hyp: A Toolkit for Representing, Manipulating, and Optimizing Hypergraphs

Markus Dreyer*
SDL Research
6060 Center Drive Suite 150
Los Angeles, CA 90045
markus.dreyer@gmail.com

Abstract

We present hyp, an open-source toolkit for
the representation, manipulation, and opti-
mization of weighted directed hypergraphs.
hyp provides compose, project, in-
vert functionality, k-best path algorithms,
the inside and outside algorithms, and more.
Finite-state machines are modeled as a spe-
cial case of directed hypergraphs. hyp con-
sists of a C++ API, as well as a command
line tool, and is available for download at
github.com/sdl-research/hyp.

1 Introduction

We present hyp, an open-source toolkit that pro-
vides data structures and algorithms to process
weighted directed hypergraphs.

Such hypergraphs are important in natural lan-
guage processing and machine learning, e.g., in
parsing (Klein and Manning (2005), Huang and
Chiang (2005)), machine translation (Kumar et al.,
2009), as well as in logic (Gallo et al., 1993) and
weighted logic programming (Eisner and Filardo,
2011).

The hyp toolkit enables representing and ma-
nipulating weighted directed hypergraphs, pro-
viding compose, project, invert functional-
ity, k-best path algorithms, the inside and out-
side algorithms, and more. hyp also implements
a framework for estimating hypergraph feature
weights by optimization on forests derived from
training data.

*Markus Dreyer is now at Amazon, Inc., Seattle, WA.

11

Jonathan Graehl
SDL Research
6060 Center Drive Suite 150
Los Angeles, CA 90045
graehl@sdl.com

Figure 1: An arc leading from three tail states to a head state,
with weight w.

w

2 Definitions

A weighted directed hypergraph (hereinafter hy-
pergraph) is a pair H = (V,E), where V is a set of
vertices and E a set of edges. Each edge (also called
hyperedge) is a triple e = (T(e), h(e), w(e)), where
T(e) is an ordered list of tails (i.e., source vertices),
h(e) is the head (i.e., target vertex) and w(e) is the
semiring weight (see Section 3.4) of the edge (see
Figure 1).

We regard hypergraphs as automata and call the
vertices states and edges arcs. We add an optional
start state S € Vand a final state Fe V.

Each state s has an input label i(s) € (Z U {2})
and output label o(s) € (Z u{&}); if o(s) = & then
we treat the state as having o(s) = i(s). The label
alphabet X is divided into disjoint sets of nonter-
minal, lexical, and special {€,},p,c} labels. The
input and output labels are analogous to those of
a finite-state transducer in some hyp operations
(Section 3.3).

The set of incoming arcs into a state s is called
the Backward Star of s, or short, BS(s). Formally,
BS(s) ={a € E: h(a) = s}. A path n is a sequence
of arcs m = (ay...ax) € E* such that Va € n,Vt €
T(a), 3a’ e n: h(a') = 1) v BS(t) = @. Each tail state

Proceedings of NAACL-HLT 2015, pages 11-15,
Denver, Colorado, May 31 — June 5, 2015. (©2015 Association for Computational Linguistics

t of each arc on the path must be the head of some
arc on the path, unless ¢ is the start state or has
no incoming arcs and a terminal (lexical or spe-
cial) input label, in which case we call ¢ an axiom.
The rationale is that each tail state of each arc on
the path must be derived, by traveling an arc that
leads to it, or given as an axiom. If the hypergraph
has a start state, the first tail of the first arc of any
path must be the start state. The head of the last
arc must always be the final state, h(ay) = F. Paths
correspond to trees, or proofs that the final state
may be reached from axioms.

Hypergraph arcs have exactly one head; some
authors permit multiple heads and would call our
hypergraphs B-hypergraphs (Gallo et al., 1993).

3 Representing hypergraphs

Text representation. hyp uses a simple human-
readable text format for hypergraphs. For exam-
ple, see the first two lines in Figure 2. Each hyper-
graph arc has the following format:

head <- taill tail2 tailn / weight

Head and tail states are non-negative integers
followed by an optional label in parentheses (or
a pair of (input output) labels). If it is lexi-
cal (i.e., a word), then it is double-quoted with the
usual backslash-escapes; nonterminal and special
symbols are unquoted. Special symbols like €, ¢,
p, o are written with brackets, as <eps>, <phi>,
<rho>, <sigma>. Each arc may optionally have
a slash followed by a weight, which is typically a
negative log probability (i.e., the cost of the arc). A
final state n is marked as FINAL <- n. Figure 2
shows the text and visual representation of a hy-
pergraph with only one arc; it represents and ac-
cepts the string he eats rice.

Visual representation. A provided Draw com-
mand can render hypergraphs using Graphviz
(Gansner and North, 2000). Small gray numbers
indicate the order of arc tails. Axiom nodes are
filled gray.! The final state is drawn as a double cir-
cle, following finite-state convention.

1Gray is used analogously in graphical models for observed
nodes.

12

0(S) <= 1("he") 2("eats") 3("rice") / 0.693

FINAL <- 0(S)

Figure 2: The text and visual representation of a hypergraph
with a single arc, similar to Figure 1. The visual representation
leaves out the state IDs of labeled states.

0(S) <- I(NP) Z2(VP)

1 (NP) <- 3 (PRON)

2(VP) <- 4(V) 5(NP) 6 (PP)
3(PRON) <— 10 ("He")

4 (V) <— 11l ("eats")

5(NP) <- 7(N)

6 (PP) <— 8 (PREP) 9(N)
7(N) <= 12 ("rice")

8 (PREP) <— 13 ("with")
9(N) <- 14 ("sticks")

FINAL <- 0(S)

f These added arcs

make it ;ﬁLJ a forest:
15(NP) <- 7(N) 6(PP)
2(VP) <— 4(V) 15(NP

Figure 3: A packed forest.

Reducing redundancy. State labels need not be
repeated at every mention of that state’s ID; if a
state has a label anywhere it has it always. For ex-
ample, we write the label S for state 0 in Figure 2

only once:

0(S) <= 1("he")
FINAL <- O

2("eats") 3("rice") / 0.693

Similarly, state IDs may be left out wherever a

label uniquely identifies a particular state:

0(S) <= ("he") / 0.693
FINAL <- 0

(Heatsll) (Hriceu)
hyp generates state IDs for these states automati-

cally.

3.1 Trees and forests

A forest is a hypergraph that contains a set of trees.
A forest may be packed, in which case its trees
share substructure, like strings in a lattice. An ex-
ample forest in hyp format is shown in Figure 3.
Any two or more arcs pointing into one state have
OR semantics; the depicted forest compactly rep-

. he . eats . rice .

Figure 4: A one-sentence finite-state machine in OpenFst.
START <- 0

1 <= 0 4("he") “'

2 <= 1 5("eats") @
3 <=2 6("rice")
FINAL <- 3

Figure 5: A one-sentence finite-state hypergraph in hyp.

resents two interpretations of one sentence: (1) he
eats rice using sticks OR he eats rice that has sticks.
Hypergraphs can represent any context-free gram-
mar, where the strings in the grammar are the lex-
ical yield (i.e., leaves in order) of the hypergraph
trees.

3.2 Strings, lattices, and general FSMs

In addition to trees and forests, hypergraphs can
represent strings, lattices, and general finite-state
machines (FSMs) as a special case. A standard
finite-state representation of a string would look
like Figure 4, which shows a left-recursive bracket-
ingas (((he) eats) rice),i.e., weread “he’,
combine it with “eats”, then combine the result
with “rice” to accept the whole string (Allauzen et
al., 2007).

We can do something similar in hyp using
hypergraphs—see Figure 5. The hypergraph can
be traversed bottom-up by first reading start state
0 and the “he” axiom state, reaching state 1, then
reading the following words until finally arriving at
the final state 3. The visual representation of this
left-recursive hypergraph can be understood as an
unusual way to draw an FSM, where each arc has
an auxiliary label state. If a hypergraph has a start
state and all its arcs are finite-state arcs, hyp recog-
nizes it as an FSM; some operations may require or
optimize for an FSM rather than a general hyper-
graph. A finite-state arc has two tails, where the
first one is a structural state and the second one a
terminal label state.? Adding additional arcs to the

2Some operations may efficiently transform a generaliza-
tion of FSM that we call a “graph”, where there are zero or
more label states following the structural or “source” state,

13

simple sentence hypergraph of Figure 5, we could
arrive at a more interesting lattice or even an FSM
with cycles and so infinitely many paths.

3.3 Transducers

A leaf state s with an output label o(s) # i(s)
rewrites the input label. This applies to finite-state
as well as general hypergraphs. The following arc,
for example, reads “eats” and an NP and derives a

VP; it also rewrites “eats” to “ate”:
(V) ("eats" "ate") (NP)

<—

If a state has an output label, it must then have an
input label, though it may be <eps>. The start
state conventionally has no label.

3.4 Semirings and features

Each hypergraph uses a particular semiring, which
specifies the type of weights and defines how
weights are added and multiplied. hyp provides
the standard semirings (Mohri, 2009), as well as
the expectation semiring (Eisner, 2002), and a new
“feature” semiring. The feature semiring pairs with
tropical semiring elements a sparse feature vector
that adds componentwise in the semiring prod-
uct and follows the winning tropical element in the
semiring sum. Features 0 and 8 fire with different
strengths on this arc:

(V) <— 11 ("eats" "ate") / 3.2[0=1.3,8=-0.5]

By using the expectation or the feature semiring,
we can keep track of what features fire on what
arcs when we perform compositions or other oper-
ations. Using standard algorithms that are imple-
mented in hyp (e.g., the inside-outside algorithm,
see below), itis possible to train arc feature weights
from data (see Section 6).

4 Using the hyp executable

The hyp toolkit provides an executable that
implements several commands to process and
manipulate hypergraphs. It is generally called
as hyp <command> <options> <input-
files>, where <command> may be Compose,
Best, or others. We now describe some of these
commands.

rather than exactly one.

Compose hyp Compose composes two

semiring-weighted hypergraphs. Composition

is used to parse an input into a structure and/or

rewrite its labels. Composition can also rescore

a weighted hypergraph by composing with a

finite-state machine, e.g., a language model.
Example call:

<$ hyp Compose cfg.hyp fsa.hyp)

Since context-free grammars are not closed un-
der composition, one of the two composition ar-
guments must be finite-state (Section 3.2). If both
structures are finite-state, hyp uses a fast finite-
state composition algorithm (Mohri, 2009).3 Oth-
erwise, we use a generalization of the Earley al-
gorithm (Earley (1970), Eisner et al. (2005), Dyer
(2010)).

Best and PruneToBest. hyp Best prints the k-
best entries from any hypergraph. hyp Prune-
ToBest removes structure not needed for the best
path.

Example calls:

C$ hyp Best —-—-num-best=2 h.hyp > k.t%

$ hyp PruneToBest h.hyp > best.hyp

For acyclic finite-state hypergraphs, hyp uses
the Viterbi algorithm to find the best path; other-
wise it uses a general best-tree algorithm for CFGs
(Knuth (1977), Graehl (2005)).

Other executables. Overall, hyp provides more
than 20 commands that perform hypergraph op-
erations. They can be used to concatenate, in-
vert, project, reverse, draw, sample paths, create
unions, run the inside algorithm, etc. A detailed
description is provided in the 25-page hyp tutorial
document (Dreyer and Graehl, 2015).

5 Using the hyp C++ API

In addition to the command line tools described,
hyp includes an open-source C++ API for con-
structing and processing hypergraphs, for maxi-

3If the best path rather than the full composition is re-
quested, that composition is lazy best-first and may, weights
depending, avoid creating most of the composition.

4In the current hyp version, the Earley-inspired algorithm
computes the full composition and should therefore be used
with smaller grammars.

14

mum flexibility and performance.> The following
code snippet creates the hypergraph shown in Fig-

ure 2:

typedef ViterbiWeight Weight;
typedef ArcTpl<Weight> Arc;
MutableHypergraph<Arc> hyp;
StateId s = hyp.addState(S);
hyp.setFinal (s) ;
hyp.addArc (new Arc (Head(s),

Tails (hyp.addState (he),
hyp.addState (eats),
hyp.addState (rice))

Weight (0.693)));

The code defines weight and arc types, then
constructs a hypergraph and adds the final state,
then adds an arc by specifying the head, tails,
and the weight. The variables S, he, eats,
rice are symbol IDs obtained from a vocabulary
(not shown here). The constructed hypergraph
hyp can then be manipulated using provided C++
functions. For example, calling
reverse (hyp) ;
reverses all paths in the hypergraph. All other op-
erations described in Section 4 can be called from
C++ as well.

The hyp distribution includes additional C++
example code and doxygen API documentation.

6 Optimizing hypergraph feature weights

hyp provides functionality to optimize hyper-
graph feature weights from training data. It trains
a regularized conditional log-linear model, also
known as conditional random field (CRF), with op-
tional hidden derivations (Lafferty et al. (2001),
Quattoni et al. (2007)). The training data con-
sist of observed input-output hypergraph pairs
(x,¥). x and y are non-loopy hypergraphs and
so may represent string, lattice, tree, or forest.
A user-defined function, which is compiled and
loaded as a shared object, defines the search space
of all possible outputs given any input x, with
their features. hyp then computes the CRF func-
tion value, feature expectations and gradients, and
calls gradient-based optimization methods like L-
BFGS or Adagrad (Duchi et al., 2010). This may
be used to experiment with and train sequence or
tree-based models. For details, we refer to the hyp
tutorial (Dreyer and Graehl, 2015).

5Using the C++ API to perform a sequence of operations,
one can keep intermediate hypergraphs in memory and so
avoid the cost of disk write and read operations.

7 Conclusions

We have presented hyp, an open-source toolkit for
representing and manipulating weighted directed
hypergraphs, including functionality for learning
arc feature weights from data. The hyp toolkit
provides a C++ library and a command line ex-
ecutable. Since hyp seamlessly handles trees,
forests, strings, lattices and finite-state transduc-
ers and acceptors, it is well-suited for a wide range
of practical problems in NLP (e.g., for implement-
ing a parser or a machine translation pipeline) and
related areas. hyp is available for download at
github.com/sdl-research/hyp.

Acknowledgments

We thank Daniel Marcu and Mark Hopkins for
guidance and advice; Kevin Knight for encour-
aging an open-source release; Bill Byrne, Ab-
dessamad Echihabi, Steve DeNeefe, Adria de Gis-
pert, Gonzalo Iglesias, Jonathan May, and many
others at SDL Research for contributions and early
feedback; the anonymous reviewers for comments
and suggestions.

References

Cyril Allauzen, Michael Riley, Johan Schalkwyk, Wo-
jciech Skut, and Mehryar Mohri. 2007. Open-
Fst: A general and efficient weighted finite-state
transducer library. In Proceedings of the Ninth In-
ternational Conference on Implementation and Ap-
plication of Automata, (CIAA 2007), volume 4783
of Lecture Notes in Computer Science, pages 11-23.
Springer.

Markus Dreyer and Jonathan Graehl
Tutorial: The hyp hypergraph
http://goo.gl/02gpi2.

J. Duchi, E. Hazan, and Y. Singer. 2010. Adaptive sub-
gradient methods for online learning and stochastic
optimization. Journal of Machine Learning Research,
12:2121-2159.

Christopher Dyer. 2010. A formal model of ambigu-
ity and its applications in machine translation. Ph.D.
thesis, University of Maryland.

Jay Earley. 1970. An efficient context-free parsing algo-
rithm. Communications of the ACM, 13(2):94-102.
Jason Eisner and Nathaniel W. Filardo. 2011. Dyna: Ex-
tending datalog for modern Al. In Datalog Reloaded,

pages 181-220. Springer.

2015.
toolkit.

15

Jason Eisner, Eric Goldlust, and Noah A. Smith. 2005.
Compiling comp ling: Practical weighted dynamic
programming and the Dyna language. In In Ad-
vances in Probabilistic and Other Parsing.

Jason Eisner. 2002. Parameter estimation for proba-
bilistic finite-state transducers. In Proceedings of the
40th Annual Meeting of the Association for Compu-
tational Linguistics (ACL), pages 1-8, Philadelphia,
July.

Giorgio Gallo, Giustino Longo, and Stefano Pallottino.
1993. Directed hypergraphs and applications. Dis-
crete Applied Mathematics, 42(2):177-201.

Emden R. Gansner and Stephen C. North. 2000. An
open graph visualization system and its applications
to software engineering. Software: Practice and Ex-
perience, 30(11):1203-1233.

Jonathan Graehl. 2005. Context-free algorithms.
arXiv:1502.02328 [cs.FL].

Liang Huang and David Chiang. 2005. Better k-best
parsing. In Proceedings of the Ninth International
Workshop on Parsing Technology, pages 53—64. Asso-
ciation for Computational Linguistics.

Dan Klein and Christopher D. Manning. 2005. Parsing
and hypergraphs. In New developments in parsing
technology, pages 351-372. Springer.

Donald E. Knuth. 1977. A generalization of Dijkstra’s
algorithm. Information Processing Letters, 6(1):1-5.

Shankar Kumar, Wolfgang Macherey, Chris Dyer, and
Franz Och. 2009. Efficient minimum error rate train-
ing and minimum bayes-risk decoding for transla-
tion hypergraphs and lattices. In Proceedings of
the Joint Conference of the 47th Annual Meeting of
the ACL and the 4th International Joint Conference
on Natural Language Processing of the AFNLP: Vol-
ume 1, pages 163-171. Association for Computa-
tional Linguistics.

John Lafferty, Andrew McCallum, and Fernando
Pereira. 2001. Conditional random fields: Prob-
abilistic models for segmenting and labeling se-
quence data. In Proceedings of the 18th International
Conference on Machine Learning, pages 282-289.
Morgan Kaufmann, San Francisco, CA.

Mehryar Mohri. 2009. Weighted automata algorithms.
In Handbook of weighted automata, pages 213-254.
Springer.

A. Quattoni, S. Wang, L. P Morency, M. Collins, and
T. Darrell. 2007. Hidden conditional random fields.
IEEE Transactions on Pattern Analysis and Machine
Intelligence, 29(10):1848-1852.

