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Abstract

We introduce a new task, visual sense disam-
biguation for verbs: given an image and a verb,
assign the correct sense of the verb, i.e., the
one that describes the action depicted in the
image. Just as textual word sense disambigua-
tion is useful for a wide range of NLP tasks,
visual sense disambiguation can be useful for
multimodal tasks such as image retrieval, im-
age description, and text illustration. We intro-
duce VerSe, a new dataset that augments exist-
ing multimodal datasets (COCO and TUHOI)
with sense labels. We propose an unsupervised
algorithm based on Lesk which performs vi-
sual sense disambiguation using textual, vi-
sual, or multimodal embeddings. We find that
textual embeddings perform well when gold-
standard textual annotations (object labels and
image descriptions) are available, while mul-
timodal embeddings perform well on unanno-
tated images. We also verify our findings by
using the textual and multimodal embeddings
as features in a supervised setting and analyse
the performance of visual sense disambigua-
tion task. VerSe is made publicly available
and can be downloaded at: https://github.
com/spandanagella/verse.

1 Introduction

Word sense disambiguation (WSD) is a widely stud-
ied task in natural language processing: given a word
and its context, assign the correct sense of the word
based on a pre-defined sense inventory (Kilgarrif,
1998). WSD is useful for a range of NLP tasks,
including information retrieval, information extrac-
tion, machine translation, content analysis, and lex-
icography (see Navigli (2009) for an overview).

Figure 1: Visual sense ambiguity: three of the senses
of the verb play.

Standard WSD disambiguates words based on their
textual context; however, in a multimodal setting
(e.g., newspaper articles with photographs), visual
context is also available and can be used for disam-
biguation. Based on this observation, we introduce
a new task, visual sense disambiguation (VSD) for
verbs: given an image and a verb, assign the correct
sense of the verb, i.e., the one depicted in the image.
While VSD approaches for nouns exist, VSD for
verbs is a novel, more challenging task, and related
in interesting ways to action recognition in computer
vision. As an example consider the verb play, which
can have the senses participate in sport, play on an
instrument, and be engaged in playful activity, de-
pending on its visual context, see Figure 1.

We expect visual sense disambiguation to be use-
ful for multimodal tasks such as image retrieval. As
an example consider the output of Google Image
Search for the query sit: it recognizes that the verb
has multiple senses and tries to cluster relevant im-
ages. However, the result does not capture the pol-
ysemy of the verb well, and would clearly benefit
from VSD (see Figure 2).

Visual sense disambiguation has previously been
attempted for nouns (e.g., apple can mean fruit or
computer), which is a substantially easier task that
can be solved with the help of an object detector
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Figure 2: Google Image Search trying to disam-
biguate sit. All clusters pertain to the sit down sense,
other senses (baby sit, convene) are not included.

(Barnard et al., 2003; Loeff et al., 2006; Saenko and
Darrell, 2008; Chen et al., 2015). VSD for nouns is
helped by resources such as ImageNet (Deng et al.,
2009), a large image database containing 1.4 million
images for 21,841 noun synsets and organized ac-
cording to the WordNet hierarchy. However, we are
not aware of any previous work on VSD for verbs,
and no ImageNet for verbs exists. Not only image
retrieval would benefit from VSD for verbs, but also
other multimodal tasks that have recently received
a lot of interest, such as automatic image descrip-
tion and visual question answering (Karpathy and
Li, 2015; Fang et al., 2015; Antol et al., 2015).

In this work, we explore the new task of visual
sense disambiguation for verbs: given an image and
a verb, assign the correct sense of the verb, i.e., the
one that describes the action depicted in the image.
We present VerSe, a new dataset that augments exist-
ing multimodal datasets (COCO and TUHOI) with
sense labels. VerSe contains 3518 images, each an-
notated with one of 90 verbs, and the OntoNotes
sense realized in the image. We propose an algo-
rithm based on the Lesk WSD algorithm in order to
perform unsupervised visual sense disambiguation
on our dataset. We focus in particular on how to best
represent word senses for visual disambiguation,
and explore the use of textual, visual, and multi-
modal embeddings. Textual embeddings for a given
image can be constructed over object labels or image
descriptions, which are available as gold-standard in
the COCO and TUHOI datasets, or can be computed
automatically using object detectors and image de-
scription models.

Our results show that textual embeddings per-
form best when gold-standard textual annotations
are available, while multimodal embeddings per-
form best when automatically generated object la-
bels are used. Interestingly, we find that automati-
cally generated image descriptions result in inferior
performance.

Dataset Verbs Acts Images Sen Des
PPMI (Yao and Fei-Fei, 2010) 2 24 4800 N N
Stanford 40 Actions (Yao et al., 2011) 33 40 9532 N N
PASCAL 2012 (Everingham et al., 2015) 9 11 4588 N N
89 Actions (Le et al., 2013) 36 89 2038 N N
TUHOI (Le et al., 2014) – 2974 10805 N N
COCO-a (Ronchi and Perona, 2015) 140 162 10000 N Y
HICO (Chao et al., 2015) 111 600 47774 Y N
VerSe (our dataset) 90 163 3518 Y Y

Table 1: Comparison of VerSe with existing action
recognition datasets. Acts (actions) are verb-object
pairs; Sen indicates whether sense ambiguity is ex-
plicitly handled; Des indicates whether image de-
scriptions are included.

2 Related Work

There is an extensive literature on word sense disam-
biguation for nouns, verbs, adjectives and adverbs.
Most of these approaches rely on lexical databases
or sense inventories such as WordNet (Miller et al.,
1990) or OntoNotes (Hovy et al., 2006). Unsuper-
vised WSD approaches often rely on distributional
representations, computed over the target word and
its context (Lin, 1997; McCarthy et al., 2004; Brody
and Lapata, 2008). Most supervised approaches use
sense annotated corpora to extract linguistic features
of the target word (context words, POS tags, col-
location features), which are then fed into a classi-
fier to disambiguate test data (Zhong and Ng, 2010).
Recently, features based on sense-specific seman-
tic vectors learned using large corpora and a sense
inventory such as WordNet have been shown to
achieve state-of-the-art results for supervised WSD
(Rothe and Schutze, 2015; Jauhar et al., 2015).

As mentioned in the introduction, all existing
work on visual sense disambiguation has used
nouns, starting with Barnard et al. (2003). Sense dis-
crimination for web images was introduced by Lo-
eff et al. (2006), who used spectral clustering over
multimodal features from the images and web text.
Saenko and Darrell (2008) used sense definitions
in a dictionary to learn a latent LDA space overs
senses, which they then used to construct sense-
specific classifiers by exploiting the text surrounding
an image.

2.1 Related Datasets

Most of the datasets relevant for verb sense disam-
biguation were created by the computer vision com-
munity for the task of human action recognition (see
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Table 1 for an overview). These datasets are anno-
tated with a limited number of actions, where an
action is conceptualized as verb-object pair: ride
horse, ride bicycle, play tennis, play guitar, etc.
Verb sense ambiguity is ignored in almost all action
recognition datasets, which misses important gener-
alizations: for instance, the actions ride horse and
ride bicycle represent the same sense of ride and
thus share visual, textual, and conceptual features,
while this is not the case for play tennis and play
guitar. This is the issue we address by creating a
dataset with explicit sense labels.

VerSe is built on top of two existing datasets,
TUHOI and COCO. The Trento Universal Human-
Object Interaction (TUHOI) dataset contains 10,805
images covering 2974 actions. Action (human-
object interaction) categories were annotated using
crowdsourcing: each image was labeled by multiple
annotators with a description in the form of a verb
or a verb-object pair. The main drawback of TUHOI
is that 1576 out of 2974 action categories occur only
once, limiting its usefulness for VSD. The Microsoft
Common Objects in Context (COCO) dataset is very
popular in the language/vision community, as it con-
sists of over 120k images with extensive annotation,
including labels for 91 object categories and five de-
scriptions per image. COCO contains no explicit ac-
tion annotation, but verbs and verb phrases can be
extracted from the descriptions. (But note that not
all the COCO images depict actions.)

The recently created Humans Interacting with
Common Objects (HICO) dataset is conceptually
similar to VerSe. It consists of 47774 images anno-
tated with 111 verbs and 600 human-object interac-
tion categories. Unlike other existing datasets, HICO
uses sense-based distinctions: actions are denoted by
sense-object pairs, rather than by verb-object pairs.
HICO doesn’t aim for complete coverage, but re-
stricts itself to the top three WordNet senses of a
verb. The dataset would be suitable for performing
visual sense disambiguation, but has so far not been
used in this way.

3 VerSe Dataset and Annotation

We want to build an unsupervised visual sense dis-
ambiguation system, i.e., a system that takes an im-
age and a verb and returns the correct sense of
the verb. As discussed in Section 2.1, most exist-

Verb: touch

2 make physical contact with, possibly with the effect of physically
manipulating. They touched their fingertips together and smiled

2 affect someone emotionally The president’s speech touched a
chord with voters.

2 be or come in contact without control They sat so close that their
arms touched.

2 make reference to, involve oneself with They had wide-ranging
discussions that touched on the situation in the Balkans.

2 Achieve a value or quality Nothing can touch cotton for durabil-
ity.

2 Tinge; repair or improve the appearance of He touched on the
paintings, trying to get the colors right.

Figure 3: Example item for depictability and sense
annotation: synset definitions and examples (in blue)
for the verb touch.

ing datasets are not suitable for this task, as they do
not include word sense annotation. We therefore de-
velop our own dataset with gold-standard sense an-
notation. The Verb Sense (VerSe) dataset is based on
COCO and TUHOI and covers 90 verbs and around
3500 images. VerSe serves two main purposes: (1) to
show the feasibility of annotating images with verb
senses (rather than verbs or actions); (2) to function
as test bed for evaluating automatic visual sense dis-
ambiguation methods.

Verb Selection Action recognition datasets often
use a limited number of verbs (see Table 1). We ad-
dressed this issue by using images that come with
descriptions, which in the case of action images typ-
ically contain verbs. The COCO dataset includes im-
ages in the form of sentences, the TUHOI dataset is
annotated with verbs or prepositional verb phrases
for a given object (e.g., sit on chair), which we use in
lieu of descriptions. We extracted all verbs from all
the descriptions in the two datasets and then selected
those verbs that have more than one sense in the
OntoNotes dictionary, which resulted in 148 verbs
in total (94 from COCO and 133 from TUHOI).

Depictability Annotation A verb can have mul-
tiple senses, but not all of them may be depictable,
e.g., senses describing cognitive and perception pro-
cesses. Consider two senses of touch: make physical
contact is depictable, whereas affect emotionally de-
scribes a cognitive process and is not depictable. We
therefore need to annotate the synsets of a verb as
depictable or non-depictable. Amazon Mechanical
Turk (AMT) workers were presented with the def-
initions of all the synsets of a verb, along with ex-
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Verb type Examples Verbs Images Senses Depct ITA
Motion run, walk, jump, etc. 39 1812 10.76 5.79 0.680
Non-motion sit, stand, lay, etc. 51 1698 8.27 4.86 0.636

Table 2: Overview of VerSe dataset divided into
motion and non-motion verbs; Depct: depictable
senses; ITA: inter-annotator agreement.

amples, as given by OntoNotes. An example for this
annotation is shown in Figure 3. We used OntoNotes
instead of WordNet, as WordNet senses are very
fine-grained and potentially make depictability and
sense annotation (see below) harder. Granularity is-
sues with WordNet for text-based WSD are well
documented (Navigli, 2009).

OntoNotes lists a total of 921 senses for our 148
target verbs. For each synset, three AMT workers
selected all depictable senses. The majority label
was used as the gold standard for subsequent ex-
periments. This resulted in a 504 depictable senses.
Inter-annotator agreement (ITA) as measured by
Fleiss’ Kappa was 0.645.

Sense Annotation We then annotated a subset of
the images in COCO and TUHOI with verb senses.
For every image we assigned the verb that occurs
most frequently in the descriptions for that image
(for TUHOI, the descriptions are verb-object pairs,
see above). However, many verbs are represented
by only a few images, while a few verbs are rep-
resented by a large number of images. The datasets
therefore show a Zipfian distribution of linguistic
units, which is expected and has been observed pre-
viously for COCO (Ronchi and Perona, 2015). For
sense annotation, we selected only verbs for which
either COCO or TUHOI contained five or more im-
ages, resulting in a set of 90 verbs (out of the to-
tal 148). All images for these verbs were included,
giving us a dataset of 3518 images: 2340 images for
82 verbs from COCO and 1188 images for 61 verbs
from TUHOI (some verbs occur in both datasets).

These image-verb pairs formed the basis for sense
annotation. AMT workers were presented with the
image and all the depictable OntoNotes senses of
the associated verb. The workers had to chose the
sense of the verb that was instantiated in the image
(or “none of the above”, in the case of irrelevant im-
ages). Annotators were given sense definitions and
examples, as for the depictability annotation (see
Figure 3). For every image-verb pair, five annotators

performed the sense annotation task. A total of 157
annotators participated, reaching an inter-annotator
agreement of 0.659 (Fleiss’ Kappa). Out of 3528 im-
ages, we discarded 18 images annotated with “none
of the above”, resulting in a set of 3510 images cov-
ering 90 verbs and 163 senses. We present statis-
tics of our dataset in Table 2; we group the verbs
into motion verbs and non-motion verb using Levin
(1993) classes.

4 Visual Sense Disambiguation

For our disambiguation task, we assume we have a
set of images I, and a set of polysemous verbs V
and each image i ∈ I is paired with a verb v ∈ V .
For example, Figure 1 shows different images paired
with the verb play. Every verb v ∈ V , has a set of
senses S(v), described in a dictionary D . Now given
an image i paired with a verb v, our task is to pre-
dict the correct sense ŝ ∈ S(v), i.e., the sense that is
depicted by the associated image. Formulated as a
scoring task, disambiguation consists of finding the
maximum over a suitable scoring function Φ:

ŝ = argmax
s∈S(v)

Φ(s, i,v,D) (1)

For example, in Figure 1, the correct sense for the
first image is participate in sport, for the second one
it is play on an instrument, etc.

The Lesk (1986) algorithm is a well known
knowledge-based approach to WSD which relies
on the calculation of the word overlap between the
sense definition and the context in which a word oc-
curs. It is therefore an unsupervised approach, i.e.,
it does not require sense-annotated training data, but
instead exploits resources such as dictionaries or on-
tologies to infer the sense of a word in context. Lesk
uses the following scoring function to disambiguate
the sense of a verb v:

Φ(s,v,D) = |context(v)∩definition(s,D)| (2)

Here, context(v) the set of words that occur close
the target word v and definition(s,D) is the set of
words in the definition of sense s in the dictionary D .
Lesk’s approach is very sensitive to the exact word-
ing of definitions and results are known to change
dramatically for different sets of definitions (Nav-
igli, 2009). Also, sense definitions are often very
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Figure 4: Schematic overview of the visual sense
disambiguation model.

short and do not provide sufficient vocabulary or
context.

We propose a new variant of the Lesk algorithm
to disambiguate the verb sense that is depicted in
an image. In particular, we explore the effectiveness
of textual, visual and multimodal representations in
conjunction with Lesk. An overview of our method-
ology is given in Figure 4. For a given image i la-
beled with verb v (here play), we create a represen-
tation (the vector i), which can be text-based (using
the object labels and descriptions for i), visual, or
multimodal. Similarly, we create text-based, visual,
and multimodal representations (the vector s) for ev-
ery sense s of a verb. Based on the representations i
and s (detailed below), we can then score senses as:1

Φ(s,v, i,D) = i · s (3)

Note that this approach is unsupervised: it requires
no sense annotated training data; we will use the
sense annotations in our VerSe dataset only for eval-
uation.

4.1 Sense Representations
For each candidate verb sense, we create a text-
based sense representation st and a visual sense rep-
resentation sc.

Text-based Sense Representation We create a
vector st for every sense s ∈ S(v) of a verb v from
its definition and the example usages provided in

1Taking the dot product of two normalized vectors is equiv-
alent to using cosine as similarity measure. We experimented
with other similarity measures, but cosine performed best.
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Figure 5: Extracting visual sense representation for
the verb play.

the OntoNotes dictionary D . We apply word2vec
(Mikolov et al., 2013), a widely used model of word
embeddings, to obtain a vector for every content
word in the definition and examples of the sense.
We then take the average of these vectors to com-
pute an overall representation of the verb sense. For
our experiments we used the pre-trained 300 dimen-
sional vectors available with the word2vec package
(trained on part of Google News dataset, about 100
billion words).

Visual Sense Representation Sense dictionaries
typically provide sense definitions and example sen-
tences, but no visual examples or images. For nouns,
this is remedied by ImageNet (Deng et al., 2009),
which provides a large number of example images
for a subset of the senses in the WordNet noun hier-
archy. However, no comparable resource is available
for verbs (see Section 2.1).

In order to obtain visual sense representation sc,
we therefore collected sense-specific images for the
verbs in our dataset. For each verb sense s, three
trained annotators were presented with the definition
and examples from OntoNotes, and had to formulate
a query Q (s) that would retrieve images depicting
the verb sense when submitted to a search engine.
For every query q we retrieved images I (q) using
Bing image search (for examples, see Figure 5). We
used the top 50 images returned by Bing for every
query.

Once we have images for every sense, we can
turn these images into feature representations us-
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ing a convolutional neural network (CNN). Specifi-
cally, we used the VGG 16-layer architecture (VG-
GNet) trained on 1.2M images of the 1000 class
ILSVRC 2012 object classification dataset, a subset
of ImageNet (Simonyan and Zisserman, 2014). This
CNN model has a top-5 classification error of 7.4%
on ILSVRC 2012. We use the publicly available ref-
erence model implemented using CAFFE (Jia et al.,
2014) to extract the output of the fc7 layer, i.e., a
4096 dimensional vector ci, for every image i. We
perform mean pooling over all the images extracted
using all the queries of a sense to generate a single
visual sense representation sc (shown in Equation 4):

sc =
1
n ∑

q j∈Q (s)
∑

i∈I (q j)
ci (4)

where n is the total number of images retrieved per
sense s.

4.2 Image Representations
We first explore the possibility of representing the
image indirectly, viz., through text associated with it
in the form of object labels or image descriptions (as
shown in Figure 4). We experiment with two differ-
ent forms of textual annotation: GOLD annotation,
where object labels and descriptions are provided
by human annotators, and predicted (PRED) anno-
tation, where state-of-the-art object recognition and
image description generation systems are applied to
the image.

Object Labels (O) GOLD object annotations are
provided with the two datasets we use. Each im-
age sampled from COCO is annotated with one
or more of 91 object categories. Each image from
TUHOI is annotated with one more of 189 object
categories. PRED object annotations were generated
using the same VGG-16-layer CNN object recogni-
tion model that was used to compute visual sense
representations. Only object labels with object de-
tection threshold of t > 0.2 were used.

Descriptions (C) To obtain GOLD image descrip-
tions, we used the used human-generated descrip-
tions that come with COCO. For TUHOI images,
we generated descriptions of the form subject-verb-
object, where the subject is always person, and the
verb-object pairs are the action labels that come with
TUHOI. To obtain PRED descriptions, we generated

three descriptions for every image using the state-
of-the-art image description system of Vinyals et al.
(2015).2

We can now create a textual representation it of
the image i. Again, we used word2vec to obtain
word embeddings, but applied these to the object la-
bels and to the words in the image descriptions. An
overall representation of the image is then computed
by averaging these vectors over all labels, all content
words in the description, or both.

Creating a visual representation ic of an image i
is straightforward: we extract the fc7 layer of the
VGG-16 network when applied to the image and
use the resulting vector as our image representation
(same setup as in Section 4.1).

Apart from experimenting with separate textual
and visual representations of images, it also makes
sense to combine the two modalities into a multi-
modal representation. The simplest approach is a
concatenation model which appends textual and vi-
sual features. More complex multimodal vectors can
be created using methods such as Canonical Corre-
lation Analysis (CCA) and Deep Canonical Corre-
lation Analysis (DCCA) (Hardoon et al., 2004; An-
drew et al., 2013; Wang et al., 2015). CCA allows us
to find a latent space in which the linear projections
of text and image vectors are maximally correlated
(Gong et al., 2014; Hodosh et al., 2015). DCCA can
be seen as non-linear version of CCA and has been
successfully applied to image description task (Yan
and Mikolajczyk, 2015), outperforming previous ap-
proaches, including kernel-based CCA.

We use both CCA and DCCA to map the vectors
it and ic (which have different dimensions) into a
joint latent space of n dimensions. We represent the
projected vectors of textual and visual features for
image i as it′ and ic′ and combine them to obtain
multimodal representation im as follows:

im = λt it
′+λcic′ (5)

We experimented with a number of parameter set-
tings for λt and λc for textual and visual models re-
spectively. We use the same model to combine the
multimodal representation for sense s as follows:

sm = λtst′+λcsc′ (6)

2We used Karpathy’s implementation, publicly available at
https://github.com/karpathy/neuraltalk.
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We use these vectors (it, st), (ic, sc) and (im, sm)
as described in Equation 3 to perform sense disam-
biguation.

5 Experiments

5.1 Unsupervised Setup

To train the CCA and DCCA models, we use the
text representations learned from image descriptions
of COCO and Flickr30k dataset as one view and
the VGG-16 features from the respective images as
the second view. We divide the data into train, test
and development samples (using a 80/10/10 split).
We observed that the correlation scores for DCCA
model were better than for the CCA model. We use
the trained models to generate the projected rep-
resentations of text and visual features for the im-
ages in VerSe. Once the textual and visual features
are projected, we then merge them to get the multi-
modal representation. We experimented with differ-
ent ways of combining visual and textual features
projected using CCA or DCCA: (1) weighted in-
terpolation of textual and visual features (see Equa-
tions 5 and 6), and (2) concatenating the vectors of
textual and visual features.

To evaluate our proposed method, we compare
against the first sense heuristic, which defaults to
the sense listed first in the dictionary (where senses
are typically ordered by frequency). This is a strong
baseline which is known to outperform more com-
plex models in traditional text-based WSD. In VerSe
we observe skewness in the distribution of the senses
and the first sense heuristic is as strong as over text.
Also the most frequent sense heuristic, which as-
signs the most frequently annotated sense for a given
verb in VerSe, shows very strong performance. It is
supervised (as it requires sense annotated data to ob-
tain the frequencies), so it should be regarded as an
upper limit on the performance of the unsupervised
methods we propose (also, in text-based WSD, the
most frequent sense heuristic is considered an upper
limit, Navigli (2009)).

5.1.1 Results
In Table 3, we summarize the results of the gold-

standard (GOLD) and predicted (PRED) settings
for motion and non-motion verbs across represen-
tations. In the GOLD setting we find that for both
types of verbs, textual representations based on im-

age descriptions (C) outperform visual representa-
tions (CNN features). The text-based results com-
pare favorably to the original Lesk (as described
in Equation 2), which performs at 30.7 for motion
verbs and 36.2 for non-motion verbs in the GOLD
setting. This improvement is clearly due to the use
of word2vec embeddings.3 Note that CNN-based
visual features alone performed better than gold-
standard object labels alone in the case of motion
verbs.

We also observed that adding visual features
to textual features improves performance in some
cases: multimodal features perform better than tex-
tual features alone both for object labels (CNN+O)
and for image descriptions (CNN+C). However,
adding CNN features to textual features based on
object labels and descriptions together (CNN+O+C)
resulted in a small decrease in performance. Further-
more, we note that CCA models outperform simple
vector concatenation in case of GOLD setting for
motion verbs, and overall DCCA performed consid-
erably worse than concatenation. Note that for CCA
and DCCA we report the best performing scores
achieved using weighted interpolation of textual and
visual features with weights λt = 0.5 and λc = 0.5.

When comparing to our baseline and upper limit,
we find that the all the GOLD models which use
descriptions-based representations (except DCCA)
outperform to the first sense heuristic for motion-
verbs (accuracy 70.8), whereas they performed be-
low the first sense heuristic in case of non-motion
verbs (accuracy 80.6). As expected, both motion and
non-motion verbs performed significantly below the
most frequent sense heuristic (accuracy 86.2 and
90.7 respectively), which we argued provides an up-
per limit for unsupervised approaches.

We now turn the PRED configuration, i.e., to re-
sults obtained using object labels and image descrip-
tions predicted by state-of-the-art automatic sys-
tems. This is arguably the more realistic scenario,
as it only requires images as input, rather than as-
suming human-generated object labels and image
descriptions (though object detection and image de-
scription systems are required instead). In the PRED
setting, we find that textual features based on ob-

3We also experimented with Glove vectors (Pennington et
al., 2014) but observed that word2vec representations consis-
tently achieved better results that Glove vectors.
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(a) Motion verbs (39), FS: 70.8, MFS: 86.2
Annotation Textual Vis Concat (CNN+) CCA (CNN+) DCCA (CNN+)

O C O+C CNN O C O+C O C O+C O C O+C

GOLD 54.6 73.3 75.6 58.3 66.6 74.7 73.8 50.5 75.4 74.0 52.4 66.3 68.3
PRED 65.1 54.9 61.6 58.3 72.6 63.6 66.5 54.0 56.6 56.2 57.1 56.5 56.2

(b) Non-motion verbs (51), FS: 80.6, MFS: 90.7
Annotation Textual Vis Concat (CNN+) CCA (CNN+) DCCA (CNN+)

O C O+C CNN O C O+C O C O+C O C O+C

GOLD 57.0 72.7 72.6 56.1 66.0 72.2 71.3 53.6 71.6 70.2 57.3 59.8 55.1
PRED 59.0 64.3 64.0 56.1 63.8 66.3 66.1 50.7 55.3 54.8 49.5 50.0 50.0

Table 3: Accuracy scores for motion and non-motion verbs using for different types of sense and image
representations (O: object labels, C: image descriptions, CNN: image features, FS: first sense heuristic,
MFS: most frequent sense heuristic). Configurations that performed better than FS in bold.

Motion verbs (19), FS: 60.0, MFS: 76.1
Features GOLD PRED

Sup Unsup Sup Unsup

O 82.3 35.3 80.0 43.8
C 78.4 53.8 69.2 41.5
O+C 80.0 55.3 70.7 45.3
CNN 82.3 58.4 82.3 58.4
CNN+O 83.0 48.4 83.0 60.0
CNN+C 82.3 66.9 82.3 53.0
CNN+O+C 83.0 58.4 83.0 55.3

Table 4: Accuracy scores for motion verbs for both
supervised and unsupervised approaches using dif-
ferent types of sense and image representation fea-
tures.

ject labels (O) outperform both first sense heuristic
and textual features based on image descriptions (C)
in the case of motion verbs. Combining textual and
visual features via concatenation improves perfor-
mance for both motion and non-motion verbs. The
overall best performance of 72.6 for predicted fea-
tures is obtained by combining CNN features and
embeddings based on object labels and outperforms
first sense heuristic in case of motion verbs (accu-
racy 70.8). In the PRED setting for both classes of
verbs the simpler concatenation model performed
better than the more complex CCA and DCCA mod-
els. Note that for CCA and DCCA we report the best
performing scores achieved using weighted interpo-
lation of textual and visual features with weights
λt = 0.3 and λc = 0.7. Overall, our findings are con-
sistent with the intuition that motion verbs are easier
to disambiguate than non-motion verbs, as they are

Non-Motion verbs (19), FS: 71.3, MFS: 80.0
Features GOLD PRED

Sup Unsup Sup Unsup

O 79.1 48.6 78.2 46.0
C 79.1 53.9 77.3 61.7
O+C 79.1 66.0 77.3 55.6
CNN 80.0 55.6 80.0 55.6
CNN+O 80.0 56.5 80.0 52.1
CNN+C 80.0 56.5 80.3 60.0
CNN+O+C 80.0 59.1 80.0 55.6

Table 5: Accuracy scores for non-motion verbs for
both supervised and unsupervised approaches using
different types of sense and image representation
features.

more depictable and more likely to involve objects.
Note that this is also reflected in the higher inter-
annotator agreement for motion verbs (see Table 2).

5.2 Supervised Experiments and Results

Along with the unsupervised experiments we inves-
tigated the performance of textual and visual repre-
sentations of images in a simplest supervised setting.
We trained logistic regression classifiers for sense
prediction by dividing the images in VerSe dataset
into train and test splits. To train the classifiers we
selected all the verbs which has atleast 20 images an-
notated and has at least two senses in VerSe. This re-
sulted in 19 motion verbs and 19 non-motion verbs.
Similar to our unsupervised experiments we explore
multimodal features by using both textual and visual
features for classification (similar to concatenation
in unsupervised experiments).
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Verb Image Predicted Descriptions Pred. Obj.

play

A man holding a nintendo wii game
controller. A man and a woman play-
ing a video game. A man and a woman
are playing a video game.

person, bas-
soon, violin
fiddle, oboe,
hautboy

swing

A woman standing next to a fire hy-
drant. A woman walking down a street
holding an umbrella. A woman stand-
ing on a sidewalk holding an umbrella.

person,
horizontal
bar, high
bar, pole

feed

A couple of cows standing next to each
other. A cow that is standing in the dirt.
A close up of a horse in a stable

arabian
camel,
dromedary,
person

Table 6: Images that were assigned an incorrect
sense in the PRED setting.

In Table 4 we report accuracy scores for 19 mo-
tion verbs using a supervised logistic regression
classifier and for comparison we also report the
scores of our proposed unsupervised algorithm for
both GOLD and PRED setting. Similarly in Table 5
we report the accuracy scores for 19 non-motion
verbs. We observe that all supervised classifiers for
both motion and non-motion verbs performing bet-
ter than first sense baseline. Similar to our findings
using an unsupervised approach we find that in most
cases multimodal features obtained using concate-
nating textual and visual features has outperformed
textual or visual features alone especially in the
PRED setting which is arguably the more realistic
scenario. We observe that the features from PRED
image descriptions showed better results for non-
motion verbs for both supervised and unsupervised
approaches whereas PRED object features showed
better results for motion verbs. We also observe
that supervised classifiers outperform most frequent
sense for motion verbs and for non-motion verbs our
scores match with most frequent sense heuristic.

5.3 Error Analysis

In order to understand the cases where the proposed
unsupervised algorithm failed, we analyzed the im-
ages that were disambiguated incorrectly. For the
PRED setting, we observed that using predicted im-
age descriptions yielded lower scores compared to
predicted object labels. The main reason for this is
that the image description system often generates ir-
relevant descriptions or descriptions not related to
the action depicted, whereas the object labels pre-
dicted by the CNN model tend to be relevant. This
highlights that current image description systems

still have clear limitations, despite the high evalu-
ation scores reported in the literature (Vinyals et al.,
2015; Fang et al., 2015). Examples are shown in
Table 6: in all cases human generated descriptions
and object labels that are relevant for disambigua-
tion, which explains the higher scores in the GOLD
setting.

6 Conclusion

We have introduced the new task of visual verb sense
disambiguation: given an image and a verb, identify
the verb sense depicted in the image. We developed
the new VerSe dataset for this task, based on the
existing COCO and TUHOI datasets. We proposed
an unsupervised visual sense disambiguation model
based on the Lesk algorithm and demonstrated that
both textual and visual information associated with
an image can contribute to sense disambiguation. In
an in-depth analysis of various image representa-
tions we showed that object labels and visual fea-
tures extracted using state-of-the-art convolutional
neural networks result in good disambiguation per-
formance, while automatically generated image de-
scriptions are less useful.
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