
supertag from the output distribution as LM input
in the next position. We decode with beam search
(size 12) for bi–LSTM–LMs trained with g–train
and ss–train–1. For the bi–LSTM–LMs trained with
ss–train–5, we perform greedy decoding similar to
training, feeding the k-best supertags from the out-
put supertag distribution in position i − 1 as input
to the LM in position i, along with the renormal-
ized probabilities. We don’t perform beam decoding
for ss–train–5, as the previous k-best inputs already
capture different paths through the network.4

3 Data

For supertagging, experiments were run with the
standard splits of CCGbank. Unlike previous work
no features were extracted for the LSTM models and
rare categories were not thresholded. Words were
lowercased and digits replaced with @.

CCGbank’s training section contains 1,284 lexi-
cal categories (394 in Dev). The distribution of cate-
gories has a long tail, with only a third of those cate-

4Code and supertags for our models can be downloaded
here: https://bitbucket.org/ashish_vaswani/
lstm_supertagger

234



LSTM
Supertag F-For Forward Backward bi–LSTM +LM(g–train) ss–train–1 ss–train–5

(NP\NP)/NP 90.00 88.89 81.91 92.09 92.18 91.72 92.31
((S\NP)\(S\NP))/NP 75.75 69.53 61.60 80.38 78.21 79.91 78.77
S[dcl]\NP 77.29 61.14 58.52 84.28 83.41 82.97 80.35
(S[dcl]\NP)/NP 91.39 56.58 69.86 92.34 92.46 92.46 92.82
((S[dcl]\NP)/PP)/NP 42.30 30.77 42.31 56.41 64.10 62.82 60.26
(S[dcl]\NP)/(S[adj]\NP) 86.80 22.84 83.25 87.31 88.83 87.82 86.80
((S[dcl]\NP)/(S[to]\NP))/NP 86.49 56.76 75.68 94.59 91.89 91.89 91.89

Table 2: Prediction accuracy for our models on several common and difficult supertags.

Architecture Test Acc

Ling et al. (2015) Bi-LSTM 97.36
Wang et al. (2015) Bi-LSTM 97.78
Søgaard (2011) SCNN 97.50

This work Feed-Forward 97.40

Table 3: Our new POS tagging results show a strong Feed-

Forward baseline can perform as well as or better than more

sophisticated models (e.g. Bi-LSTMs).

gories having a frequency count ≥ 10 (the threshold
used by existing literature). Following (Lewis and
Steedman, 2014b), we allow the model to predict all
categories for a word, not just those with which the
word was observed to co-occur in the training data.
Accuracies on these unseen (word, cat) pairs are pre-
sented in the third column of Table 1.

4 Results

Table 3 presents our Feed-Forward POS tagging re-
sults. We achieve 97.28% on the development set
and 97.4% on test. Although slightly below state-of-
the-art, we approach existing work with bi–LSTMs,
and our models are much simpler and faster to train.5

Table 1 shows a steady increase in performance
as the model is provided additional context. The for-
ward and backward models are presented with infor-
mation that may be arbitrarily far away in the sen-
tence, but only in a specific direction. This yields
weaker results than the Feed Forward model which
can see in both directions within a small window.
The real gains are achieved by the Bidirectional
LSTM which incorporates knowledge from the en-
tire sentence. Our addition of a language model
and changes to training, further improve the perfor-

5We use train, dev, and test splits of WSJ sections 00–18,
19–21, and 22–24, for POS tagging.

Dev F1 Test F1

Wenduan et al. (2015) 86.25 87.04
+ new POS Tags & C&C 86.99 87.50
bi–LSTM–LM +ss–train–1 87.75 88.32

Table 4: Parsing at 100% coverage with our new Feed-Forward

POS tagger and the Java implementation of C&C. We show both

the published and improved results for Wenduan et al.

mance. Our final model (bi–LSTM–LM+ss–train–1
model with beam decoding) has a test accuracy of
94.5%, 1.5% above state-of-the-art.

4.1 Parsing

Our primary goal in this paper was to demonstrate
how a bi–LSTM captures new and different in-
formation from uni-directional or feed-forward ap-
proaches. This advantage also translates to gains
in parsing. Table 4 presents new state-of-the-art
parsing results for both (Xu et al., 2015) and our
bi–LSTM–LM +ss–train–1. These results were at-
tained using our part-of-speech tags (Table 3) and
the Java implementation (Clark et al., 2015) of the
C&C parser (Clark and Curran, 2007)6.

4.2 Error Analysis

Our analysis indicates that the information follow-
ing a word is more informative than what preceded
it. Table 2 compares how well our models recover
common and syntactically interesting supertags. In
particular, the Forward and Backward models, moti-
vate the need for a Bi-directional approach.

6Results are presented on the standard development and test
splits (Section 00 and 23), and with a beam threshold of 10−6.
For a fair comparison to prior work we report results without
the skimmer, so no partial credit is given to parse failures. The
skimmer boosts performance to 87.91/88.39 for Dev and Test.

235



(S[dcl]\NP)/(S[adj]\NP)

Forward Backward Bidirectional

((S[dcl]\NP)/PP)/(S[adj]\NP) ((S[dcl]\NP)/PP)/(S[adj]\NP) (S[dcl]\NP)/(S[pss]\NP)
((S[dcl]\NP)/(S[to]\NP))/(S[adj]\NP) ((S[b]\NP)\NP)/(S[adj]\NP) (S[dcl]\NP)/PP)/(S[adj]\NP)
((S[dcl]\NP)/PP)/PP (S[dcl]\S[qem])/(S[adj]\NP) (S[b]\NP)\NP)/(S[adj]\NP)
(S[dcl]\NP)/S ((S[dcl]\NP)/(S[to]\NP))/(S[adj]\NP) (S[dcl]\NP)/(S[to]\NP))/(S[adj]\NP)
(S[dcl]\NP)/(S[pss]\NP) ((S[dcl]\NP)/(S[adj]\NP))/(S[adj]\NP) (S[dcl]\NP)/(S[adj]\NP))/(S[adj]\NP)

Table 5: “Neighbor” categories as determined by embedding-based vector similarity for each class of model. As expected for this

category, the Backward model captures the argument preference while the Forward model correctly predicts the result.

The first two rows show prepositional phrase at-
tachment decisions (noun and verb attaching cate-
gories are in rows one and two, respectively). Here
the forward model outperforms the backward model,
presumably because knowing the word to be modi-
fied and the preposition, is more important than ob-
serving the object of the prepositional phrase (the
information available to the backward model).

Conversely, the backward model outperforms the
forward model in most of the remaining categories.
(Di-)transitive verbs (lines 4 & 5) require knowledge
of future arguments in the sentence (e.g. separated
by a relative clause). Because English has strict SVO
word-order, the presence of a subject is more pre-
dictable than the presence of an (in-)direct object. It
is therefore not surprising that the backward model
is often comparable to the Feed Forward model.

If the information missing from either the forward
or backward models were local, the bidirectional
model should perform the same as the Feed-Forward
model, instead it surpasses it, often by a large mar-
gin. This implies there is long range information
necessary for choosing a supertag.

Embeddings In addition, we can visualize the in-
formation captured by our models by investigating
a category’s nearest neighbors based on the learned
embeddings. Table 5 shows nearest neighbor cate-
gories for (S[dcl]\NP)/(S[adj]\NP) under the For-
ward, Backward, and Bidirectional models.

We see see that the forward model learns inter-
nal structure with the query category, but the list of
arguments is nearly random. In contrast, the back-
ward model clusters categories primarily based on
the final argument, perhaps sharing similarities in
the subject argument only because of the predictable
SVO nature of English text. However, due to its
lack of forward context the model incorrectly asso-

ciates categories with less-common first arguments
(e.g. S[qem]). Finally, the bidirectional embeddings
appear to cleanly capture the strengths of both the
forward and backward models.

Consistency and Internal Structure Because su-
pertags are highly structured their co-occurence in
a sentence must be permitted by the combinators
of CCG. Without encoding this explicitly, the lan-
guage model dramatically increases the percent of
predicted sequences that result in a valid parse by up
to 15% (last column of Table 2).

Sparsity One consideration of our approach is that
we do not threshold rare categories or use any tag
dictionaries; our models are presented with the full
space of CCG categories, despite the long tail. This
did not did not hurt performance and the models
learned to successfully use several categories which
were outside the set of traditionally-thresholded fre-
quent categories. Additionally, the total number of
categories used correctly at least once by the bi-
directional models was substantially higher than the
other models (∼270 vs. ∼220 of 394), though the
large number of unused categories (≥120) indicates
that there is still substantial room for improvement.

5 Conclusions and Future Work

Because bi–LSTMs with a language model encode
an entire sentence at decision time, we demonstrated
large gains in supertagging and parsing. Future work
will investigate improving performance on rare cat-
egories.

Acknowledgements

This work was supported by the U.S. DARPA
LORELEI Program No. HR0011-15-C-0115. We
would like to thank Wenduan Xu for his help.

236



References
Srinivas Bangalore and Aravind K. Joshi. 2010. Su-

pertagging: Using Complex Lexical Descriptions in
Natural Language Processing. The MIT Press.

Samy Bengio, Oriol Vinyals, Navdeep Jaitly, and Noam
Shazeer. 2015. Scheduled sampling for sequence pre-
diction with recurrent neural networks. In Advances in
Neural Information Processing Systems, pages 1171–
1179.

Eugene Charniak, Don Blaheta, Niyu Ge, Keith Hall,
John Hale, and Mark Johnson. 2000. Bllip 1987-
89 wsj corpus release 1. Linguistic Data Consortium,
Philadelphia, 36.

Yves Chauvin and David E Rumelhart. 1995. Backprop-
agation: theory, architectures, and applications. Psy-
chology Press.

Stephen Clark and James Curran. 2007. Wide-Coverage
Efficient Statistical Parsing with CCG and Log-Linear
Models. Computational Linguistics, 33(4):493–552.

Stephen Clark, Darren Foong, Luana Bulat, and Wenduan
Xu. 2015. The Java Version of the C&C Parser: Ver-
sion 0.95. Technical report, University of Cambridge
Computer Laboratory, August.

Stephen Clark. 2002. Supertagging for combinatory cat-
egorial grammar. In Proceedings of the 6th Interna-
tional Workshop on Tree Adjoining Grammars and Re-
lated Formalisms (TAG+6), pages 19–24.

A. Graves. 2013. Generating sequences with recurrent
neural networks. arXiv preprint arXiv:1308.0850.

Julia Hockenmaier and Mark Steedman. 2007. CCG-
bank: A Corpus of CCG Derivations and Dependency
Structures Extracted from the Penn Treebank. Com-
putational Linguistics, 33:355–396, September.

Mike Lewis and Mark Steedman. 2014a. A* ccg pars-
ing with a supertag-factored model. In Proceedings of
the Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP-2014).

Mike Lewis and Mark Steedman. 2014b. Improved ccg
parsing with semi-supervised supertagging. Transac-
tions of the Association for Computational Linguistics,
2:327–338.

Mike Lewis, Kenton Lee, and Luke Zettlemoyer. 2016.
LSTM CCG Parsing. In Proceedings of the 15th An-
nual Conference of the North American Chapter of the
Association for Computational Linguistics.

Wang Ling, Tiago Luís, Luís Marujo, Ramón Fernan-
dez Astudillo, Silvio Amir, Chris Dyer, Alan W
Black, and Isabel Trancoso. 2015. Finding func-
tion in form: Compositional character models for
open vocabulary word representation. arXiv preprint
arXiv:1508.02096.

Mitchell P Marcus, Beatrice Santorini, and Mary Ann
Marcinkiewicz. 1993. Building a Large Annotated

Corpus of English: The Penn Treebank. Computa-
tional Linguistics, 19:313–330, June.

Vinod Nair and Geoffrey E. Hinton. 2010. Rectified lin-
ear units improve restricted Boltzmann machines. In
Proceedings of ICML, pages 807–814.

Marc’Aurelio Ranzato, Sumit Chopra, Michael Auli, and
Wojciech Zaremba. 2015. Sequence Level Train-
ing with Recurrent Neural Networks. arXiv preprint
arXiv:1511.06732.

Anders Søgaard. 2011. Semisupervised condensed near-
est neighbor for part-of-speech tagging. In Proceed-
ings of the 49th Annual Meeting of the Association for
Computational Linguistics: Human Language Tech-
nologies: short papers-Volume 2, pages 48–52. Asso-
ciation for Computational Linguistics.

Nitish Srivastava. 2013. Improving neural networks with
dropout. Ph.D. thesis, University of Toronto.

Peilu Wang, Yao Qian, Frank K Soong, Lei He, and Hai
Zhao. 2015. Part-of-speech tagging with bidirec-
tional long short-term memory recurrent neural net-
work. arXiv preprint arXiv:1510.06168.

Wenduan Xu, Michael Auli, and Stephen Clark. 2015.
Ccg supertagging with a recurrent neural network.
Volume 2: Short Papers, page 250.

W. Zaremba, I. Sutskever, and O. Vinyals. 2014. Re-
current neural network regularization. arXiv preprint
arXiv:1409.2329.

237


