
Proceedings of NAACL-HLT 2015, pages 106–110,
Denver, Colorado, May 31 – June 5, 2015. c©2015 Association for Computational Linguistics

WriteAhead2: Mining Lexical Grammar Patterns for Assisted Writing

Jim Chang
Department of Computer Science,

National Tsing Hua University
101, Kuangfu Road,

Hsinchu, 300, Taiwan
jim.chang.nthu@gmail.com

Jason S. Chang
Department of Computer Science,

National Tsing Hua University
101, Kuangfu Road,

Hsinchu, 300, Taiwan
jason.jschang@gmail.com

Abstract

This paper describes WriteAhead2, an inter-
active writing environment that provides lex-
ical and grammatical suggestions for sec-
ond language learners, and helps them write
fluently and avoid common writing errors.
The method involves learning phrase tem-
plates from dictionary examples, and extract-
ing grammar patterns with example phrases
from an academic corpus. At run-time, as the
user types word after word, the actions trig-
ger a list after list of suggestions. Each suc-
cessive list contains grammar patterns and ex-
amples, most relevant to the half-baked sen-
tence. WriteAhead2 facilitates steady, timely,
and spot-on interactions between learner writ-
ers and relevant information for effective as-
sisted writing. Preliminary experiments show
that WriteAhead2 has the potential to induce
better writing and improve writing skills.

1 Introduction

More and more non-native speakers are writing
in English as a second language for global com-
munication, especially in academia. Unavoidably,
these L2 writers encounter many problems: in
form and content, in grammar, style, and discourse.
Much work has been done on developing computer-
assisted language reference tools to improve L2
learners’ writing skills. Furthermore, many re-
searchers have worked on providing corrective feed-
back and grades, by automatically detecting and cor-
recting grammatical errors in learner writings.

Computer assisted language learning (CALL)
systems typically help the users before and after

writing. For example, NetSpeak (www.netspeak.
org) uses Google Web 1T Corpus to retrieve com-
mon phrases relevant to a user query, while Marking
Mate (www.readingandwritingtools.com) ac-
cepts an user essay and offers a grade with correc-
tive feedback. However, learner writers sorely need
concrete writing suggestions, right in the context of
writing. Learners could be more effectively assisted,
if CALL tools provide such suggestions as learners
write away.

Consider an online writer who is composing a
sentence starting with ”We propose a method ...”
The best way the system can help is probably not
just dictionary-lookup, but rather in-page sugges-
tions tailor-made for this very context of continuing
the unfinished sentence. Furthermore, fixed-length
ngrams such as (1) method for automatic evalua-
tion and (2) method for determining the is not good
enough, or general enough, for all writers address-
ing diverse issues.

Appropriate suggestions should contains general,
long grammar patterns such as: (1) method for do-
ing something: method for finding a solution (2)
method for something: method for grammatical er-
ror detection. Intuitively, by extracting and display-
ing such patterns and examples, distilled from a very
large corpus, we can guide the user towards writing
fluently, and free of grammatical errors.

We present a new system, WriteAhead2, that
proactively provides just-in-time writing sugges-
tions to assist student writers, while they type
away. WriteAhead2 is a continuation of the work
of WriteAhead (Liou, Yang, Chang 2012). Example
WriteAhead2 suggestions for ”We propose a method

106



Figure 1: Example WriteAhead2 session.

...” are shown in Figure 1. WriteAhead2 has deter-
mined the best patterns and examples extracted from
the underlying corpus. WriteAhead2 learns these
patterns and examples automatically during training
by analyzing annotated dictionary examples and au-
tomatically tagged sentences in a corpus. As will be
described in Section 4, we used the information on
collocation and syntax (ICS) for example sentences
from online Macmillan English Dictionary, as well
as in the Citeseer x corpus, to develop WriteAhead2.

At run-time, WriteAhead2 activate itself as the
user types in yet another word (e.g., ”method” in the
prefix ”We propose a method ...”). WriteAhead2 then
retrieves patterns related to the last word. WriteA-
head2 goes one step further and re-ranks the sug-
gestions, in an attempt to move most relevant sug-
gestions to the top. WriteAhead2 can be accessed at
http://writeahead.nlpweb.org.

In our prototype, WriteAhead2 returns the sug-
gestions to the user directly (see Figure 1); alterna-
tively, the suggestions returned by WriteAhead2 can
be used as input to an automatic grammar checker or
an essay rater.

2 Related Work

Using dictionaries for language learning has a long
and honorable history. However, Sinclair (1991)
pointed out dictionaries are limited by their narrow
focus on meaning, lack in pragmatics, and insuffi-
cient genre/discipline-specific information. There-
fore, Sinclair advocated corpus linguistics, corpus-
based lexicography, and using a concordance in lan-
guage teaching.

In the area of corpus-based language learning,
Weber (2001) illustrated how combining learner
writing and a concordance helped law students in
writing better legal essays. Sun (2007) proposed
a web-based Scholarly Writing Template (SWT)
system for graduate students based on a small,
manually-annotated corpus. In contrast, we focus
on grammar, the most problematic area for learners.

In the area of automated essay rating, Crite-
rion (Burstein, Chodorow and Leacock, 2003) uses
statistical models to evaluate student writing and
provides corrective feedback. Criterion has been
used for rating 4 to 12th graders’ writings, and
TOFEL/GRE composition tests. Criterion handles
essay writing, while WriteAhead2 concentrates on
helping learner with the genre of research articles.

Autocompletion has been widely used in many
language production tasks (e.g., search query and
translation). Examples include Google Suggest and
TransType, which pioneered the interactive user in-
terface for statistical machine translation (Langlais,
Foster and Lapalme, 2002).

In contrast to the previous research in developing
computer assisted writing environment, we present
a system that automatically learns grammar patterns
and examples from an academic written corpus, with
the goal of providing relevant, in-context sugges-
tions.

3 Method

Often, it is not sufficient to use dictionaries or lexi-
cal autocompletion to assist learner in writing. Un-
fortunately, very few Language tools offer compre-

107



—————————————————————————
Procedure ExtractPatterns(Sent, Keywords, Corpus)

(1) Learning phrase templates for grammar patterns of con-
tent words (Section 3.1.1)

(2) Extracting patterns for all keywords in the given corpus
based on phrase templates (Section 3.1.2)

(3) Extracting exemplary instances for all patterns of all key-
words (Section 3.1.3)

—————————————————————————
Figure 2: Outline of the pattern extraction process

hensive writing suggestions during writing. In this
section, we address such a problem. Given a corpus
in a specific genre/domain (e.g., Citeseer x), and an
unfinished sentence, we intend to assist the user by
retrieving and displaying a set of suggestions based
on the corpus. For this, we extract grammar patterns
with exemplary instances from the corpus. We de-
scribe the stages of our solution to this problem in
the subsections that followed.

3.1 Extracting Grammar Patterns

We attempt to extract characteristic grammar pat-
terns for keywords in a given corpus to provide writ-
ing suggestions, for L2 learners in an online writing
session. The set of keywords (as will be described
in Section 4) include the words academic writers use
most frequently for rhetoric purposes, including stat-
ing a topic, hypothesizing, contrasting, exemplify-
ing, explaining, evaluating and other functions. Our
extraction process is shown in Figure 2.

3.1.1 Learning Templates of Grammar Patterns
In the first stage of the extraction process (Step (1) in
Figure 2), we generate a set of phrase templates for
identifying grammar patterns. For example, a dictio-
nary example with ICS—have difficulty/problem
(in) doing something: Six months after the acci-
dent, he still has difficulty walking, implies that this
pattern (i.e. have difficulty in doing something)
can realize in a phrase sequences, ”VP NP prep. VP
NP”. With such a template, we can identify poten-
tial patterns for verbs and nouns (e.g., differ or diffi-
culty). We expand the parentheticals (e.g., (in)) and
alternatives (e.g., difficulty/problem) in ICS, and
keep only the most frequent templates. Finally, each
of these templates is converted into a regular expres-
sion for a RegExp chunk parser.

3.1.2 Extracting Patterns In the second stage

of the extraction process (Step (2) in Figure 2), we
identify instances of potential pattern for all key-
words. These instance are generated for each tagged
and chunked sentence in the given corpus and for
each chunk templates obtained in the previous stage.

We adopt the MapReduce framework to extract
characteristic patterns. In Step (1) of the Map pro-
cedure, we perform part of speech and base phrase
tagging on the sentences. We then find all pattern
instances anchoring at a keyword and matching tem-
plates obtained in the first stage. Note that matching
is done on the sequence of BIO phrase labels (denot-
ing Beginning, Inside, and Outside of base NP, VP,
PP, and ADJP). Then from each matched instance,
we extract a tuple of keyword, POS, grammar pat-
tern, collocates (of the keyword), and ngram (word
sequence) in Steps (4a) through (4c). Finally, we
emit all tuples extracted from the tagged sentence
(Step (5)).

The Reduce procedure receives a batch of hashed
and locally sorted tuples, grouped by the head word
and POS. In Step (1) of the Reduce procedure, we
further group the tuples by pattern. Then we count
the number of tuples of each pattern (in Step (2)) as
well as within-group average and standard deviation
(in Step (3)). Finally, With these statistics, we filter
and identify patterns more frequent than average by
K standard deviation, K = 1 (in Step (4)), following
Smadja (1993).

3.1.3 Extracting Exemplary Phrases In the third
and final stage of extraction, we generate exemplary
phrases for all patterns of all keywords of interest.
The procedure is essentially the same as the Reduce
procedure in the second stage (Section 3.1.2).

3.2 Retrieving and Ranking Suggestions
Once the patterns and examples are automatically
extracted for each keyword in the given corpus, they
are stored as suggestions for the last word the user
types in. WriteAhead2 constantly probes and gets
the last written word from the writing area. With the
last word as a query, WriteAhead2 retrieves patterns
and examples, and re-ranks the results to move the
most relevant information toward the top.

Currently, we re-rank patterns by using word
overlap between the last written sentence and the re-
trieved examples. When there is no word overlap,
we fall back to frequency-based ranking. An exam-

108



————————————————————–
Procedure Map(Sent, AKL, Template)

(1) TaggedSent = TagAndChunkParse(Sent)

For each Word ∈ AKL at position i in TaggedSent
(2) Match = RegExpChunkParse(TaggedSent, Template, i)

If Match is found

(3) ChunkedPhr = CutChunk(TaggedSent, i, Match)

(4a) Pat = ExtractPattern(ChunkedPhr)
(4b) Col = ExtractCollocation(ChunkedPhr)
(4c) Ng = ExtractNgram(ChunkedPhr)

(5) Emit Tuple = (Word, Pat, Col, Ng)

Procedure Reduce(Tuples for a word)

(1) Pats, PatTuples = GroupTuplesByPat(Tuple)

(2) Pats, Counts = Counter(Pats, PatTuples)

(3) Avg, STD = CalStatatics(Pats, Counts)

For each Pat, Count pair in (Pats, Counts)

If Count > Avg + K × STD

(4) Emit Tuple = (Word, Pat, PatTuples)
————————————————————–
Fig. 3. Outline of the process used to extract CPs.

ple session is shown in Figure 1.

4 Experiments and Results

For training, we used a collection of approxi-
mately 3,000 examples for 700 headwords obtained
from online Macmillan English Dictionary (Rundel
2007), to develop the templates of patterns. The
headwords include nouns, verbs, adjectives, and ad-
verbs. We then proceeded to generate writing sug-
gestions from the Citeseer x corpus. First, we used
Tsujii POS Tagger (Tsuruoka and Tsujii 2005) to
generate tagged sentences. We applied the proposed
method to generate suggestions for each of the 700
content keywords in Academic Keyword List.

4.1 Technical Architecture

WriteAhead2 was implemented in Python and Flask
Web framework. We stored the suggestions in JSON
format using PostgreSQL for faster access. WriteA-
head2 server obtains client input from a popular
browser (Safari, Chrome, or Firefox) dynamically
with AJAX techniques. For uninterrupted service
and ease of scaling up, we chose to host WriteA-
head2 on Heroku, a cloud-platform-as-a-service
(PaaS) site.

Table 1: Human evaluation of WriteAhead2

Suggestion Count Percent Recall

1st suggestion 141 .53 .43
2nd suggestion 50 .19 .15
3rd suggestion 38 .14 .12
Top 3 suggestions 229 .85 .70
Not in Top 3 38 — .12
No suggestions 62 — .19
Not applicable 71 — —

4.2 Evaluating WriteAhead2

To evaluate the performance of WriteAhead2, we
randomly sampled sentences from conference pa-
pers. For simplicity, we tested if our system can
provide proper grammar patterns for the first noun
or verb in theses sentence. We randomly selected
400 sentences from ACL-2014 long papers. For
each sentence, we pasted the sentence prefix up to
the the first (noun or verb) keyword to the input box
of WriteAhead2. The reason for targeting verbs and
nouns is that they are considered as exhibiting reg-
ularity in local syntax (Hunston and Francis 2000)
and common source of learners’ writing errors (De
Cock, Gilquin, Granger, Lefer, Paquot, and Ricketts
2007). Finally, we manually determined the appro-
priateness of suggestions for continuing part of the
sentence based on the precision of the Top-3 sugges-
tions. For example, we took a sentence:

There is some prior work on the related task of hi-
erarchical clustering, or grouping together of se-
mantically related words ...

and identified the first noun or verb (e.g., work) as
the anchor, and run WriteAhead2 on the prefix end-
ing at the anchor (e.g, ”There is some prior work”).
The Top 3 suggestions displayed by WriteAhead2
were than examined by a human judge to evaluate
for correctness in predicting what follow the prefix.
For instance, if the first suggestion is:

work on something of something 1332: VoiSe is designed

to work on a symbolic representation of a music score

Then the judge would determine it is a correct pre-
diction of work on the related task of hierarchical
clustering and record that the first suggestion is cor-
rect. Evaluation of WriteAhead2 showed a Top 1
precision rate of 53% and recall rate of 70% when
considering the Top 3 suggestions.

109



5 Demo Script

In this demo, we will present a new writing assis-
tance system, WriteAhead2, which makes it easy to
obtain writing tips as you type away. WriteAhead2
does two things really well. First, it examines the
unfinished sentence you just typed in and then auto-
matically gives you tips in the form of grammar pat-
terns (accompanied with examples similar to those
found in a good dictionary ) for continuing your
sentence. Second, WriteAhead2 automatically ranks
suggestions relevant to your writing, so you spend
less time looking at tips, and focus more on writing
your piece.

You might type in This paper presents a method
and are not sure about how to continue. You will in-
stantly receive tips on grammar as well as content as
shown in Figure 1. At a quick glance, you might find
a relevant pattern, method for doing something
with examples such as This paper presents/describes
a method for generating solutions. That could tip
you off as to change the sentence into This paper
presents a method, thus getting rid of tense and arti-
cle errors, and help you continue to write something
like method for extracting information.

Using WriteAhead2 this way, you could at once
speed up writing and avoid making common writing
errors. This writing and tip-taking process repeats
until you finish writing a sentence. And as you start
writing a new, the process starts all over again.

Most autocompletion systems such as Google
Suggest and TransType offer word-level sugges-
tions, while WriteAhead2 organizes, summarizes,
and ranks suggestions, so you can, at a glance, grasp
complex linguistic information and make quick de-
cision. Our philosophy is that it is important to show
information from general to specific to reduce the
cognitive load, so while minding the form, you can
still focus on the content of writing.

6 Conclusion

Many avenues exist for future research and improve-
ment of WriteAhead2. For example, corpora for dif-
ferent language levels, genres (e.g., emails, news)
could be used to make the suggestions more rele-
vant to users with diverse proficiency levels and in-
terests. NLP, IR, and machine learning techniques
could be used to provide more relevant ranking, to

pin-point grammatical errors, or to generate finer-
grained semantic patterns (e.g., assist someone in
something or attend activity/institution) Addition-
ally, an interesting direction is identifying grammar
patterns using a CRF sequence labeller. Yet another
direction of research would be to extract and dis-
play backward-looking suggestions to complement
the current forward-looking suggestions.

In summary, in an attempt to assist learner writers,
we have proposed a method for providing writing
suggestion as a user is typewriting. The method in-
volves extracting, retrieving, and ranking grammar
patterns and examples. We have implemented and
evaluated the proposed method as applied to a schol-
arly corpus with promising results.

References
Jill Burstein, Martin Chodorow, and Claudia Leacock.

2003. Criterion: Online Essay Evaluation–An Appli-
cation for Automated Evaluation of Student Essays. In
Proceedings of the Fifteenth Annual Conference on In-
novative Applications of Artificial Intelligence. Aca-
pulco, Mexico.

Cornelia Caragea, Jian Wu, Alina Ciobanu, Kyle
Williams, Juan Fernndez-Ramrez, Hung-Hsuan Chen,
Zhaohui Wu, and Lee Giles. CiteSeer x: A Schol-
arly Big Dataset. Advances in Information Retrieval.
Springer International Publishing, 2014. 311-322.

Sylvie De Cock, Gatanelle Gilquin, Sylviane Granger,
Marie-Aude Lefer, Magali Paquot, and Suzanne Rick-
etts. 2007. Improve Your Writing Skills. In Rundell
(2007).

Philippe Langlais, George Foster, and Guy Lapalme.
2000. TransType: A Computer-Aided Translation Typ-
ing System. In Workshop on Embedded Machine
Translation Systems.

Hien-Chin Liou, PingChe. Yang, and Jason S. Chang.
Language supports for journal abstract writing across
disciplines. Journal of Computer Assisted Learning
28.4 (2012): 322-335.

Michael Rundell (Ed.). 2007. Macmillan English Dic-
tionary for Advanced Learners. Oxford, Macmillan,
2002.

John Sinclair. 1991. Corpus, Concordance, Collocation.
Oxford University Press, Hong Kong.

Yu-Chih Sun. 2007. Learner Perceptions of a Concor-
dancing Tool for Academic Writing. Computer As-
sisted Language Learning 20, 323343.

Jean-Jacques Weber. 2001. A Concordance- and Genre-
informed Approach to ESP Essay Editing. ELT Jour-
nal 55, 1420.

110


