A Long Short-Term Memory Framework for Predicting Humor in Dialogues

Dario Bertero and Pascale Fung
Human Language Technology Center
Department of Electronic and Computer Engineering
The Hong Kong University of Science and Technology
Clear Water Bay, Hong Kong
dberterolconnect.ust.hk, pascalelece.ust.hk

Abstract

We propose a first-ever attempt to employ a
Long Short-Term memory based framework
to predict humor in dialogues. We analyze
data from a popular TV-sitcom, whose canned
laughters give an indication of when the au-
dience would react. We model the setup-
punchline relation of conversational humor
with a Long Short-Term Memory, with utter-
ance encodings obtained from a Convolutional
Neural Network. Out neural network frame-
work is able to improve the F-score of 8% over
a Conditional Random Field baseline. We
show how the LSTM effectively models the
setup-punchline relation reducing the number
of false positives and increasing the recall. We
aim to employ our humor prediction model to
build effective empathetic machine able to un-
derstand jokes.

1 Introduction

There has been many recent attempts to detect and
understand humor, irony and sarcasm from sen-
tences, usually taken from Twitter (Reyes et al.,
2013; Barbieri and Saggion, 2014; Riloff et al.,
2013; Joshi et al., 2015), customer reviews (Reyes
and Rosso, 2012) or generic canned jokes (Yang et
al., 2015). Bamman and Smith (2015) and Karoui et
al. (2015) included the surrounding context.

Our work has a different focus from the above.
We analyze transcripts of funny dialogues, a genre
somehow neglected but important for human-robot
interaction. Laughter is the natural reaction of peo-
ple to a verbal or textual humorous stimulus. We
want to predict when the audience would laugh.

130

Compared to a typical canned joke or a sarcastic
Tweet, a dialog utterance is perceived as funny only
in relation to the dialog context and the past history.
In a spontaneous setting a funny dialog is usually
built through a setup which prepares the audience to
receive the humorous discourse stimuli, followed by
a punchline which releases the tension and triggers
the laughter reaction (Attardo, 1997; Taylor and Ma-
zlack, 2005). Automatic understanding of a humor-
ous dialog is a first step to build an effective empa-
thetic machine fully able to react to the user’s humor
and to other discourse stimuli. We are ultimately in-
terested in developing robots that can bond with hu-
mans better (Devillers et al., 2015).

As a source of situational humor we study a popu-
lar TV sitcom: “The Big Bang Theory”. The domain
of sitcoms is of interest as it provides a full dialog
setting, together with an indication of when the au-
dience is expected to laugh, given by the background
canned laughters. An example of dialog from this
sitcom, as well as of the setup-punchline schema, is
shown below (punchlines in bold):

PENNY: Okay, Sheldon, what can I get
you?

SHELDON: Alcohol.

PENNY: Could you be a little more spe-
cific?

SHELDON: Ethyl alcohol.
Forty milliliters. LAUGH
PENNY: I'm sorry, honey, I don’t know
milliliters.

SHELDON: Ah. Blame President James
Jimmy Carter. LAUGH He started
America on a path to the metric system

LAUGH

Proceedings of NAACL-HLT 2016, pages 130-135,
San Diego, California, June 12-17, 2016. (©2016 Association for Computational Linguistics

but then just gave up. LAUGH

The utterances before the punchline are the setup.
Without them, the punchlines may not be perceived
as humorous (the last utterance, out of context, may
be a political complaint), only with proper setup a
laughter would be triggered. The humorous intent is
also strengthen by the fact the dialog takes place in
a bar (evident from the previous and following utter-
ances), where a request of 40 ml of “Ethyl Alcohol”
is unusual and weird.

Our previous attempts on the same corpus (Bert-
ero and Fung, 2016b; Bertero and Fung, 2016a)
showed that using a bag-of-ngram representation
over a sliding window or a simple RNN to cap-
ture the contextual information of the setup was not
ideal. For this reason we propose a method based
on a Long Short-Term Memory network (Hochre-
iter and Schmidhuber, 1997), where we encode each
sentence through a Convolutional Neural Network
(Collobert et al., 2011). LSTM is successfully used
in context-dependent sequential classification tasks
such as speech recognition (Graves et al., 2013), de-
pendency parsing (Dyer et al., 2015) and conversa-
tion modelling (Shang et al., 2015). This is also to
our knowledge the first-ever attempt that a LSTM is
applied to humor response prediction or general hu-
mor detection tasks.

2 Methodology

We employ a supervised classification method to
detect when punchlines occur. The bulk of our
classifier is made of a concatenation of a Convo-
lutional Neural Network (Collobert et al., 2011) to
encode each utterance, followed by a Long Short-
Term Memory (Hochreiter and Schmidhuber, 1997)
to model the sequential context of the dialog. Before
the output softmax layer we add a vector of higher
level syntactic, structural and sentiment features. A
framework diagram is shown in Figure 1.

2.1 Convolutional Neural Network for each
utterance

The first stage of our classifier is represented by
a Convolutional Neural Network (Collobert et al.,
2011). Low-level, high-dimensional input feature
vectors are fed into a first embedding layer to obtain
a low dimensional dense vector. A sliding window is

131

Yo y1 y2
SOFTMAX
LAYER
optiat
LSTM D
UTTERANCE

ENCODING LAYER

CNN

a0,0,@0,1,--,0,L bgg,bg1,..,bo 1 €0,0:C01,--Co,L
Figure 1: Framework diagram. a;, b; and c; are the CNN
three input features (words, word2vec and character trigrams).

1; are the high level feature vectors, and y: the outputs for each

utterance.

then moved on these vectors and another layer is ap-
plied to each group of token vectors, in order to cap-
ture the local context of each token. A max-pooling
operation is then applied to extract the most salient
features of all the tokens into a single vector for the
whole utterance. An additional layer is used to gen-
eralize and distribute each feature to its full range
before obtaining the final utterance vector.
In our task we use three input features:

1. Word tokens: each utterance token is repre-
sented as a one-hot vector. This feature models
how much each word is likely to trigger humor
in the specific corpus.

2. Character trigrams: each token is represented
as a bag-of-character-trigrams vector. The fea-
ture models the role of the word signifier and
removes the influence of the word stems.

3. Word2Vec: we extract for each token a word
vector from word2vec (Mikolov et al., 2013),
trained on the text9 Wikipedia corpus'. This
representation models the general semantic

"Extension of the text8 obtained from

http://mattmahoney.net/dc/textdata

corpus,

meanings, and matches words that do not ap-
pear to others similar in meaning.

The convolution and max-pooling operation is ap-
plied individually to each feature, and the three vec-
tors obtained are then concatenated together and fed
to the final sentence encoding layer, which combines
all the contributions.

2.2 Long/Short Term Memory for the
utterance sequence

The LSTM is an improvement over the Recurrent
Neural Network aimed to improve its memory ca-
pabilities. In a standard RNN the hidden memory
layer is updated through a function of the input and
the hidden layer at the previous time instant:

h; = tanh(Wxxt + Wph; 1 + b) (1)
where x is the network input and b the bias term.
This kind of connection is not very effective to main-
tain the information stored for long time instants, as
well as it does not allow to forget unneeded informa-
tion between two time steps. The LSTM enhances
the RNN with a series of three multiplicative gates.
The structure is the following:

ir=0(Wi,x, + W;, h;_1 +b;) (2)
£, = o(Wy,x; + Wy, hy_y +by) 3)
o =0(Wy,xt + Wy, hy_ 1 +b,) 4
st = tanh(Wy, x¢ + W, hy_ 1 +bp) (5)
cc=fOc1+iOsy (6)
h; = tanh(c;) ® oy (7

where © is the element-wise product. Each gate fac-
tor is able to let through or suppress a specific update
contribution, thus allowing a selective information
retaining. The input gate i is applied to the cell input
s, the forget gate f to the cell value at the previous
time step c;—1, and the output gate o to the cell out-
put for the current time instant hy. In this way a cell
value can be retained for multiple time steps when
i = 0, ignored in the output when o = 0, and for-
gotten when f = 0.

As dialog utterances are sequential, we feed all ut-
terance vectors of a sitcom scene in sequence into a
Long Short-Term Memory block to incorporate con-
textual information. The memory unit of the LSTM

132

keeps track of the context in each scene, and mim-
ics human memory to accumulate the setup that may
trigger a punchline.

Before the output we incorporate a set of high
level features from our previous work (Bertero and
Fung, 2016b) and past literature (Reyes et al., 2013;
Barbieri and Saggion, 2014). They include:

e Structural features: average word length, sen-
tence length, difference in sentence length with
the five previous utterances.

e Part of speech proportion: noun, verbs, adjec-
tives and adverbs.

e Antonyms: proportion of antonym words with
the previous utterance (from WordNet (Miller,
1995)).

e Sentiment: positive, negative and average sen-
timent score among all words (from Senti-
WordNet (Esuli and Sebastiani, 2006)).

e Speaker and turn: speaker character identity
and utterance position in the turn (beginning,
middle, end, isolated).

e Speaking rate: time duration of the utterance
from the subtitle files, divided by the sentence
length.

All these features are concatenated to the LSTM out-
put, and a softmax layer is applied to get the final
output probabilities.

3 Experiments

3.1 Corpus

We built a corpus from the popular TV-sitcom “The
Big Bang Theory”, seasons 1 to 6. We downloaded
the subtitle files (annotated with the timestamps of
each utterance) and the scripts?, used to segment all
the episodes into scenes and get the speaker identity
of each utterance. We extracted the audio track of
each episode in order to retrieve the canned laugh-
ters timestamps, with a vocal removal tool followed
by a silence/sound detector. We then annotated each
utterance as a punchline in case it was followed by
a laughter within 1s, assuming that utterances not

2From bigbangtrans.wordpress.com

Classifier and features Accuracy Precision Recall F-score
CRF n-grams 61.8 56.8 45.1 50.2
CRF language features 67.8 67.5 47.8 56.0
CRF n-grams + language features 65.9 61.2 55.3 58.1
LSTM 63.1 56.7 58.7 57.6
LSTM + high level features 70.0 66.7 59.4 62.9

Table 1: Results, percentage.

Encoding stage ‘ A P R F1

CNN 70.0 66.7 594 629

LSTM 684 66.2 534 59.1
Table 2: Comparison between a CNN and a LSTM sentence

encoding input.

followed by a laughter would be the setup for the
punchline.

We obtained a total of 135 episodes, 1589 overall
scenes, 42.8% of punchlines, and an average inter-
val between two punchlines of 2.2 utterances. We
built a training set of 80% of the overall episodes,
and a development and test set of 10% each. The
episodes were drawn from all the seasons with the
same proportion. The total number of utterances is
35865 for the training set, 3904 for the development
set and 3903 for the test set.

3.2 Experimental setup and baseline

In the neural network we set the size to 100 for all
the hidden layers of the CNN and the LSTM, and 5
to the convolutional window. We applied a dropout
regularization layer (Srivastava et al., 2014) after
the output of the LSTM, and L2 regularization on
the softmax output layer. The network was trained
with standard backpropagation, using each scene as
a training unit. The development set was used to
tune the hyperparameters, and to determine the early
stopping condition. When the error on the devel-
opment set began to increase for the first time we
kept training only the final softmax layer, this im-
proved the overall results. The neural network was
implemented with THEANO toolkit (Bergstra et al.,
2010). We ran experiments with and without the ex-
tra high-level feature vector.

As a baseline for comparison we used an imple-
mentation of the Conditional Random Field (Laf-
ferty et al., 2001) from CRFSuite (Okazaki, 2007),
with L2 regularization. We ran experiments using

133

the same high level feature vector added at the end
of the neural network, 1-2-3gram features of a win-
dow made by the utterance and the four previous,
and the two feature sets combined. We also com-
pared the overall system where we replace the CNN
with an LSTM sentence encoder (Li et al., 2015),
where we kept the same input features.

3.3 Results and discussion

Results of our system and our baselines are shown
in table 1. The LSTM with the aid of the high level
feature vector generally outperformed all the CRF
baselines with the highest accuracy of 70.0% and
the highest F-score of 62.9%. The biggest improve-
ment of the LSTM is the improvement of the recall
without affecting too much the precision. Lexical
features given by n-gram from a context window
are very useful to recognize more punchlines in our
baseline experiment, but they also yield many false
positives, when the same n-gram is used in differ-
ent contexts. A CNN-LSTM network seems to over-
come this issue as the CNN stage is better in model-
ing the lexical and semantic content of the utterance,
as the LSTM allows to put each utterance in relation
with the past context, filtering out many false posi-
tives from wrong contexts.

The choice of the CNN is further justified by
the results obtained from the comparison between
the CNN and the LSTM sentence encoding input,
shown in table 2. The CNN is more effective, ob-
taining a recall of 10% higher and 6% more in F-
score. The CNN is a simpler model that might ben-
efit more of a small-size corpus. It also required a
much shorter training time compared to the LSTM.
We may consider in the future to use more data, and
try other sentence input encoders, including deeper
or bi-directional LSTMs, to find the most effective
one.

Predicting humor response from the canned

laughters is a particularly challenging task. In some
cases canned laughters are inserted by the show pro-
ducers with the purpose of solicit response to weak
jokes, where otherwise people would not laugh. The
audience must also be kept constantly amused, extra
canned laughters may help in scenes where fewer
jokes are used.

4 Conclusion and future work

We proposed a Long Short-Term Memory based
framework to predict punchlines in a humorous di-
alog. We showed that our neural network is partic-
ularly effective in increasing the F-score to 62.9%
over a Conditional Random Field baseline of 58.1%.
We furthermore showed that the LSTM is more ef-
fective in obtaining an higher recall with fewer false
positives compared to simple n-gram shifting con-
text window features.

As future work we plan to use a virtual agent sys-
tem to collect a set of human-robot humorous inter-
actions, and adapt our model to predict humor from
them.

Acknowledgments

This work was partially funded by the Hong Kong
Phd Fellowship Scheme, and partially by grant
#16214415 of the Hong Kong Research Grants
Council.

References

Salvatore Attardo. 1997. The semantic foundations
of cognitive theories of humor. Humor-International
Journal of Humor Research, (10):395-420.

David Bamman and Noah A Smith. 2015. Contextual-
ized sarcasm detection on twitter. In Ninth Interna-
tional AAAI Conference on Web and Social Media.

Francesco Barbieri and Horacio Saggion. 2014. Mod-
elling irony in twitter. In Proceedings of the Student
Research Workshop at the 14th Conference of the Eu-
ropean Chapter of the Association for Computational
Linguistics, pages 56—64.

James Bergstra, Olivier Breuleux, Frédéric Bastien, Pas-
cal Lamblin, Razvan Pascanu, Guillaume Desjardins,
Joseph Turian, David Warde-Farley, and Yoshua Ben-
gio. 2010. Theano: a CPU and GPU math expression
compiler. In Proceedings of the Python for Scientific
Computing Conference (SciPy), June. Oral Presenta-
tion.

134

Dario Bertero and Pascale Fung. 2016a. Deep learning
of audio and language features for humor prediction.
International Conference on Language Resources and
Evaluation (LREC) 2016.

Dario Bertero and Pascale Fung. 2016b. Predicting hu-
mor response in dialogues from TV sitcoms. In Acous-
tics, Speech and Signal Processing (ICASSP), 2016
IEEFE International Conference on.

Ronan Collobert, Jason Weston, Léon Bottou, Michael
Karlen, Koray Kavukcuoglu, and Pavel Kuksa. 2011.
Natural language processing (almost) from scratch.
The Journal of Machine Learning Research, 12:2493—
2537.

Laurence Devillers, Sophie Rosset, Guillaume Dubuis-
son Duplessis, Mohamed A Sehili, Lucile Béchade,
Agnes Delaborde, Clément Gossart, Vincent Letard,
Fan Yang, Yucel Yemez, et al. 2015. Multimodal
data collection of human-robot humorous interactions
in the joker project. In Affective Computing and Intel-
ligent Interaction (ACII), 2015 International Confer-
ence on, pages 348-354. IEEE.

Chris Dyer, Miguel Ballesteros, Wang Ling, Austin
Matthews, and Noah A. Smith. 2015. Transition-
based dependency parsing with stack long short-term
memory. In Proceedings of the 53rd Annual Meet-
ing of the Association for Computational Linguistics
and the 7th International Joint Conference on Natural
Language Processing (Volume 1: Long Papers), pages
334-343, Beijing, China, July. Association for Com-
putational Linguistics.

Andrea Esuli and Fabrizio Sebastiani. 2006. Sentiword-
net: A publicly available lexical resource for opinion
mining. In Proceedings of LREC, volume 6, pages
417-422.

Alan Graves, Abdel-rahman Mohamed, and Geoffrey
Hinton. 2013. Speech recognition with deep recur-
rent neural networks. In Acoustics, Speech and Signal
Processing (ICASSP), 2013 IEEE International Con-
ference on, pages 6645-6649. IEEE.

Sepp Hochreiter and Jiirgen Schmidhuber. 1997. Long
short-term memory. Neural computation, 9(8):1735—
1780.

Aditya Joshi, Vinita Sharma, and Pushpak Bhat-
tacharyya. 2015. Harnessing context incongruity for
sarcasm detection. In Proceedings of the 53rd Annual
Meeting of the Association for Computational Linguis-
tics and the 7th International Joint Conference on Nat-
ural Language Processing, volume 2, pages 757-762.

Jihen Karoui, Benamara Farah, Véronique Moriceau,
Nathalie Aussenac-Gilles, and Lamia Hadrich-
Belguith. 2015. Towards a contextual pragmatic
model to detect irony in tweets. In Proceedings of
the 53rd Annual Meeting of the Association for Com-
putational Linguistics and the 7th International Joint

Conference on Natural Language Processing (Volume
2: Short Papers), pages 644—650, Beijing, China,
July. Association for Computational Linguistics.

John D. Lafferty, Andrew McCallum, and Fernando C. N.
Pereira. 2001. Conditional random fields: Proba-
bilistic models for segmenting and labeling sequence
data. In Proceedings of the Eighteenth International
Conference on Machine Learning, ICML °01, pages
282-289, San Francisco, CA, USA. Morgan Kauf-
mann Publishers Inc.

Jiwei Li, Minh-Thang Luong, and Dan Jurafsky. 2015.
A hierarchical neural autoencoder for paragraphs and
documents. arXiv preprint arXiv:1506.01057.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey
Dean. 2013. Efficient estimation of word represen-
tations in vector space. CoRR, abs/1301.3781.

George A Miller. 1995. Wordnet: a lexical database for
english. Communications of the ACM, 38(11):39-41.

Naoaki Okazaki. 2007. Crfsuite: a fast implemen-
tation of conditional random fields (crfs). URL
http://www.chokkan.org/software/crfsuite.

Antonio Reyes and Paolo Rosso. 2012. Making objec-
tive decisions from subjective data: Detecting irony
in customer reviews. Decision Support Systems,
53(4):754-760.

Antonio Reyes, Paolo Rosso, and Tony Veale. 2013. A
multidimensional approach for detecting irony in twit-
ter. Language Resources and Evaluation, 47(1):239—
268.

Ellen Riloff, Ashequl Qadir, Prafulla Surve, Lalindra
De Silva, Nathan Gilbert, and Ruihong Huang. 2013.
Sarcasm as contrast between a positive sentiment and
negative situation. In EMNLP, pages 704-714.

Lifeng Shang, Zhengdong Lu, and Hang Li. 2015. Neu-
ral responding machine for short-text conversation.
arXiv preprint arXiv:1503.02364.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky,
Ilya Sutskever, and Ruslan Salakhutdinov. 2014.
Dropout: A simple way to prevent neural networks
from overfitting. The Journal of Machine Learning
Research, 15(1):1929-1958.

Julia Taylor and Lawrence Mazlack. 2005. Toward
computational recognition of humorous intent. In
Proceedings of Cognitive Science Conference, pages
2166-2171.

Diyi Yang, Alon Lavie, Chris Dyer, and Eduard Hovy.
2015. Humor recognition and humor anchor extrac-
tion. In Proceedings of the 2015 Conference on
Empirical Methods in Natural Language Processing,
pages 2367-2376, Lisbon, Portugal, September. Asso-
ciation for Computational Linguistics.

135

