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Abstract

Metaphor is pervasive in our communication,
which makes it an important problem for nat-
ural language processing (NLP). Numerous
approaches to metaphor processing have thus
been proposed, all of which relied on linguis-
tic features and textual data to construct their
models. Human metaphor comprehension
is, however, known to rely on both our lin-
guistic and perceptual experience, and vision
can play a particularly important role when
metaphorically projecting imagery across do-
mains. In this paper, we present the first
metaphor identification method that simulta-
neously draws knowledge from linguistic and
visual data. Our results demonstrate that it
outperforms linguistic and visual models in
isolation, as well as being competitive with
the best-performing metaphor identification
methods, that rely on hand-crafted knowledge
about domains and perception.

1 Introduction

Metaphor lends vividness, sophistication and clar-
ity to our thought and communication. At the
same time, it plays a fundamental structural role in
our cognition, helping us to organise and project
knowledge (Lakoff and Johnson, 1980; Feldman,
2006). Metaphors arise due to systematic associ-
ations between distinct, and seemingly unrelated,
concepts. For instance, when we talk about “the
turning wheels of a political regime”, “rebuilding
the campaign machinery” or “mending foreign pol-
icy”, we view politics and political systems in terms
of mechanisms, they can function, break, be mended

etc. The existence of this association allows us to
transfer knowledge and imagery from the domain
of mechanisms (the source domain) to that of po-
litical systems (the target domain). According to
Lakoff and Johnson (1980), such metaphorical map-
pings, or conceptual metaphors, form the basis of
metaphorical language.

Metaphor is pervasive in our communication,
which makes it important for NLP applications deal-
ing with real-world text. A number of approaches to
metaphor processing have thus been proposed, us-
ing supervised classification (Gedigian et al., 2006;
Mohler et al., 2013; Tsvetkov et al., 2013; Hovy
et al., 2013; Dunn, 2013a), clustering (Shutova et
al., 2010; Shutova and Sun, 2013), vector space
models (Shutova et al., 2012; Mohler et al., 2014),
lexical resources (Krishnakumaran and Zhu, 2007;
Wilks et al., 2013) and web search with lexico-
syntactic patterns (Veale and Hao, 2008; Li et al.,
2013; Bollegala and Shutova, 2013). So far, these
and other metaphor processing works relied on tex-
tual data to construct their models. Yet, several
experiments indicated that perceptual properties of
concepts, such as concreteness and imageability, are
important features for metaphor identification (Tur-
ney et al., 2011; Neuman et al., 2013; Gandy et
al., 2013; Strzalkowski et al., 2013; Tsvetkov et
al., 2014). However, all of these methods used
manually-annotated linguistic resources to deter-
mine these properties (such as the MRC concrete-
ness database (Wilson, 1988)). To the best of our
knowledge, there has not yet been a metaphor pro-
cessing method that employed information learned
from both linguistic and visual data. Ample re-
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search in cognitive science suggests that human
meaning representations are not merely a product
of our linguistic exposure, but are also grounded in
our perceptual system and sensori-motor experience
(Barsalou, 2008; Louwerse, 2011). Semantic mod-
els integrating information from multiple modalities
have been shown successful in tasks such as model-
ing semantic similarity and relatedness (Silberer and
Lapata, 2012; Bruni et al., 2014), lexical entailment
(Kiela et al., 2015a), compositionality (Roller and
Schulte im Walde, 2013) and bilingual lexicon in-
duction (Kiela et al., 2015b). Using visual informa-
tion is particularly relevant to modelling metaphor,
where imagery is ported across domains.

In this paper, we present the first metaphor identi-
fication method integrating meaning representations
learned from linguistic and visual data. We construct
our representations using a skip-gram model of
Mikolov et al. (2013a) trained on textual data to ob-
tain linguistic embeddings and a deep convolutional
neural network (Kiela and Bottou, 2014) trained on
image data to obtain visual embeddings. Linguis-
tic word embeddings have been previously success-
fully used to answer analogy questions (Mikolov et
al., 2013b; Levy and Goldberg, 2014). These works
have shown that such representations capture the nu-
ances of word meaning needed to recognise rela-
tional similarity (e.g. between pairs “king : queen”
and “man : woman”), quantified by the respective
vector offsets (king – queen≈man – woman). In our
experiments, we investigate how well these repre-
sentations can capture information about source and
target domains and their interaction in a metaphor.
We then enrich these representations with visual in-
formation. We first acquire linguistic and visual
embeddings for individual words and then extend
the methods to learn embeddings for longer phrases.
The focus of our experiments is on metaphorical ex-
pressions in verb–subject, verb–direct object and ad-
jectival modifier–noun constructions. We thus learn
embeddings for verbs, adjectives, nouns, as well as
verb–noun and adjective–noun phrases. We then use
a set of arithmetic operations on word and phrase
embedding vectors to classify phrases as literal or
metaphorical. To the best of our knowledge, our ap-
proach is also the first one to apply word or phrase
embeddings to the task of metaphor identification.

Our results demonstrate that the joint model in-

corporating linguistic and visual representations out-
performs the linguistic model in isolation, as well
as being competitive with the best-performing meta-
phor identification methods that rely on hand-crafted
information about domains, concreteness and im-
ageability.

2 Related work

A strand of metaphor processing research cast the
problem as a classification of linguistic expressions
as metaphorical or literal. They experimented with
a number of features, including lexical and syn-
tactic information and higher-level features such as
semantic roles and domain types. Gedigian et al.
(2006) classified verbs related to MOTION and CURE

within the domain of financial discourse. They used
the maximum entropy classifier and the verbs’ nom-
inal arguments and their semantic roles as features,
reporting encouraging results. Dunn (2013a) used a
logistic regression classifier and high-level proper-
ties of concepts extracted from SUMO ontology, in-
cluding domain types (ABSTRACT, PHYSICAL, SO-
CIAL, MENTAL) and event status (PROCESS, STATE,
OBJECT). Tsvetkov et al. (2013) also used logis-
tic regression and coarse semantic features, such as
concreteness, animateness, named entity types and
WordNet supersenses. They have shown that the
model learned with such coarse semantic features is
portable across languages. The work of Hovy et al.
(2013) is notable as they focused on compositional
rather than categorical features. They trained an
SVM with dependency-tree kernels to capture com-
positional information, using lexical, part-of-speech
tag and WordNet supersense representations of sen-
tence trees. Mohler et al. (2013) aimed at modelling
conceptual information. They derived semantic sig-
natures of texts as sets of highly-related and inter-
linked WordNet synsets. The semantic signatures
served as features to train a set of classifiers (max-
imum entropy, decision trees, SVM, random forest)
that map new metaphors to the semantic signatures
of the known ones.

Turney et al. (2011) hypothesized that metaphor
is commonly used to describe abstract concepts in
terms of more concrete or physical experiences.
Thus, Turney and colleagues expected that there
would be some discrepancy in the level of concrete-
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ness of source and target terms in the metaphor.
They developed a method to automatically measure
concreteness of words and applied it to identify ver-
bal and adjectival metaphors. Neuman et al. (2013)
and Gandy et al. (2013) followed in Turney’s steps,
extending the models by incorporating information
about selectional preferences.

Heintz et al. (2013) and Strzalkowski et al. (2013)
focused on modeling topical structure of text to
identify metaphor. Their main hypothesis was that
metaphorical language (coming from a different do-
main) would represent atypical vocabulary within
the topical structure of the text. Strzalkowski et al.
(2013) acquired a set of topic chains by linking se-
mantically related words in a given text. They then
looked for vocabulary outside the topic chain and
yet connected to topic chain words via syntactic de-
pendencies and exhibiting high imageability. Heintz
et al. (2013) used LDA topic modelling to identify
sets of source and target domain vocabulary. In their
system, the acquired topics represented source and
target domains, and sentences containing vocabulary
from both were tagged as metaphorical.

Other approaches addressed automatic identifica-
tion of conceptual metaphor. Mason (2004) auto-
matically acquired domain-specific selectional pref-
erences of verbs, and then, by mapping their com-
mon nominal arguments in different domains, ar-
rived at the corresponding metaphorical mappings.
For example, the verb pour has a strong preference
for liquids in the LAB domain and for money in the
FINANCE domain, suggesting the mapping MONEY

is LIQUID. Shutova et al. (2010) pointed out that the
metaphorical uses of words constitute a large portion
of the dependency features extracted for abstract
concepts from corpora. For example, the feature
vector for politics would contain GAME or MECH-
ANISM terms among the frequent features. As a re-
sult, distributional clustering of abstract nouns with
such features identifies groups of diverse concepts
metaphorically associated with the same source do-
main (or sets of source domains). Shutova et al.
(2010) exploit this property of co-occurrence vectors
to identify new metaphorical mappings starting from
a set of examples. Shutova and Sun (2013) used hi-
erarchical clustering to derive a network of concepts
in which metaphorical associations are learned in an
unsupervised way.

3 Method

3.1 Learning linguistic representations
We obtained our linguistic representations using
the log-linear skip-gram model of Mikolov et al.
(2013a). Given a corpus of words w and their con-
texts c, the model learns a set of parameters θ that
maximize the overall corpus probability

arg max
θ

∏
w

[
∏

c∈C(w)

p(c|w; θ)], (1)

where C(w) is a set of contexts of word w and
p(c|w; θ) is a softmax function:

p(c|w; θ) =
evc·vw∑

c′∈C evc′ ·vw
, (2)

where vc and vw are vector representations of c and
w. The parameters we need to set are thus vci and
vwi for all words in our word vocabulary V and
context vocabulary C, and the set of dimensions
i ∈ 1, . . . , d. Given a set D of word-context pairs,
embeddings are learned by optimizing the following
objective:

arg max
θ

∑
(w,c)∈D

log p(c|w) =

∑
(w,c)∈D

(log evc·vw − log
∑
c′∈C

evc′ ·vw)
(3)

We used a recent dump of Wikipedia1 as our cor-
pus. The text was lemmatized, tagged, and parsed
with Stanford CoreNLP (Manning et al., 2014).
Words that appeared less than 100 times in their lem-
matized form were ignored. The 100-dimensional
word and phrase embeddings were learned in two
stages: in a first pass, we obtained word-level em-
beddings (e.g. for white and rabbit) using the stan-
dard skip-gram with negative sampling of Eq. (3);
we then obtained phrase embeddings (e.g. for white
rabbit) through a second pass over the same corpus.
In the second pass, the vectors vc and vc′ of Eq. (3)
were set to their values from the first pass, and kept
fixed. Verb-noun phrases were extracted by finding
nsubj and dobj arcs with V B head and NN de-
pendent; analogously, adjective-noun phrases were
extracted by finding amod arcs with NN head and
JJ dependent. No frequency cutoff was applied for

1https://dumps.wikimedia.org/enwiki/20150805/
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phrases. All embeddings were trained on the corpus
for 3 epochs, using a symmetric window of 5, and
10 negative samples per word-context pair.

3.2 Learning visual representations

Visual embeddings were obtained in a manner simi-
lar to Kiela and Bottou (2014). Using the deep learn-
ing framework Caffe (Jia et al., 2014), we extracted
image embeddings from a deep convolutional neural
network that was trained on the ImageNet classifi-
cation task (Russakovsky et al., 2015). The network
(Krizhevsky et al., 2012) consists of 5 convolutional
layers, followed by two fully connected rectified lin-
ear unit (ReLU) layers that feed into a softmax for
classification. The network learns through a multi-
nomial logistic regression objective:

J(θ) = −
D∑
i=1

K∑
k=1

1{y(i) = k}

log
exp(θ(k)>x(i))∑K
j=1 exp(θ(j)>x(i))

(4)

where 1{·} is the indicator function and we train
on D examples with K classes. We obtain image
embeddings by doing a forward pass with a given
image and taking the 4096-dimensional fully con-
nected layer that precedes the softmax (typically
called FC7) as the representation of that image.

To construct our embeddings, we used up to 10
images for a given word or phrase, which were ob-
tained through Google Images. It has been shown
that images from Google yield higher quality repre-
sentations than comparable resources such as Flickr
and are competitive with hand-crafted datasets (Fer-
gus et al., 2005; Bergsma and Goebel, 2011). We
created our final visual representations for words
and phrases by taking the average of the extracted
image embeddings for a given word or phrase.

3.3 Multimodal fusion strategies

While it is desirable to jointly learn representations
from different modalities at the same time, this is
often not feasible (or may lead to poor performance)
due to data sparsity. Instead, we learn uni-modal
representations independently, as described above,
and then combine them into multi-modal ones. Pre-
vious work in multi-modal semantics (Bruni et al.,

2014) investigated different ways of combining, or
fusing, linguistic and perceptual cues. When calcu-
lating similarity, for instance, one can either com-
bine the representations first and subsequently com-
pute similarity scores; or compute similarity scores
independently per modality and afterwards combine
the scores. In contrast with joint learning (which has
also been called early fusion), these two possibilities
represent middle and late fusion, respectively (Kiela
and Clark, 2015).

We experiment with middle and late fusion strate-
gies. In middle fusion, we L-2 normalise and con-
catenate the vectors for linguistic and visual repre-
sentations and then compute a metaphoricity score
for a phrase based on this joint representation. In late
fusion, we first compute the metaphoricity scores
based on linguistic and visual representations in-
dependently, and then combine the metaphoricity
scores by taking their average.

3.4 Measuring metaphoricity

We investigate a set of arithmetic operations on the
linguistic, visual and multimodal embedding vectors
to determine whether the two words in the phrase
belong to the same domain or rather a word from one
domain is metaphorically used to describe another.

3.4.1 Word-level embeddings

In our first set of experiments, we compare em-
beddings learned for individual words in order to de-
termine whether they come from the same domain.
This is done by determining similarity between the
representations of the two words in a phrase:

sim(word1, word2), (5)

where word1 is either a verb or an adjective, word2

is a noun, and similarity is defined as cosine similar-
ity:

cos(x, y) =
x · y
||x||||y|| (6)

We expect the similarity of word representations to
be lower for metaphorical expressions (where one
word comes from the source domain and one from
the target), than for the literal ones (where both
words come from the target domain). We will fur-
ther refer to this method as WORDCOS.
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3.4.2 Phrase-level embeddings
In our second set of experiments, we investigate

compositional properties of metaphorical phrases by
comparing the embeddings learned for the whole
phrase with those of the individual words in the
phrase. This allows us to determine which proper-
ties the phrase shares with each of the words, provid-
ing another criterion for metaphor identification. We
expect that the embeddings of literal phrases will be
more similar to the embeddings of individual words
in the phrase (or a combination thereof) than those
of metaphorical phrases. We use the following mea-
sures to test this hypothesis:

PHRASCOS1: cos(phrase− word1, word2) (7)

PHRASCOS2: cos(phrase− word2, word1) (8)

PHRASCOS3: cos(phrase, word1 + word2), (9)

where phrase is the phrase embedding vector, and
word1 and word2 are defined as above.

3.4.3 Classification
We use a small development set (a collection of

phrases annotated as metaphorical or literal) to de-
termine an optimal classification threshold for each
of the above scoring methods. We have optimized
the threshold by maximizing classification accuracy
on the development set.2 All instances with val-
ues above the threshold were considered literal and
those with values below the threshold metaphorical.
The thresholds were then applied to classify the test
instances as literal or metaphorical.

4 Experiments

4.1 Annotated datasets

We evaluate our method using two datasets manu-
ally annotated for metaphoricity:

Mohammad et al. dataset (MOH) Mohammad
et al. (2016) annotated different senses of WordNet
(Fellbaum, 1998) verbs for metaphoricity. They ex-
tracted verbs that had between three and ten senses
in WordNet and the sentences exemplifying them
in the corresponding glosses. The verb uses in the

2We have also experimented with optimizing F-score on the
development set and the results exhibited similar trends across
methods.

Verb noun Class Relation
blister foot literal SV
blister administration metaphorical VO
blur haze literal SV
blur vision literal VO
blur distinction metaphorical SV
boost economy metaphorical VO
boost voltage literal VO
bounce ball literal SV
bounce people metaphorical VO
bow person literal SV
bow government metaphorical SV
breathe person literal SV
breathe life metaphorical VO
breathe fabric metaphorical SV
breathe wine metaphorical SV

Figure 1: Annotated verb–direct object and verb–subject pairs

from MOH

sentences (1639 in total) were then annotated for
metaphoricity by 10 annotators each via the crowd-
sourcing platform CrowdFlower3. Mohammad et al.
selected the verbs that were tagged by at least 70%
of the annotators as metaphorical or literal to create
their dataset. We extracted verb–direct object and
verb–subject relations of the annotated verbs from
this dataset, discarding the instances with pronom-
inal or clausal subject or object. This resulted in a
dataset of 647 verb–noun pairs, 316 of which were
metaphorical and 331 literal. Figure 1 shows some
examples of annotated verbs from Mohammad et
al.’s dataset.

Tsvetkov et al. dataset (TSV) Tsvetkov et al.
(2014) created a large dataset of adjective–noun
pairs that they annotated for metaphoricity. Start-
ing with a 1000 frequent adjectives, they extracted
nouns they co-occur with in TenTen Web Corpus4

using SketchEngine and in collections of metaphor
on the Web. Tsvetkov et al. divided the data
into a training set (containing 884 literal and 884
metaphorical pairs) and test set (111 literal and 111
metaphorical pairs). We will refer to their train-
ing set as TSV-TRAIN and to the test set as TSV-
TEST. The test set was annotated for metaphoricity
by 5 annotators with an inter-annotator agreement
of κ = 0.76. Figure 2 shows a portion of the anno-

3www.crowdflower.com
4https://www.sketchengine.co.uk/xdocumentation/wiki/Cor-

pora/enTenTen
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Metaphorical: Literal:
bald assertion cold beer
blind alley cold weather
breezy disregard huge number
dry wit dead animal
dumb luck deep sea
foggy brain gold coin
healthy balance dry skin
hollow mockery honest opinion
honest meal empty can
juicy scandal good idea
spicy language foggy night
stale cliché frosty morning
steep discount firm mattress

Figure 2: Annotated adjective–noun pairs from TSV-TEST

tated test set. Metaphorical phrases that depend on
wider context for their interpretation (e.g. drowning
students) were removed. The training set was anno-
tated by one annotator only, and it is thus likely that
the annotations are less reliable than those in the test
set. We thus evaluate our methods on Tsvetkov et
al.’s test set (TSV-TEST). However, we will also re-
port results on TSV-TRAIN to confirm whether the
observed trends hold in a larger, though likely nois-
ier, dataset.

We selected the above two datasets since they in-
clude examples for different senses (both metaphor-
ical and literal) of the same verbs or adjectives. This
allows us to test the extent to which our model is
able to discriminate between different word senses,
as opposed to merely selecting the most frequent
class for a given word.

4.2 Experimental setup

We divided the verb- and adjective-noun datasets
into development and test sets. The verb–noun de-
velopment set contained 80 instances from MOH (40
literal and 40 metaphorical), leaving us with the test
set of 567 verb-noun pairs from MOH. We cre-
ated the adjective–noun development set using 80
adjective-noun pairs (40 literal and 40 metaphorical)
from TSV-TRAIN, leaving all of the 222 adjective–
noun pairs in TSV-TEST for evaluation. In a separate
experiment, we also applied our methods to the re-
mainder of TSV-TRAIN (1688 adjective–noun pairs)
to evaluate our system on a larger adjective dataset.

We used the development sets to determine an op-

Features Method P R F1
Linguistic WORDCOS 0.67 0.76 0.71

PHRASCOS1 0.38 0.94 0.54
Visual WORDCOS 0.49 0.97 0.65

PHRASCOS1 0.56 0.79 0.66
Multimodal WORDMID 0.56 0.86 0.68

PHRASMID 0.44 0.93 0.59
WORDLATE 0.49 0.96 0.65
PHRASLATE 0.41 0.92 0.57
MIXLATE 0.65 0.87 0.75

Table 1: System performance on Mohammad et al. dataset

(MOH) in terms of precision (P ), recall (R) and F-score (F1)

timal threshold value for each of our scoring meth-
ods. The thresholds for verb-noun and adjective-
noun phrases were optimized independently using
the corresponding development sets. We experi-
mented with the three phrase-level scoring methods
on the development sets, and found that PHRAS-
COS1 consistently outperformed PHRASCOS2 and
PHRASCOS3 for both verb–noun and adjective–
noun phrases. We thus report results for PHRAS-
COS1 on our test sets.

We first evaluated the performance of WORDCOS

and PHRASCOS1 using linguistic and visual repre-
sentations in isolation, and then evaluated the mul-
timodal models using middle and late fusion strate-
gies. In middle fusion, we concatenated the linguis-
tic and visual vectors, and then applied WORDCOS

and PHRASCOS1 methods to the resulting multi-
modal vectors. We will refer to these methods as
WORDMID and PHRASMID respectively. In late
fusion, we used an average of linguistic and vi-
sual scores to determine metaphoricity. We exper-
imented with three different scoring methods: (1)
WORDLATE, where linguistic and visual WORD-
COS scores were combined; (2) PHRASLATE, where
linguistic and visual PHRASCOS1 scores were com-
bined; and (3) MIXLATE, where linguistic and
WORDCOS and visual PHRASCOS1 scores were
combined.

4.3 Results and discussion
We evaluated the performance of our methods on
the MOH and TSV-TEST test sets in terms of preci-
sion, recall and F-score and the results are presented
in Tables 1 and 2 respectively. When using lin-
guistic embeddings alone, WORDCOS outperforms
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Features Method P R F1
Linguistic WORDCOS 0.73 0.80 0.76

PHRASCOS1 0.43 0.96 0.57
Visual WORDCOS 0.50 0.95 0.66

PHRASCOS1 0.60 0.91 0.73
Multimodal WORDMID 0.59 0.85 0.70

PHRASMID 0.54 0.93 0.68
WORDLATE 0.69 0.72 0.70
PHRASLATE 0.50 1.00 0.67
MIXLATE 0.67 0.96 0.79

Table 2: System performance on Tsvetkov et al. test set (TSV-

TEST) in terms of precision (P ), recall (R) and F-score (F1)

PHRASECOS1 for both verbs and adjectives by 17-
19%. This suggests that linguistic word embeddings
already successfully capture domain and composi-
tional information necessary for metaphor identifi-
cation. In contrast, the visual PHRASECOS1 model,
when applied in isolation, tends to outperform the
visual WORDCOS model. PHRASCOS1 measures
to what extent the meaning of the phrase can be
composed by simple combination of the represen-
tations of individual words. In metaphorical lan-
guage, however, a meaning transfer takes place and
this is no longer the case. Particularly in visual data,
where no linguistic conventionality and stylistic ef-
fects take place, PHRASCOS1 captures this prop-
erty. For adjectives this trend was more evident than
for verbs. The visual PHRASECOS1 model, even
when applied on its own, attains a high F-score of
0.73 on TSV-TEST, suggesting that concreteness and
other visual features are highly informative in iden-
tification of adjectival metaphors. This effect was
present, though not as pronounced, for verbal meta-
phors, where the vision-only PHRASECOS1 attains
an F-score of 0.66.

The multimodal model, integrating linguistic and
visual embeddings, outperforms the linguistic mod-
els for both verbs and adjectives, clearly demon-
strating the utility of visual features across word
classes. The late fusion method MIXLATE, which
combines the linguistic WORDCOS score and the vi-
sual PHRASECOS1, attains an F-score of 0.75 for
verbs and 0.79 for adjectives, which makes it best-
performing among our fusion strategies. When the
same type of scoring (i.e. either WORDCOS or
PHRASCOS1) is used with both linguistic and visual

embeddings, middle and late fusion techniques at-
tain comparable levels of performance, with WORD-
COS being the leading measure. The reason behind
the higher performance of MIXLATE is likely to be
the combination of different scoring methods, one of
which is more suitable for the linguistic model and
the other for the visual one.

The differences between verbs and adjectives with
respect to the utility of visual information can be ex-
plained by the following two factors. Firstly, pre-
vious psycholinguistic research on abstractness and
concreteness (Hill et al., 2014) suggests that humans
find it easier to judge the level of concreteness of ad-
jectives and nouns than that of verbs. It is thus possi-
ble that visual representations capture the concrete-
ness of adjectives and nouns more accurately than
that of verbs. Besides concreteness, it is also likely
that perceptual properties in general are more im-
portant for the semantics of nouns (e.g. objects) and
adjectives (their attributes), than for the semantics
of verbs (actions), since the latter are grounded in
our motor activity and not merely perception. Sec-
ondly, following the majority of multimodal seman-
tic models, we used images as our visual data rather
than videos. However, some verbs, e.g. stative verbs
and verbs for continuous actions, may be better cap-
tured in video than images. We thus expect that
using video data along with the images as input to
the acquisition of visual embeddings is likely to im-
prove metaphor identification performance for ver-
bal metaphors. However, we leave the investigation
of this issue for future work.

In an additional experiment, we evaluated our
methods on the larger TSV-TRAIN dataset (specifi-
cally using its portion that was not employed for de-
velopment purposes) and the trends observed were
the same. MIXLATE attained an F-score of 0.71,
outperforming language-only and vision-only mod-
els. The performance of all scoring methods on TSV-
TRAIN was lower than that on the TSV-TEST. This
may be the result of the fact that the labelling of TSV-
TRAIN was less consistent than that of TSV-TEST.
As TSV-TEST is a set of metaphors annotated by 5
annotators with a high agreement, the evaluation on
TSV-TEST is likely to be more reliable (Tsvetkov et
al., 2014).

It is important to note that, unlike other super-
vised approaches to metaphor, our methods do not
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require large training sets to learn the respective
thresholds. The results reported here were ob-
tained using only 80 annotated examples for train-
ing. This is sufficient since the necessary lexical
knowledge and the knowledge about domain, con-
creteness and visual properties of concepts is al-
ready captured in the linguistic and visual embed-
dings. However, we additionally investigated how
stable the thresholds learned by the model are us-
ing the TSV-TRAIN dataset. For this purpose, we di-
vided the dataset into 10 portions of approximately
170 examples (balanced for metaphoricity). We then
trained the thresholds first on a small set of 170 ex-
amples and then increasing the dataset by 170 ex-
amples at each round. The thesholds appear to be
relatively stable, with a standard deviation of 0.03
for MIXLATE; 0.02 for WORDCOS (linguistic); and
0.05 for PHRASECOS1 (visual). This suggests that
our methods do not require a large annotated dataset
and training on a small number of examples is suffi-
cient.

Despite the limited need in training data and no
reliance on hand-coded lexical resources, the perfor-
mance of our method favourably compares to that
of existing metaphor identification systems (Turney
et al., 2011; Neuman et al., 2013; Gandy et al.,
2013; Dunn, 2013b; Tsvetkov et al., 2013; Hovy
et al., 2013; Hovy et al., 2013; Shutova and Sun,
2013; Strzalkowski et al., 2013; Beigman Klebanov
et al., 2015), that typically use such resources. For
instance, Turney et al. (2011) used hand-annotated
abstractness scores for words to develop their sys-
tem, and reported an F-score of 0.68 for verb–noun
metaphors and an accuracy of 0.79 for adjective–
noun metaphors (though the latter was only evalu-
ated on a small dataset of 10 adjectives and Tur-
ney and colleagues did not report results in terms
of F-score, which is likely to be lower). Our use
of visual features is in line with Turney’s hypoth-
esis concerning the relevance of concreteness fea-
tures to metaphor processing. However, our re-
sults indicate that extracting this information from
image data directly is a more suitable way to cap-
ture the concreteness itself, as well as capturing
other relevant perceptual properties of concepts. The
method of Tsvetkov et al. (2014) used both con-
creteness features (which they extracted from the
MRC concreteness database) and hand-coded do-

main information for words (which they extracted
from WordNet). They report a high F-score of 0.85
for adjective–noun classification on TSV-TEST. The
performance of our method on the same dataset is
a little lower than that of Tsvetkov et al. How-
ever, we do not use any hand-annotated resources
and acquire linguistic, domain and perceptual infor-
mation in the data-driven way. It is thus encour-
aging that, even though resource-lean, our methods
approach the performance level of the methods us-
ing hand-annotated features (as in case of Tsvetkov
et al. (2014)) or outperform them (as in case of
Turney et al. (2011), Neuman et al. (2013), Dunn
(2013b), Mohler et al. (2013), Gandy et al. (2013),
Strzalkowski et al. (2013), Beigman Klebanov et al.
(2015) and many others). For further comparison
with these approaches and their results see a recent
review by Shutova (2015).

5 Conclusion

We presented the first method that uses visual
features for metaphor identification. Our results
demonstrate that the multi-modal model combining
both linguistic and visual knowledge outperforms
language-only models, suggesting the importance of
visual information for metaphor processing. Un-
like previous metaphor processing approaches, that
employed hand-crafted resources to model percep-
tual properties of concepts, our method learns visual
knowledge from images directly, thus reducing the
risk of human annotation noise and having a wider
coverage and applicability. Since the method relies
on automatically acquired lexical knowledge, in the
form of linguistic and visual embeddings, and is oth-
erwise resource-independent, it can be applied to un-
restricted text in any domain and easily tailored to
other metaphor processing tasks.

In the future, it would be interesting to apply mul-
timodal word and phrase embeddings to automati-
cally interpret metaphorical language, e.g. by deriv-
ing literal or conventional paraphrases for metaphor-
ical expressions (similarly to the task of Shutova
(2010)). Multimodal embeddings are also likely to
provide useful information for the models of meta-
phor translation, as they have already proved suc-
cessful in bilingual lexicon induction more generally
(Kiela et al., 2015b). Finally, it would be interest-
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ing to further investigate compositional properties of
metaphorical language using multimodal phrase em-
beddings and to apply the embeddings to automati-
cally generalise metaphorical associations between
distinct concepts or domains.
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