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Abstract

Moving from limited-domain natural lan-
guage generation (NLG) to open domain is
difficult because the number of semantic in-
put combinations grows exponentially with
the number of domains. Therefore, it is im-
portant to leverage existing resources and ex-
ploit similarities between domains to facilitate
domain adaptation. In this paper, we propose
a procedure to train multi-domain, Recurrent
Neural Network-based (RNN) language gen-
erators via multiple adaptation steps. In this
procedure, a model is first trained on counter-
feited data synthesised from an out-of-domain
dataset, and then fine tuned on a small set of
in-domain utterances with a discriminative ob-
jective function. Corpus-based evaluation re-
sults show that the proposed procedure can
achieve competitive performance in terms of
BLEU score and slot error rate while signifi-
cantly reducing the data needed to train gen-
erators in new, unseen domains. In subjective
testing, human judges confirm that the proce-
dure greatly improves generator performance
when only a small amount of data is available
in the domain.

1 Introduction

Modern Spoken Dialogue Systems (SDS) are typi-
cally developed according to a well-defined ontol-
ogy, which provides a structured representation of
the domain data that the dialogue system can talk
about, such as searching for a restaurant or shop-
ping for a laptop. Unlike conventional approaches
employing a substantial amount of handcrafting for

each individual processing component (Ward and Is-
sar, 1994; Bohus and Rudnicky, 2009), statistical ap-
proaches to SDS promise a domain-scalable frame-
work which requires a minimal amount of human in-
tervention (Young et al., 2013). Mrkšić et al. (2015)
showed improved performance in belief tracking by
training a general model and adapting it to specific
domains. Similar benefit can be observed in Gašić
et al. (2015), in which a Bayesian committee ma-
chine (Tresp, 2000) was used to model policy learn-
ing in a multi-domain SDS regime.

In past decades, adaptive NLG has been stud-
ied from linguistic perspectives, such as systems
that learn to tailor user preferences (Walker et al.,
2007), convey a specific personality trait (Mairesse
and Walker, 2008; Mairesse and Walker, 2011),
or align with their conversational partner (Isard
et al., 2006). Domain adaptation was first ad-
dressed by Hogan et al. (2008) using a generator
based on the Lexical Functional Grammar (LFG) f-
structures (Kaplan and Bresnan, 1982). Although
these approaches can model rich linguistic phe-
nomenon, they are not readily adaptable to data
since they still require many handcrafted rules to
define the search space. Recently, RNN-based lan-
guage generation has been introduced (Wen et al.,
2015a; Wen et al., 2015b). This class of statistical
generators can learn generation decisions directly
from dialogue act (DA)-utterance pairs without any
semantic annotations (Mairesse and Young, 2014)
or hand-coded grammars (Langkilde and Knight,
1998; Walker et al., 2002). Many existing adapta-
tion approaches (Wen et al., 2013; Shi et al., 2015;
Chen et al., 2015) can be directly applied due to the
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flexibility of the underlying RNN language model
(RNNLM) architecture (Mikolov et al., 2010).

Discriminative training (DT) has been success-
fully used to train RNNs for various tasks. By op-
timising directly against the desired objective func-
tion such as BLEU score (Auli and Gao, 2014) or
Word Error Rate (Kuo et al., 2002), the model can
explore its output space and learn to discriminate be-
tween good and bad hypotheses. In this paper we
show that DT can enable a generator to learn more
efficiently when in-domain data is scarce.

The paper presents an incremental recipe for
training multi-domain language generators based on
a purely data-driven, RNN-based generation model.
Following a review of related work in section 2, sec-
tion 3 describes the detailed RNN generator archi-
tecture. The data counterfeiting approach for syn-
thesising an in-domain dataset is introduced in sec-
tion 4, where it is compared to the simple model
fine-tuning approach. In section 5, we describe
our proposed DT procedure for training natural lan-
guage generators. Following a brief review of the
data sets used in section 6, corpus-based evaluation
results are presented in section 7. In order to assess
the subjective performance of our system, a quality
test and a pairwise preference test are presented in
section 8. The results show that the proposed adap-
tation recipe improves not only the objective scores
but also the user’s perceived quality of the system.
We conclude with a brief summary in section 9.

2 Related Work

Domain adaptation problems arise when we have a
sufficient amount of labeled data in one domain (the
source domain), but have little or no labeled data in
another related domain (the target domain). Domain
adaptability for real world speech and language ap-
plications is especially important because both lan-
guage usage and the topics of interest are constantly
evolving. Historically, domain adaptation has been
less well studied in the NLG community. The most
relevant work was done by Hogan et al. (2008).
They showed that an LFG f-structure based gener-
ator could yield better performance when trained on
in-domain sentences paired with pseudo parse tree
inputs generated from a state-of-the-art, but out-of-
domain parser. The SPoT-based generator proposed

by Walker et al. (2002) has the potential to address
domain adaptation problems. However, their pub-
lished work has focused on tailoring user prefer-
ences (Walker et al., 2007) and mimicking person-
ality traits (Mairesse and Walker, 2011). Lemon
(2008) proposed a Reinforcement Learning (RL)
framework in which policy and NLG components
can be jointly optimised and adapted based on on-
line user feedback. In contrast, Mairesse et al.
(2010) has proposed using active learning to miti-
gate the data sparsity problem when training data-
driven NLG systems. Furthermore, Cuayhuitl et al.
(2014) trained statistical surface realisers from unla-
belled data by an automatic slot labelling technique.

In general, feature-based adaptation is perhaps the
most widely used technique (Blitzer et al., 2007;
Pan and Yang, 2010; Duan et al., 2012). By ex-
ploiting correlations and similarities between data
points, it has been successfully applied to problems
like speaker adaptation (Gauvain and Lee, 1994;
Leggetter and Woodland, 1995) and various tasks in
natural language processing (Daumé III, 2009). In
contrast, model-based adaptation is particularly use-
ful for language modeling (LM) (Bellegarda, 2004).
Mixture-based topic LMs (Gildea and Hofmann,
1999) are widely used in N-gram LMs for domain
adaptation. Similar ideas have been applied to appli-
cations that require adapting LMs, such as machine
translation (MT) (Koehn and Schroeder, 2007) and
personalised speech recognition (Wen et al., 2012).

Domain adaptation for Neural Network (NN)-
based LMs has also been studied in the past.
A feature augmented RNNLM was first proposed
by Mikolov and Zweig (2012), but later applied to
multi-genre broadcast speech recognition (Chen et
al., 2015) and personalised language modeling (Wen
et al., 2013). These methods are based on fine-
tuning existing network parameters on adaptation
data. However, careful regularisation is often nec-
essary (Yu et al., 2013). In a slightly different
area, Shi et al. (2015) applied curriculum learning
to RNNLM adaptation.

Discriminative training (DT) (Collins, 2002) is an
alternative to the maximum likelihood (ML) crite-
rion. For classification, DT can be split into two
phases: (1) decoding training examples using the
current model and scoring them, and (2) adjusting
the model parameters to maximise the separation
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between the correct target annotation and the com-
peting incorrect annotations. It has been success-
fully applied to many research problems, such as
speech recognition (Kuo et al., 2002; Voigtlaender
et al., 2015) and MT (He and Deng, 2012; Auli et
al., 2014). Recently, Auli and Gao (2014) trained
an RNNLM with a DT objective and showed im-
proved performance on an MT task. However, their
RNN probabilities only served as input features to a
phrase-based MT system.

3 The Neural Language Generator

The neural language generation model (Wen et al.,
2015a; Wen et al., 2015b) is a RNNLM (Mikolov
et al., 2010) augmented with semantic input features
such as a dialogue act1 (DA) denoting the required
semantics of the generated output. At every time
step t, the model consumes the 1-hot representation
of both the DA dt and a token wt

2 to update its in-
ternal state ht. Based on this new state, the output
distribution over the next output token is calculated.
The model can thus generate a sequence of tokens
by repeatedly sampling the current output distribu-
tion to obtain the next input token until an end-of-
sentence sign is generated. Finally, the generated
sequence is lexicalised3 to form the target utterance.

The Semantically Conditioned Long Short-term
Memory Network (SC-LSTM) (Wen et al., 2015b)
is a specialised extension of the LSTM net-
work (Hochreiter and Schmidhuber, 1997) for
language generation which has previously been
shown capable of learning generation decisions from
paired DA-utterances end-to-end without a modu-
lar pipeline (Walker et al., 2002; Stent et al., 2004).
Like LSTM, SC-LSTM relies on a vector of mem-
ory cells ct ∈ Rn and a set of elementwise multi-
plication gates to control how information is stored,
forgotten, and exploited inside the network. The SC-
LSTM architecture used in this paper is defined by

1A combination of an action type and a set of slot-value
pairs. e.g. inform(name=”Seven days”,food=”chinese”)

2We use token instead of word because our model operates
on text for which slot values are replaced by their corresponding
slot tokens. We call this procedure delexicalisation.

3The process of replacing slot token by its value.

the following equations,
it
ft
ot
rt
ĉt

 =


sigmoid
sigmoid
sigmoid
sigmoid
tanh

W5n,2n

(
wt

ht−1

)

dt = rt � dt−1

ct = ft � ct−1 + it � ĉt + tanh(Wdcdt)

ht = ot � tanh(ct)

where n is the hidden layer size, it, ft,ot, rt ∈
[0, 1]n are input, forget, output, and reading gates re-
spectively, ĉt and ct are proposed cell value and true
cell value at time t, W5n,2n and Wdc are the model
parameters to be learned. The major difference of
the SC-LSTM compared to the vanilla LSTM is the
introduction of the reading gates for controlling the
semantic input features presented to the network. It
was shown in Wen et al. (2015b) that these reading
gates act like keyword and key phrase detectors that
learn the alignments between individual semantic
input features and their corresponding realisations
without additional supervision.

After the hidden layer state is obtained, the com-
putation of the next word distribution and sampling
from it is straightforward,

p(wt+1|wt, wt−1, ...w0,dt) = softmax(Whoht)

wt+1 ∼ p(wt+1|wt, wt−1, ...w0,dt).

where Who is another weight matrix to learn. The
entire network is trained end-to-end using a cross
entropy cost function, between the predicted word
distribution pt and the actual word distribution yt,
with regularisations on DA transition dynamics,

F (θ) =
∑

t p
ᵀ
t log(yt) + ‖dT‖+

∑T−1
t=0 ηξ

‖dt+1−dt‖ (1)

where θ = {W5n,2n,Wdc,Who}, dT is the DA
vector at the last index T, and η and ξ are constants
set to 10−4 and 100, respectively.

4 Training Multi-domain Models

Given training instances (represented by DA and
sentence tuples {di,Ωi}) from the source domain S
(rich) and the target domain T (limited), the goal is
to find a set of SC-LSTM parameters θT that can
perform acceptably well in the target domain.
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Figure 1: An example of data counterfeiting algorithm. Both slots and values are delexicalised. Slots and
values that are not in the target domain are replaced during data counterfeiting (shown in red with * sign).
The prefix inside bracket <> indicates the slot’s functional class (I for informable and R for requestable).

4.1 Model Fine-Tuning

A straightforward way to adapt NN-based models to
a target domain is to continue training or fine-tuning
a well-trained generator on whatever new target do-
main data is available. This training procedure is as
follows:

1. Train a source domain generator θS on source
domain data {di,Ωi} ∈ S with all values delex-
icalised4.

2. Divide the adaptation data into training and val-
idation sets. Refine parameters by training on
adaptation data {di,Ωi} ∈ T with early stop-
ping and a smaller starting learning rate. This
yields the target domain generator θT.

Although this method can benefit from parameter
sharing of the LM part of the network, the parame-
ters of similar input slot-value pairs are not shared4.
In other words, realisation of any unseen slot-value
pair in the target domain can only be learned from
scratch. Adaptation offers no benefit in this case.

4.2 Data Counterfeiting

In order to maximise the effect of domain adapta-
tion, the model should be able to (1) generate accept-
able realisations for unseen slot-value pairs based
on similar slot-value pairs seen in the training data,

4We have tried training with both slots and values delexi-
calised and then using the weights to initialise unseen slot-value
pairs in the target domain. However, this yielded even worse
results since the learned semantic alignment stuck at local min-
ima. Pre-training only the LM parameters did not produce better
results either.

and (2) continue to distinguish slot-value pairs that
are similar but nevertheless distinct. Instead of ex-
ploring weight tying strategies in different training
stages (which is complex to implement and typically
relies on ad hoc tying rules), we propose instead a
data counterfeiting approach to synthesise target do-
main data from source domain data. The procedure
is shown in Figure 1 and described as following:

1. Categorise slots in both source and target do-
main into classes, according to some similarity
measure. In our case, we categorise them based
on their functional type to yield three classes:
informable, requestable, and binary5.

2. Delexicalise all slots and values.

3. For each slot s in a source instance (di,Ωi) ∈
S, randomly select a new slot s′ that belongs
to both the target ontology and the class of s
to replace s. Repeat this process for every slot
in the instance and yield a new pseudo instance
(d̂i, Ω̂i) ∈ T in the target domain.

4. Train a generator θ̂T on the counterfeited
dataset {d̂i, Ω̂i} ∈ T.

5. Refine parameters on real in-domain data. This
yields final model parameters θT.

This approach allows the generator to share realisa-
tions among slot-value pairs that have similar func-
tionalities, therefore facilitates the transfer learning

5Informable class include all non-binary informable slots
while binary class includes all binary informable slots.
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Laptop Television

informable slots
family, *pricerange, batteryrating,

driverange, weightrange,
isforbusinesscomputing

family, *pricerange, screensizerange,
ecorating, hdmiport, hasusbport

requestable slots
*name, *type, *price, warranty, battery,

design, dimension, utility, weight,
platform, memory, drive, processor

*name, *type, *price, resolution,
powerconsumption, accessories, color,

screensize, audio

act type
*inform, *inform only match, *inform on match, inform all, *inform count,
inform no info, *recommend, compare, *select, suggest, *confirm, *request,
*request more, *goodbye

bold=binary slots, *=overlap with SF Restaurant and Hotel domains, all informable slots can take ”dontcare” value

Table 1: Ontologies for Laptop and TV domains

of rare slot-value pairs in the target domain. Further-
more, the approach also preserves the co-occurrence
statistics of slot-value pairs and their realisations.
This allows the model to learn the gating mechanism
even before adaptation data is introduced.

5 Discriminative Training

In contrast to the traditional ML criteria (Equation 1)
whose goal is to maximise the log-likelihood of cor-
rect examples, DT aims at separating correct exam-
ples from competing incorrect examples. Given a
training instance (di,Ωi), the training process starts
by generating a set of candidate sentences Gen(di)
using the current model parameter θ and DA di. The
discriminative cost function can therefore be written
as

F (θ) = −E[L(θ)]

= −
∑

Ω∈Gen(di)

pθ(Ω|di)L(Ω,Ωi) (2)

where L(Ω,Ωi) is the scoring function evaluating
candidate Ω by taking ground truth Ωi as reference.
pθ(Ω|di) is the normalised probability of the candi-
date and is calculated by

pθ(Ω|di) = exp[γ log p(Ω|di,θ)]∑
Ω′∈Gen(di) exp[γ log p(Ω′|di,θ)]

(3)

γ ∈ [0,∞] is a tuned scaling factor that flattens the
distribution for γ < 1 and sharpens it for γ > 1. The
unnormalised candidate likelihood log p(Ω|di, θ) is
produced by summing token likelihoods from the
RNN generator output,

log p(Ω|di, θ) =
∑
wt∈Ω

log p(wt|di, θ) (4)

The scoring function L(Ω,Ωi) can be further gen-
eralised to take several scoring functions into ac-
count

L(Ω,Ωi) =
∑
j

Lj(Ω,Ωi)βj (5)

where βj is the weight for j-th scoring function.
Since the cost function presented here (Equation 2)
is differentiable everywhere, back propagation can
be applied to calculate the gradients and update pa-
rameters directly.

6 Datasets

In order to test our proposed recipe for training
multi-domain language generators, we conducted
experiments using four different domains: finding a
restaurant, finding a hotel, buying a laptop, and buy-
ing a television. Datasets for the restaurant and hotel
domains have been previously released by Wen et al.
(2015b). These were created by workers recruited
by Amazon Mechanical Turk (AMT) by asking them
to propose an appropriate natural language realisa-
tion corresponding to each system dialogue act ac-
tually generated by a dialogue system. However,
the number of actually occurring DA combinations
in the restaurant and hotel domains were rather lim-
ited (∼200) and since multiple references were col-
lected for each DA, the resulting datasets are not suf-
ficiently diverse to enable the assessment of the gen-
eralisation capability of the different training meth-
ods over unseen semantic inputs.

In order to create more diverse datasets for the
laptop and TV domains, we enumerated all possible
combinations of dialogue act types and slots based
on the ontology shown in Table 1. This yielded
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(a) BLEU score curve

(b) Slot error rate curve

Figure 2: Results evaluated on TV domain by
adapting models from laptop domain. Compar-
ing train-from-scratch model (scratch) with model
fine-tuning approach (tune) and data counterfeiting
method (counterfeit). 10% ≈ 700 examples.

about 13K distinct DAs in the laptop domain and 7K
distinct DAs in the TV domain. We then used AMT
workers to collect just one realisation for each DA.
Since the resulting datasets have a much larger input
space but only one training example for each DA,
the system must learn partial realisations of con-
cepts and be able to recombine and apply them to
unseen DAs. Also note that the number of act types
and slots of the new ontology is larger, which makes
NLG in both laptop and TV domains much harder.

7 Corpus-based Evaluation

We first assess generator performance using two ob-
jective evaluation metrics, the BLEU-4 score (Pap-
ineni et al., 2002) and slot error rate ERR (Wen et
al., 2015b). Slot error rates were calculated by aver-
aging slot errors over each of the top 5 realisations
in the entire corpus. We used multiple references to
compute the BLEU scores when available (i.e. for
the restaurant and hotel domains). In order to better

(a) BLEU score curve

(b) Slot error rate curve

Figure 3: The same set of comparison as in Figure 2,
but the results were evaluated by adapting from SF
restaurant and hotel joint dataset to laptop and TV
joint dataset. 10% ≈ 2K examples.

compare results across different methods, we plotted
the BLEU and slot error rate curves against different
amounts of adaptation data. Note that in the graphs
the x-axis is presented on a log-scale.

7.1 Experimental Setup

The generators were implemented using the Theano
library (Bergstra et al., 2010; Bastien et al., 2012),
and trained by partitioning each of the collected cor-
pora into a training, validation, and testing set in the
ratio 3:1:1. All the generators were trained by treat-
ing each sentence as a mini-batch. An l2 regulari-
sation term was added to the objective function for
every 10 training examples. The hidden layer size
was set to be 100 for all cases. Stochastic gradient
descent and back propagation through time (Werbos,
1990) were used to optimise the parameters. In or-
der to prevent overfitting, early stopping was imple-
mented using the validation set.

During decoding, we over-generated 20 utter-
ances and selected the top 5 realisations for each DA
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according to the following reranking criteria,

R = −(F (θ) + λERR) (6)

where λ is a tradeoff constant, F (θ) is the cost gen-
erated by network parameters θ, and the slot error
rate ERR is computed by exact matching of the slot
tokens in the candidate utterances. λ is set to a large
value (10) in order to severely penalise nonsensical
outputs. Since our generator works stochastically
and the trained networks can differ depending on the
initialisation, all the results shown below were aver-
aged over 5 randomly initialised networks.

7.2 Data Counterfeiting
We first compared the data counterfeiting (coun-
terfeit) approach with the model fine-tuning (tune)
method and models trained from scratch (scratch).
Figure 2 shows the result of adapting models be-
tween similar domains, from laptop to TV. Because
of the parameter sharing in the LM part of the
network, model fine-tuning (tune) achieves a bet-
ter BLEU score than training from scratch (scratch)
when target domain data is limited. However, if we
apply the data counterfeiting (counterfeit) method,
we obtain an even greater BLEU score gain. This is
mainly due to the better realisation of unseen slot-
value pairs. On the other hand, data counterfeit-
ing (counterfeit) also brings a substantial reduction
in slot error rate. This is because it preserves the
co-occurrence statistics between slot-value pairs and
realisations, which allows the model to learn good
semantic alignments even before adaptation data is
introduced. Similar results can be seen in Figure 3,
in which adaptation was performed on more disjoint
domains: restaurant and hotel joint domain to laptop
and TV joint domain. The data counterfeiting (coun-
terfeit) method is still superior to the other methods.

7.3 Discriminative Training
The generator parameters obtained from data coun-
terfeiting and ML adaptation were further tuned by
applying DT. In each case, the models were opti-
mised using two objective functions: BLEU-4 score
and slot error rate. However, we used a soft version
of BLEU called sentence BLEU as described in Auli
and Gao (2014), to mitigate the sparse n-gram match
problem of BLEU at the sentence level. In our ex-
periments, we set γ to 5.0 and βj to 1.0 and -1.0 for

(a) Effect of DT on BLEU

(b) Effect of DT on slot error rate

Figure 4: Effect of applying DT training after ML
adaptation. The results were evaluated on laptop to
TV adaptation. 10% ≈ 700 examples.

BLEU and ERR, respectively. For each DA, we ap-
plied our generator 50 times to generate candidate
sentences. Repeated candidates were removed. We
treated the remaining candidates as a single batch
and updated the model parameters by the procedure
described in section 5. We evaluated performance
of the algorithm on the laptop to TV adaptation sce-
nario, and compared models with and without dis-
criminative training (ML+DT & ML). The results
are shown in Figure 4 where it can be seen that
DT consistently improves generator performance on
both metrics. Another interesting point to note is
that slot error rate is easier to optimise compared to
BLEU (ERR→ 0 after DT). This is probably be-
cause the sentence BLEU optimisation criterion is
only an approximation of the corpus BLEU score
used for evaluation.

8 Human Evaluation

Since automatic metrics may not consistently agree
with human perception (Stent et al., 2005), human
testing is needed to assess subjective quality. To do
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Method TV to Laptop laptop to TV
Info. Nat. Info. Nat.

scrALL 2.64 2.37 2.54 2.36
DT-10% 2.52** 2.25** 2.51 2.19**

ML-10% 2.51** 2.22** 2.45** 2.22**

scr-10% 2.24** 2.03** 2.00** 1.92**

* p <0.05, ** p <0.005
Table 2: Human evaluation for utterance quality in
two domains. Results are shown in two metrics
(rating out of 3). Statistical significance was com-
puted using a two-tailed Student’s t-test, between the
model trained with full data (scrALL) and all others.

this, a set of judges were recruited using AMT. We
tested our models on two adaptation scenarios: lap-
top to TV and TV to laptop. For each task, two
systems among the four were compared: training
from scratch using full dataset (scrALL), adapting
with DT training but only 10% of target domain data
(DT-10%), adapting with ML training but only 10%
of target domain data (ML-10%), and training from
scratch using only 10% of target domain data (scr-
10%). In order to evaluate system performance in
the presence of language variation, each system gen-
erated 5 different surface realisations for each input
DA and the human judges were asked to score each
of them in terms of informativeness and naturalness
(rating out of 3), and also asked to state a prefer-
ence between the two. Here informativeness is de-
fined as whether the utterance contains all the infor-
mation specified in the DA, and naturalness is de-
fined as whether the utterance could plausibly have
been produced by a human. In order to decrease the
amount of information presented to the judges, utter-
ances that appeared identically in both systems were
filtered out. We tested about 2000 DAs for each sce-
nario distributed uniformly between contrasts except
that allowed 50% more comparisons between ML-
10% and DT-10% because they were close.

Table 2 shows the subjective quality assessments
which exhibit the same general trend as the objective
results. If a large amount of target domain data is
available, training everything from scratch (scrALL)
achieves a very good performance and adaptation is
not necessary. However, if only a limited amount
of in-domain data is available, efficient adaptation
is critical (DT-10% & ML-10% > scr-10%). More-

Pref.% scr-10% ML-10% DT-10% scrALL
scr-10% - 34.5** 33.9** 22.4**

ML-10% 65.5** - 44.9 36.8**

DT-10% 66.1** 55.1 - 35.9**

scrALL 77.6** 63.2** 64.1** -
* p <0.05, ** p <0.005

(a) Preference test on TV to laptop adaptation scenario

Pref.% scr-10% ML-10% DT-10% scrALL
scr-10% - 17.4** 14.2** 14.8**

ML-10% 82.6** - 48.1 37.1**

DT-10% 85.8** 51.9 - 41.6*

scrALL 85.2** 62.9** 58.4* -
* p <0.05, ** p <0.005

(b) Preference test on laptop to TV adaptation scenario

Table 3: Pairwise preference test among four ap-
proaches in two domains. Statistical significance
was computed using two-tailed binomial test.

over, judges also preferred the DT trained genera-
tor (DT-10%) compared to the ML trained genera-
tor (ML-10%), especially for informativeness. In the
laptop to TV scenario, the informativeness score of
DT method (DT-10%) was considered indistinguish-
able when comparing to the method trained with full
training set (scrALL). The preference test results are
shown in Table 3. Again, adaptation methods (DT-
10% & ML-10%) are crucial to bridge the gap be-
tween domains when the target domain data is scarce
(DT-10% & ML-10% > scr-10%). The results also
suggest that the DT training approach (DT-10%) was
preferred compared to ML training (ML-10%), even
though the preference in this case was not statisti-
cally significant.

9 Conclusion and Future Work

In this paper we have proposed a procedure for train-
ing multi-domain, RNN-based language generators,
by data counterfeiting and discriminative training.
The procedure is general and applicable to any data-
driven language generator. Both corpus-based eval-
uation and human assessment were performed. Ob-
jective measures on corpus data have demonstrated
that by applying this procedure to adapt models be-
tween four different dialogue domains, good perfor-
mance can be achieved with much less training data.
Subjective assessment by human judges confirm the
effectiveness of the approach.
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The proposed domain adaptation method requires
a small amount of annotated data to be collected of-
fline. In our future work, we intend to focus on train-
ing the generator on the fly with real user feedback
during conversation.
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