RExtractor: a Robust Information Extractor

Vincent Kriz and Barbora Hladka
Charles University in Prague
Faculty of Mathematics and Physics
Institute of Formal and Applied Linguistics
{kriz, hladka}@ufal.mff.cuni.cz

Abstract

The RExtractor system is an information ex-
tractor that processes input documents by nat-
ural language processing tools and conse-
quently queries the parsed sentences to ex-
tract a knowledge base of entities and their re-
lations. The extraction queries are designed
manually using a tool that enables natural
graphical representation of queries over de-
pendency trees. A workflow of the system is
designed to be language and domain indepen-
dent. We demonstrate RExtractor on Czech
and English legal documents.

1 Introduction

In many domains, large collections of semi/un-
structured documents form main sources of informa-
tion. Their efficient browsing and querying present
key aspects in many areas of human activities.

We have implemented an information extrac-
tion system, RExtractor, that extracts informa-
tion from texts enriched with linguistic structures,
namely syntactic dependency trees. This structure
is represented as a rooted ordered tree with nodes
and edges and the dependency relation between
two nodes is captured by an edge between them.
Namely, we work with the annotation framework de-
signed in the Prague Dependency Treebank project.’

RExtractor forms an extraction unit of a com-
plex system performing both information extraction
and data publication according to the Linked Data
Principles. More theoretical and practical details

'nttp://ufal.mff.cuni.cz/pdt3.0
21

on the system are provided in (Kriz et al., 2014).
The system focuses on processing Czech legal doc-
uments and has been implemented in an applied re-
search project addressed by research and business
partners.”

The extraction systems known from literature
were evaluated against gold standard data, e.g.
DKPro Keyphrases (Erbs et al., 2014), Relation-
Factory (Roth et al., 2014), KELVIN (McNamee
et al., 2013), Propminer (Akbik et al., 2013), OL-
LIE (Mausam et al., 2012). We name this type
of evaluation as academic one. According to the
statistics provided by International Data Corpora-
tion (Gantz and Reinsel, 2010), 90% of all avail-
able digital data is unstructured and its amount cur-
rently grows twice as fast as structured data. Nat-
urally, there is no capacity to prepare gold stan-
dard data of statistically significant amount for each
domain. When exploring domains without gold
standard data, a developer can prepare a small set
of gold standard data and do academic evaluation.
He gets a rough idea about his extractor perfor-
mance. But he builds a system that will be used
by users/customers, not researchers serving as eval-
uators. So it is user/customer feedback what pro-
vides evidence of performance. This particular fea-
ture of information extraction systems is discussed
in (Chiticariu et al., 2013) together with techniques
they use academic systems and commercial systems.

We decided to do a very first RExtractor testing
by experts in accountancy. It has not done yet so we
have no evidence about its quality from their per-
spective. However, we know what performance the

http://ufal.mff.cuni.cz/intlib

Proceedings of NAACL-HLT 2015, pages 21-25,
Denver, Colorado, May 31 — June 5, 2015. (©2015 Association for Computational Linguistics



system achieves on the gold standard data that we
prepared in the given domain. We list it separately
for entity extraction, where Precision = 57.4%, Re-
call = 91.7%, and relation extraction, where P =
80.6%, R = 63.2%. Details are provided in (Kriz
et al., 2014).

2 RExtractor Description

RExtractor is an information extractor that processes
input documents by natural language processing
tools and consequently queries the parsed sentences
to extract a knowledge base of entities and their re-
lations. The parsed sentences are represented as
dependency trees with nodes bearing morphologi-
cal and syntactic attributes. The knowledge base
has the form of (subject, predicate, object) triples
where subject and object are entities and predicate
represents their relation. One has to carefully distin-
guish subjects, predicates and objects in dependency
trees from subjects, predicates and objects in entity-
relation triples.

Conversion Component

XML |

NLP Component

Segmentation |—>| Tokenization |—>| Morphology |
P e

Parser

Relation Extraction

PML - TQ Database
of queries

Entity detection

PML - TQ Database
of entities

Figure 1: RExtractor workflow

RExtractor is designed as a four-component sys-
tem displayed in Figure 1. The NLP component out-
puts a syntactic dependency tree for each sentence
from the input documents using tools available in the
Treex framework.? Then the dependency trees are
queried in the Entity Detection and Relation Extrac-
tion components using the PML-TQ search tool (Pa-
jas and Stépanek, 2009). The Entity Detection com-
ponent detects entities stored in Database of Entities
(DBE). Usually, this database is built manually by
a domain expert. The Relation Extraction compo-
nent exploits dependency trees with detected entities
using queries stored in Database of queries (DBQ).
This database is built manually by a domain expert

Shttp://ufal.mff.cuni.cz/treex
22

~,,,~,/'J s (@)
"’ a-node
Q afun="Pred, lemma=create
create
@ (@)
Pred L a-node a-node
afun=sb, entity=true afun=0bj
units and according to
Sb Coord AuxP e
Accounting Peme-—. reserves regulations
: ~-Qbj_Co Ad
Atr Qbj_Co - \Y
Q Q; Q.
fixed special legal
Atr Atr Atr

Figure 2: Extraction of who creates what

| Subject | Predicate | Object |
accounting unit create fixed item
accounting unit create reserve

Table 1: Data extracted by the query displayed in Figure 2

in cooperation with an NLP expert. Typically, do-
main experts describe what kind of information they
are interested in and their requests are transformed
into tree queries by NLP experts.

Ilustration Let’s assume this situation. A domain
expert is browsing a law collection and is interested
in the fo create something responsibility of any body.
In other words, he wants to learn who creates what
as is specified in the collection. We illustrate the
RExtractor approach for extracting such informa-
tion using the sentence Accounting units create fixed
items and reserves according to special legal regu-
lations.

Firstly, the NLP component generates a depen-
dency tree of the sentence, see Figure 2. Secondly,
the Entity Detection component detects the entities
from DBE in the tree: accounting unit, fixed item,
reserve, special legal regulation (see the highlighted
subtrees in Figure 2). Then an NLP expert formu-
lates a tree query matching the domain expert’s issue
who creates what. See the query at the top-right cor-
ner of Figure 2: (1) he is searching for creates, i.e.
for the predicate having lemma create (see the root
node), (2) he is searching for who, i.e. the subject



e a-node
O e afun=Pred, lemma=shall

shall
Pred @ o
I a-node . anode
e afun=sb - afun=0bj
o
>

&\ o < o

proposal submitied T
\ Obj =

e /
> Y,
/

. a-node
afun=Auxv’

a-node
afun=Auxp

Q o ° .V»«

The for be by Iy S
AuxA AuxP AuxV AuxP /!

S a-node
" POS~NN, entity=true

entry operator
Atr Adv

o Q

into the
AuxP AuxA

Q.

register
Atr

Q

the
AuxA

Figure 3: Extraction of who should do what

| Subject | Predicate [ Object |

’ operator \

submit \ proposal ‘

Table 2: Data extracted by the query displayed in Figure 3

(see the left son of the root and its syntactic function
afun=Sb), and what, i.e. the object (see the right
son of the root and its syntactic function afun=0b j).
Even more, he restricts the subjects to those that are
pre-specified in DBE (see the left son of the root and
its restriction entity=t rue). Finally, the Relation
Extraction component matches the query with the
sentence and outputs the data presented in Table 1.

A domain expert could be interested in more gen-
eral responsibility, namely he wants to learn who
should do what where who is an entity in DBE. A
tree query matching this issue is displayed in Fig-
ure 3. The query is designed to extract (subject,
predicate, object) relations where the subject is the
object in a sentence. We extract the data listed in
Table 2 using this query for entity-relation extrac-
tion from the sentence The proposal for entry into
the register shall be submitted by the operator.

23

Technical details RExtractor is conceptualized as
a modular framework. It is implemented in Perl pro-
gramming language and its code and technical de-
tails are available on Github:
http://github.com/VincTheSecond/rextractor

Each RExtractor component is implemented as a
standalone server. The servers regularly check new
documents waiting for processing. A document pro-
cessing progress is characterized by a document pro-
cessing status in the extraction pipeline, e.g. 520 —
Entity detection finished.

The system is designed to be domain independent.
However, to achieve better performance, one would
like to adapt the default components for a given do-
main. Modularity of the system allows adding, mod-
ifying or removing functionalities of existing com-
ponents and creating new components. Each com-
ponent has a configuration file to enable various set-
tings of document processing.

A scenario with all settings for the whole extrac-
tion pipeline (set up in a configuration file) is called
an extraction strategy. An extraction strategy sets a
particular configuration for the extraction pipeline,
e.g. paths to language models for NLP tools, paths
to DBE and DBQ.

The RExtractor API enables easy integration into
more complex systems, like search engines.

3 RExtractor Demonstration

The RExtractor architecture comprises two core
components: (a) a background server processing
submitted documents, and (b) a Web application to
view a dynamic display of submitted document pro-
cessing.

Web interface enables users to submit documents
to be processed by RExtractor. In the submission
window, users are asked to select one of the extrac-
tion strategies. Users can browse extraction strate-
gies and view their detailed description. After suc-
cessful document submission, the document waits
in a queue to be processed according to the speci-
fied extraction strategy. Users can view a display of
submitted document processing that is automatically
updated, see Figure 4.

In Figure 5, the following information is visual-
ized: (1) Details section contains metadata about
document processing. (2) Entities section shows an



|
List of submitted documents

TESTO1 2015-01-19 16:29:55 g

410 Error occured during document conversion,
pr0S92-1992_0161-1993  2015-01-01 18:22:51 J BN ] 420 NLP tools finished successfully.
pr0186-1998_0384-2008 2015-01-01 18:22:51 J B ] 320 Document converted successfully,
pr0549-1991_0255-2000 2015-01-01 18:22:51 J N 720 Document exported successfully.

pr0147-2002_0321-2004 | 2015-01-01 18:22:51 \J I | 520 Entity detection finished successfully.

Figure 4: RExtractor web interface, part 1

Details @
[Cocument ubmiton tne s omaoay____sctions |

ABC 2015-04-01 10:07:41 720 Document exported successfully. English legal text Delete document

Entities ®
Everyone has the right to life .

Relations @

Relation #31 - Rights

[sunet e ones ]

Everyone | has the right to life

Figure 5: RExtractor web interface, part 2

input document with the highlighted entities that can
be viewed interactively: by clicking on the entity, an
additional information about the entity is uploaded
and presented. (3) Relations section consists of
tables where (subject, predicate, object) triples are
listed. In addition, the relevant part of the document
with the highlighted triples is presented as well.

Our demonstration enables users to submit texts
from legal domain and process them according to
two currently available extraction strategies, Czech
and English. Once the document processing is
finished, users can browse extracted entity-relation
triples.

4 RExtractor Online

http://odcs.xrg.cz/demo-rextractor
24

5 Conclusion

We presented the RExtractor system with the follow-
ing features:

Our ambition is to provide users with an inter-
active and user-friendly information extraction
system that enables submitting documents and
browsing extracted data without spending time
with understanding technical details.

A workflow of RExtractor is language inde-
pendent. Currently, two extraction strategies
are available, for Czech and English. Creat-
ing strategies for other languages requires NLP
tools, Database of entities (DBE) and Database
of queries (DBQ) for a given language.

A workflow of RExtractor is domain indepen-
dent. Currently, the domain of legislation is
covered. Creating strategies for other domains
requires building DBE and DBQ. It is a joint
work of domain and NLP experts.

RExtractor extracts information from syntactic
dependency trees. This linguistic structure en-
ables to extract information even from complex
sentences. Also, it enables to extract even com-
plex relations.

RExtractor has both user-friendly interface and
API to address large-scale tasks. The system
has already processed a collection of Czech le-
gal documents consisting of almost 10,000 doc-
uments.

RExtractor is an open source system but some
language models used by NLP tools can be ap-
plied under a special license.

Our future plans concern the following tasks:

experimenting with syntactic parsing proce-
dures in the NLP component that are of a cru-
cial importance for extraction

evaluating RExtractor against the data that are
available for various shared tasks and confer-
ences on information retrieval, e.g. TAC?,
TRAC®

‘nttp://www.nist.gov/tac/
Shttp://trec.nist.gov/



e making tree query design more user-friendly
for domain experts

e getting feedback from customers

e incorporating automatic procedures for extrac-
tion of both entities and relations that are
not pre-specified in Database of Entities and
Database of Queries, resp.

e creating strategies for other languages and
other domains

Through this system demonstration we hope to re-
ceive feedback on the general approach, explore its
application to other domains and languages, and at-
tract new users and possibly developers.

Acknowledgments

We gratefully acknowledge support from the Tech-
nology Agency of the Czech Republic (grant no.
TA02010182), The Bernard Bolzano Foundation
and SVV project no. 260 224. This work has been
using language resources developed and/or stored
and/or distributed by the LINDAT/CLARIN project.
We highly appreciate RExtractor-related discussions
with Martin Necasky and colleagues from Sysnet,
Ltd.

References

Alan Akbik, Oresti Konomi, and Michail Melnikov.
2013. Propminer: A workflow for interactive infor-
mation extraction and exploration using dependency
trees. In Proceedings of the 51st Annual Meeting of the
ACL: System Demonstrations, pages 157-162. ACL.

Laura Chiticariu, Yunyao Li, and Frederick R. Reiss.
2013. Rule-based information extraction is dead! long
live rule-based information extraction systems! In
EMNLP, pages 827-832. ACL.

Nicolai Erbs, Bispo Pedro Santos, Iryna Gurevych, and
Torsten Zesch. 2014. Dkpro keyphrases: Flexible and
reusable keyphrase extraction experiments. In Pro-
ceedings of 52nd Annual Meeting of the ACL: System
Demonstrations, pages 31-36. ACL.

John Gantz and David Reinsel. 2010. The digital uni-
verse decade — Are you ready?

Vincent KriZ, Barbora Hladkd, Martin Necasky, and
Toma$ Knap. 2014. Data extraction using NLP
techniques and its transformation to linked data. In
Human-Inspired Computing and Its Applications -

25

13th Mexican International Conference on Artificial
Intelligence, MICAI 2014, Tuxtla Gutiérrez, Mexico,
November 16-22, 2014. Proceedings, Part I, pages
113-124.

Mausam, Michael Schmitz, Robert Bart, Stephen Soder-
land, and Oren Etzioni. 2012. Open language learn-
ing for information extraction. In Proceedings of the
2012 Joint Conference on Empirical Methods in Natu-
ral Language Processing and Computational Natural
Language Learning, EMNLP-CoNLL °12, pages 523—
534, Stroudsburg, PA, USA. ACL.

Paul McNamee, James Mayfield, Tim Finin, Tim Oates,
Dawn Lawrie, Tan Xu, and Douglas Oard. 2013.
Kelvin: atool for automated knowledge base construc-
tion. In Proceedings of the 2013 NAACL HLT Demon-
stration Session, pages 32-35. ACL.

Petr Pajas and Jan §tépének. 2009. System for query-
ing syntactically annotated corpora. In Gary Lee and
Sabine Schulte im Walde, editors, Proceedings of the
ACL-IJCNLP 2009 Software Demonstrations, pages
33-36, Suntec, Singapore. Association for Computa-
tional Linguistics.

Benjamin Roth, Tassilo Barth, Grzegorz Chrupata, Mar-
tin Gropp, and Dietrich Klakow. 2014. Relation-
factory: A fast, modular and effective system for
knowledge base population. In Proceedings of the
Demonstrations at the 14th Conference of the Euro-
pean Chapter of the ACL, pages 89-92, Gothenburg,
Sweden, April. ACL.



