
NAACL HLT 2015

The 2015 Conference of the
North American Chapter of the

Association for Computational Linguistics:
Human Language Technologies

Proceedings of the Conference

May 31 – June 5, 2015
Denver, Colorado, USA

c©2015 The Association for Computational Linguistics

Order print-on-demand copies from:

Curran Associates
57 Morehouse Lane
Red Hook, New York 12571
USA
Tel: +1-845-758-0400
Fax: +1-845-758-2633
curran@proceedings.com

ISBN XXX-X-XXXXXX-XX-X

ii

Introduction (TODO)

Welcome to the ACL Workshop on Unresolved Matters. We received 17 submissions, and due to a
rigerous review process, we rejected 16.

iii

Organizers:

Matthew Gerber, University of Virginia
Catherine Havasi, Luminoso
Finley Lacatusu, Language Computer Corporation

Reviewers:

Zeljko Agic, University of Zagreb
Omar Alonso, Microsoft Research
Tyler Baldwin, IBM Research
Georgeta Bordea, NUI Galway
Kevin Cohen, University of Colorado School of Medicine
Montse Cuadros, Universitat Politecnica de Catalunya
Thierry Declerck, DFK
Karthik Dinakar, MIT Media Lab
Mark Dras, Macquarie University
Michele Filannino, University of Manchester
Marek Krawczyk, Hokkaido University
Brigitte Krenn, Qustrian Research Institute for Artificial Intelligence (OFAI)
Changsong Liu, Michigan State University
Clare Llewellyn, University of Edinburgh
Marie-Jean Meurs, Concordia University
Tsuyoshi Okita, Dublin City University
Arzucan Ozgur, Bogazici University
Stelios Piperidis, National Technical University of Athens
Zahar Prasov, Michigan State University
Kirk Roberts, University of Texas
Melissa Roemmele, ICT, USC
Masoud Rouhizadeh, Oregon Health & Science University
Irene Russo, Istituto di Linguistica Computazionale, CNR
Le Sun, Chinese Academy of Sciences
Maarten van Gompel, Radboud University
Marc Vilain, MITRE
Liang-Chih Yu, Yuan Ze University
Guodong Zhou, Soochow University

v

Table of Contents

Two Practical Rhetorical Structure Theory Parsers
Mihai Surdeanu, Tom Hicks and Marco Antonio Valenzuela-Escarcega . 1

Analyzing and Visualizing Coreference Resolution Errors
Sebastian Martschat, Thierry Göckel and Michael Strube . 6

hyp: A Toolkit for Representing, Manipulating, and Optimizing Hypergraphs
Markus Dreyer and Jonathan Graehl . 11

Enhancing Instructor-Student and Student-Student Interactions with Mobile Interfaces and Summariza-
tion

Wencan Luo, Xiangmin Fan, Muhsin Menekse, Jingtao Wang and Diane Litman 16

RExtractor: a Robust Information Extractor
Vincent Kríž and Barbora Hladka . 21

An AMR parser for English, French, German, Spanish and Japanese and a new AMR-annotated corpus
Lucy Vanderwende, Arul Menezes and Chris Quirk . 26

ICE: Rapid Information Extraction Customization for NLP Novices
Yifan He and Ralph Grishman . 31

AMRICA: an AMR Inspector for Cross-language Alignments
Naomi Saphra and Adam Lopez. .36

Ckylark: A More Robust PCFG-LA Parser
Yusuke Oda, Graham Neubig, Sakriani Sakti, Tomoki Toda and Satoshi Nakamura 41

ELCO3: Entity Linking with Corpus Coherence Combining Open Source Annotators
Pablo Ruiz, Thierry Poibeau and Fréderique Mélanie . 46

SETS: Scalable and Efficient Tree Search in Dependency Graphs
Juhani Luotolahti, Jenna Kanerva, Sampo Pyysalo and Filip Ginter . 51

Visualizing Deep-Syntactic Parser Output
Juan Soler-Company, Miguel Ballesteros, Bernd Bohnet, Simon Mille and Leo Wanner 56

WOLFE: An NLP-friendly Declarative Machine Learning Stack
Sameer Singh, Tim Rocktäschel, Luke Hewitt, Jason Naradowsky and Sebastian Riedel 61

Lean Question Answering over Freebase from Scratch
Xuchen Yao . 66

A Web Application for Automated Dialect Analysis
Sravana Reddy and James Stanford . 71

vii

An Open-source Framework for Multi-level Semantic Similarity Measurement
Mohammad Taher Pilehvar and Roberto Navigli . 76

Brahmi-Net: A transliteration and script conversion system for languages of the Indian subcontinent
Anoop Kunchukuttan, Ratish Puduppully and Pushpak Bhattacharyya . 81

A Concrete Chinese NLP Pipeline
Nanyun Peng, Francis Ferraro, Mo Yu, Nicholas Andrews, Jay DeYoung, Max Thomas, Matthew

R. Gormley, Travis Wolfe, Craig Harman, Benjamin Van Durme and Mark Dredze 86

CroVeWA: Crosslingual Vector-Based Writing Assistance
Hubert Soyer, Goran Topić, Pontus Stenetorp and Akiko Aizawa . 91

Online Readability and Text Complexity Analysis with TextEvaluator
Diane Napolitano, Kathleen Sheehan and Robert Mundkowsky. .96

Natural Language Question Answering and Analytics for Diverse and Interlinked Datasets
Dezhao Song, Frank Schilder, Charese Smiley and Chris Brew . 101

WriteAhead2: Mining Lexical Grammar Patterns for Assisted Writing
Jim Chang and Jason Chang . 106

Question Answering System using Multiple Information Source and Open Type Answer Merge
Seonyeong Park, Soonchoul Kwon, Byungsoo Kim, Sangdo Han, Hyosup Shim and Gary Geunbae

Lee . 111

Using Word Semantics To Assist English as a Second Language Learners
Mahmoud Azab, Chris Hokamp and Rada Mihalcea . 116

viii

Conference Program

Tuesday, June 2, 2015

17:00–18:30 NAACL Demo Session A

Two Practical Rhetorical Structure Theory Parsers
Mihai Surdeanu, Tom Hicks and Marco Antonio Valenzuela-Escarcega

Analyzing and Visualizing Coreference Resolution Errors
Sebastian Martschat, Thierry Göckel and Michael Strube

hyp: A Toolkit for Representing, Manipulating, and Optimizing Hypergraphs
Markus Dreyer and Jonathan Graehl

Enhancing Instructor-Student and Student-Student Interactions with Mobile Inter-
faces and Summarization
Wencan Luo, Xiangmin Fan, Muhsin Menekse, Jingtao Wang and Diane Litman

RExtractor: a Robust Information Extractor
Vincent Kríž and Barbora Hladka

An AMR parser for English, French, German, Spanish and Japanese and a new
AMR-annotated corpus
Lucy Vanderwende, Arul Menezes and Chris Quirk

ICE: Rapid Information Extraction Customization for NLP Novices
Yifan He and Ralph Grishman

AMRICA: an AMR Inspector for Cross-language Alignments
Naomi Saphra and Adam Lopez

Ckylark: A More Robust PCFG-LA Parser
Yusuke Oda, Graham Neubig, Sakriani Sakti, Tomoki Toda and Satoshi Nakamura

ELCO3: Entity Linking with Corpus Coherence Combining Open Source Annota-
tors
Pablo Ruiz, Thierry Poibeau and Fréderique Mélanie

SETS: Scalable and Efficient Tree Search in Dependency Graphs
Juhani Luotolahti, Jenna Kanerva, Sampo Pyysalo and Filip Ginter

ix

Tuesday, June 2, 2015 (continued)

Visualizing Deep-Syntactic Parser Output
Juan Soler-Company, Miguel Ballesteros, Bernd Bohnet, Simon Mille and Leo
Wanner

WOLFE: An NLP-friendly Declarative Machine Learning Stack
Sameer Singh, Tim Rocktäschel, Luke Hewitt, Jason Naradowsky and Sebastian
Riedel

17:00–18:30 NAACL Demo Session B

Lean Question Answering over Freebase from Scratch
Xuchen Yao

A Web Application for Automated Dialect Analysis
Sravana Reddy and James Stanford

An Open-source Framework for Multi-level Semantic Similarity Measurement
Mohammad Taher Pilehvar and Roberto Navigli

Brahmi-Net: A transliteration and script conversion system for languages of the
Indian subcontinent
Anoop Kunchukuttan, Ratish Puduppully and Pushpak Bhattacharyya

A Concrete Chinese NLP Pipeline
Nanyun Peng, Francis Ferraro, Mo Yu, Nicholas Andrews, Jay DeYoung, Max
Thomas, Matthew R. Gormley, Travis Wolfe, Craig Harman, Benjamin Van Durme
and Mark Dredze

CroVeWA: Crosslingual Vector-Based Writing Assistance
Hubert Soyer, Goran Topić, Pontus Stenetorp and Akiko Aizawa

Online Readability and Text Complexity Analysis with TextEvaluator
Diane Napolitano, Kathleen Sheehan and Robert Mundkowsky

Natural Language Question Answering and Analytics for Diverse and Interlinked
Datasets
Dezhao Song, Frank Schilder, Charese Smiley and Chris Brew

WriteAhead2: Mining Lexical Grammar Patterns for Assisted Writing
Jim Chang and Jason Chang

Question Answering System using Multiple Information Source and Open Type An-
swer Merge
Seonyeong Park, Soonchoul Kwon, Byungsoo Kim, Sangdo Han, Hyosup Shim and
Gary Geunbae Lee

x

Tuesday, June 2, 2015 (continued)

Using Word Semantics To Assist English as a Second Language Learners
Mahmoud Azab, Chris Hokamp and Rada Mihalcea

xi

Proceedings of NAACL-HLT 2015, pages 1–5,
Denver, Colorado, May 31 – June 5, 2015. c©2015 Association for Computational Linguistics

Two Practical Rhetorical Structure Theory Parsers

Mihai Surdeanu, Thomas Hicks, and Marco A. Valenzuela-Escárcega
University of Arizona, Tucson, AZ, USA

{msurdeanu, hickst, marcov}@email.arizona.edu

Abstract

We describe the design, development, and
API for two discourse parsers for Rhetori-
cal Structure Theory. The two parsers use
the same underlying framework, but one uses
features that rely on dependency syntax, pro-
duced by a fast shift-reduce parser, whereas
the other uses a richer feature space, includ-
ing both constituent- and dependency-syntax
and coreference information, produced by the
Stanford CoreNLP toolkit. Both parsers ob-
tain state-of-the-art performance, and use a
very simple API consisting of, minimally, two
lines of Scala code. We accompany this code
with a visualization library that runs the two
parsers in parallel, and displays the two gen-
erated discourse trees side by side, which pro-
vides an intuitive way of comparing the two
parsers.

1 Introduction

This paper describes the design and development of
two practical parsers for Rhetorical Structure The-
ory (RST) discourse (Mann and Thompson, 1988).
This work contributes to the already vast body of
research on RST parsing (see, inter alia, Soricut and
Marcu, 2003; Feng and Hirst, 2012; Joty et al., 2013,
Joty et al., 2014) with the following:

1. We propose two parsers that use constituent-
based and dependency-based syntax, respec-
tively. The underlying framework, other than
the syntax-based features, is identical between
the parsers, which permits a rigorous analy-
sis of the impact of constituent and depen-
dency syntax to RST parsing. We describe

the parsers in Section 2 and empirically com-
pare the impact of the two syntactic represen-
tations in Section 3. Our analysis indicates
that both parsers achieve state-of-the-art perfor-
mance. The parser based on dependency syntax
performs marginally worse (by 0.1 F1 points)
but runs approximately 2.5 times faster than the
parser based on constituent syntax. On average,
the faster parser processes one document from
the RST corpus in 2.3 seconds.

2. Both parsers have been released as open-source
Scala code with a very simple API; consisting
of, minimally, two lines of code. We discuss
this API in Section 4.

3. We also introduce a visualization tool that runs
the two parsers in parallel, and displays the
two generated discourse structures side by side.
This allows users to directly compare the run-
times and outputs of the two parsers. This visu-
alization tool will be the centerpiece of the pro-
posed demo session. We summarize this tool in
Section 5.

2 The Two Parsers

The proposed parsing approach follows the archi-
tecture introduced by Hernault et al. (2010), and
Feng and Hirst (2012). The parser first segments
the text into elementary discourse units (EDUs) us-
ing an i.i.d. classifier that identifies which tokens
end an EDU. Then the parser iteratively constructs
the discourse tree (consisting of binary relations be-
tween discourse units) using a greedy bottom-up ap-
proach that interleaves two classifiers: the first de-

1

tects which two adjacent discourse units are most
likely to be connected given the current sequence of
units; and the second labels the corresponding rela-
tion. The resulting discourse unit produced by the
new relation replaces its two children. The process
repeats until there is a single discourse unit spanning
the text.1

We chose this algorithm rather than other recent
proposed approaches (Joty et al., 2013; Joty and
Moschitti, 2014) because: (a) it promotes a sim-
ple, modular architecture; (b) it is fast, and (c)
as we show later, it performs well. For classifi-
cation, we experimented with Support Vector Ma-
chines (SVM), Perceptron, and Logistic Regression
(LR). The results reported here use Perceptron for
EDU segmentation and relation detection, and LR
for relation labeling, thus offering a good balance
between performance and quick training.

With respect to features, our approach builds on
previous work (Hernault et al., 2010; Feng and
Hirst, 2012; Joty et al., 2013) and extends it in two
ways. First, we implement all syntactic features us-
ing both constituent and dependency syntax. For ex-
ample, a crucial feature used by the relation detec-
tion/labeling classifiers is the dominance relations
of Soricut and Marcu (2003), which capture syntac-
tic dominance between discourse units located in the
same sentence. While originally these dominance
relations were implemented using constituent syn-
tax, we provide an equivalent implementation that
relies on dependency syntax. There are two advan-
tages to this approach: (a) we can now implement a
full RST discourse parser using a (much faster) de-
pendency parser; (b) when using a parser that pro-
duces both constituent and dependency syntax, such
as Stanford’s CoreNLP2, our experiments show that
using both these feature sets increases the perfor-
mance of the model.

Our second contribution is adding features based
on coreference links. We currently use corefer-
ence information in two of the latter classifiers (re-
lation detection and labeling) by counting the num-
ber of coreference links crossing between the two

1Interleaving the two classifiers in this iterative procedure
guarantees that the classifiers have access to features extracted
from the discourse subtrees constructed in previous iterations.

2http://nlp.stanford.edu/software/
corenlp.shtml

discourse units under consideration. The intuition
behind this feature is that the more coreferential re-
lations exist between two discourse units, the more
likely they are to be directly connected.

Using the above framework, we implemented
two discourse parsers. The first uses CoreNLP for
syntactic parsing and coreference resolution. This
parser uses both constituent- and dependency-based
features generated using the parser of Manning and
Klein (2003). The second discourse parser uses ei-
ther Malt3 or the recent neural-network-based parser
of Chen and Manning (2014) for dependency pars-
ing. The second discourse parser does not use
constituent- nor coreference-based features. For all
syntactic parsers, we used the “basic” Stanford de-
pendency representation (de Marneffe et al., 2006).
Empirically, we found that this representation yields
better discourse parsing performance than any of the
“collapsed” representations.

3 Analysis

We analyze the performance of the two discourse
parsers in Table 1. For conciseness, we identify the
parser that uses both constituent- and dependency-
based syntax and coreference resolution (all pro-
duced using CoreNLP) as C, and the parser that uses
only dependency-based features as D. The latter one
is subclassed as Dmalt, if the syntactic analysis is
performed with the Malt parser, or Dstanford, if syn-
tactic parsing is performed with the parser of Chen
and Manning (2014). Because we are interested in
end-to-end performance, we report solely end-to-
end performance on the RST test corpus (Carlson et
al., 2003). This analysis yields several observations:

• The overall performance of the proposed
parsers compares favorably with the state of the
art. Both the C and D parsers outperform the
parser of Hernault et al. (2010), and perform
comparably to the parser of Joty et al. (2013).
The recent work of Joty et al. (2014), which
uses a considerably more complex architecture
based on reranking, outperforms our parsers by
1.8 F1 points.

• In general, the C parser performs better than
D on all metrics. This is to be expected

3http://www.maltparser.org

2

Manual Predicted
EDUs EDUs

F1 P R F1

Dmalt 54.3 48.3 47.5 47.9
Dstanford 55.2 49.1 48.5 48.8
C 55.5 49.2 48.5 48.9
C – dep 55.5 47.9 47.6 47.7
C – const 53.7 47.7 47.0 47.3
C – coref 55.2 49.0 48.3 48.7
C – const – coref 53.9 47.9 47.2 47.5
Hernault 2010 54.8 47.7 46.9 47.3
Joty 2013 55.8 – – –
Joty 2014 57.3 – – –

Table 1: Performance of the two discourse parsers: one
relying on constituent-based syntactic parsing (C), and
another using a dependency parser (D). We report end-
to-end results on the 18 relations with nuclearity infor-
mation used by (Hernault et al., 2010; Feng and Hirst,
2012), using both manual segmentation of text into EDUs
(left table block), and EDUs predicted by the parser
(right block). We used the Precision/Recall/F1 metrics
introduced by Marcu (2000). The ablation test removes
various feature groups: features extracted from the de-
pendency representation (dep), features from constituent
syntax (const), and coreference features (coref). We com-
pare against previous work that reported end-to-end per-
formance of their corresponding approaches (Hernault et
al., 2010; Joty et al., 2013; Joty and Moschitti, 2014).

considering that C uses both constituent- and
dependency-based features, and coreference in-
formation. However, the improvement is small
(e.g., 0.2 F1 points when gold EDUs are used)
and the D parser is faster: it processes the en-
tire test dataset in 88 seconds (at an average of
2.3 seconds/document) vs. 224 seconds for C.4

For comparison, the (Feng and Hirst, 2012) dis-
course parser processes the same dataset in 605
seconds.

• The comparison of the two configurations
of the dependency-based parser (“Dmalt” vs.
“Dstanford”) indicates that the parser of Chen
and Manning (2014) yields better RST parsing
performance than the Malt parser, e.g., by 0.9
F1 points when predicted EDUs are used.

4These times were measured on a laptop with an i7 Intel
CPU and 16GB of RAM. The times include end-to-end execu-
tion, including model loading and complete preprocessing of
text, from tokenization to syntactic parsing and coreference res-
olution.

• The ablation test in rows 4–5 of the ta-
ble indicate that the two syntactic representa-
tions complement each other well: removing
dependency-based features (the “C – dep” row)
drops the F1 score for predicted EDUs by 1.2
points (because of the worse EDU segmenta-
tion); removing constituent-based features (“C
– const”) drops performance by 1.6 F1 points.

• Feature wise, the “C – const – coref” system is
equivalent to D, but with dependency parsing
performed by converting the constituent trees
produced by the Stanford parser to dependen-
cies, rather than direct dependency parsing. It
is interesting to note that the performance of
this system is lower than both configurations of
the D parser, suggesting that direct dependency
parsing with a dedicated model is beneficial.

• The “C – coref” ablation experiment indicates
that coreference information has a small contri-
bution to the overall performance (0.3 F1 points
when gold EDUs are used). Nevertheless, we
find this result exciting, considering that this is
a first attempt at using coreference information
for discourse parsing.

4 Usage

With respect to usage, we adhere to the simplic-
ity principles promoted by Stanford’s CoreNLP,
which introduced a simple, concrete Java API
rather than relying on heavier frameworks, such as
UIMA (Ferrucci and Lally, 2004). This guaran-
tees that a user is “up and running in ten minutes
or less”, by “doing one thing well” and “avoid-
ing over-design” (Manning et al., 2014). Follow-
ing this idea, our API contains two Processor
objects, one for each discourse parser, and a sin-
gle method call, annotate(), which implements
the complete analysis of a document (represented
as a String), from tokenization to discourse pars-
ing.5 Figure 1 shows sample API usage. The
annotate() method produces a Document ob-
ject, which stores all NLP annotations: tokens,
part-of-speech tags, constituent trees, dependency
graphs, coreference relations, and discourse trees.

5Additional methods are provided for pre-existing tokeniza-
tion and/or sentence segmentation.

3

import edu.arizona.sista.processors.corenlp._
import edu.arizona.sista.processors.fastnlp._
//
// CoreNLPProcessor:
// - syntax/coref with CoreNLP;
// - constituent-based RST parser.
// FastNLPProcessor:
// - syntax with Malt or CoreNLP.
// - dependency-based RST parser.
//
val processor = new CoreNLPProcessor()
val document = processor.annotate(

"Tandy Corp. said it won’t join U.S.
Memories, the group that seeks to battle
the Japanese in the market for computer
memory chips.")

println(document.discourseTree.get)

Figure 1: Minimal (but complete) code for using
the discourse parser. Use CoreNLPProcessor
for the constituent-based RST parser, and
FastNLPProcessor for the dependency-based
discourse parser. Other than the different constructors,
the APIs are identical.

The DiscourseTree class is summarized in Fig-
ure 2.

The code for the two parsers is available on
GitHub, and is also packaged as two JAR files in the
Maven Central Repository (one JAR file for code,
and another for the pre-trained models), which guar-
antees that others can install and use it with minimal
effort. For code and more information, please see
the project’s GitHub page: https://github.
com/sistanlp/processors.

5 Visualization of Discourse Trees

We accompany the above Scala library with a web-
based visualization tool that runs the two parsers in
parallel and visualizes the two outputs for the same
text side by side. This allows the users to: (a) di-
rectly compare the runtimes of the two systems in
realtime for arbitrary texts; (b) analyze the qualita-
tive difference in the outputs of two parsers; and (c)
debug incorrect outputs (e.g., is the constituent tree
correct?). Figure 3 shows a screenshot of this visu-
alization tool.

The visualization tool is implemented as a client-
server Grails6 web application which runs the
parsers (on the server) and collects and displays
the results (on the client side). The application’s
client-side code displays both the discourse trees and

6https://grails.org

class DiscourseTree (
/** Label of this tree, if non-terminal */
var relationLabel:String,
/** Direction of the relation,

* if non-terminal. It can be:

* LeftToRight, RightToLeft,

* or None. */
var relationDir:RelationDirection.Value,
/** Children of this non-terminal node */
var children:Array[DiscourseTree],
/** Raw text attached to this node */
val rawText:String,
/** Position of the first token in the

* text covered by this discourse tree */
var firstToken: TokenOffset,
/** Position of the last token in the

* text covered by this discourse tree;

* this is inclusive! */
var lastToken: TokenOffset

)

Figure 2: Relevant fields in the DiscourseTree class,
which stores the RST tree produced by the parsers for a
given document. The token offsets point to tokens stored
in the Document class returned by the annotate()
method above.

syntactic information using Dagre-d37, a D3-based8

renderer for the Dagre graph layout engine.

6 Conclusions

This work described the design, development and
the resulting open-source software for a parsing
framework for Rhetorical Structure Theory. Within
this framework, we offer two parsers, one built on
top of constituent-based syntax, and the other that
uses dependency-based syntax. Both parsers obtain
state-of-the-art performance, are fast, and are easy
to use through a simple API.

In future work, we will aim at improving the per-
formance of the parsers using joint parsing models.
Nevertheless, it is important to note that RST parsers
have already demonstrated their potential to improve
natural language processing applications. For ex-
ample, in our previous work we used features ex-
tracted from RST discourse relations to enhance a
non-factoid question answering system (Jansen et
al., 2014). In recent work, we showed how to use
discourse relations to generate artificial training data
for mono-lingual alignment models for question an-
swering (Sharp et al., 2015).

7https://github.com/cpettitt/dagre-d3
8http://d3js.org

4

Figure 3: Screenshot of the discourse parser visualization tool for the input: “Tandy Corp. said it won’t join U.S.
Memories, the group that seeks to battle the Japanese in the market for computer memory chips.” The left pane shows
the output of the C parser; the right one shows the output of the D parser. Hovering with the cursor over a tree node
shows its full content. Not shown here but included in the visualization: syntactic analyses used by the two parses and
runtimes for each component (from tokenization to syntactic analysis).

Acknowledgments

This work was funded by the DARPA Big Mecha-
nism program under ARO contract W911NF-14-1-
0395.

References
L. Carlson, D. Marcu, and M. E. Okurowski. 2003.

Building a Discourse-Tagged Corpus in the Frame-
work of Rhetorical Structure Theory. In Jan van Kup-
pevelt and Ronnie Smith, editors, Current Directions
in Discourse and Dialogue, pages 85–112. Kluwer
Academic Publishers.

D. Chen and C. D. Manning. 2014. A fast and accu-
rate dependency parser using neural networks. In Pro-
ceedings of the Conference on Empirical Methods in
Natural Language Processing (EMNLP).

M.-C. de Marneffe, B. MacCartney, and C. D. Man-
ning. 2006. Generating typed dependency parses from
phrase structure parses. In Proceedings of the Interna-
tional Conference on Language Resources and Evalu-
ation (LREC).

V. W. Feng and G. Hirst. 2012. Text-level discourse pars-
ing with rich linguistic features. In Proceedings of the
Association for Computational Linguistics.

D. Ferrucci and A. Lally. 2004. UIMA: an architec-
tural approach to unstructured information processing
in the corporate research environment. Natural Lan-
guage Engineering, 10:327–348.

H. Hernault, H. Prendinger, D. duVerle, and M. Ishizuka.
2010. HILDA: A discourse parser using support vec-
tor machine classification. Dialogue and Discourse,
1(3):1–33.

P. Jansen, M. Surdeanu, and P. Clark. 2014. Discourse
complements lexical semantics for non-factoid answer

reranking. In Proceedings of the 52nd Annual Meeting
of the Association for Computational Linguistics.

S. Joty and A. Moschitti. 2014. Discriminative reranking
of discourse parses using tree kernels. In Proceedings
of the Conference on Empirical Methods in Natural
Language Processing.

S. Joty, G. Carenini, R. Ng, and Y. Mehdad. 2013. Com-
bining intra- and multi-sentential rhetorical parsing for
document-level discourse analysis. In Proceedings of
the 51st Annual Meeting of the Association for Com-
putational Linguistics.

D. Klein and C. D. Manning. 2003. Accurate unlexical-
ized parsing. In Proceedings of the 41st Annual Meet-
ing of the Association for Computational Linguistics
(ACL).

W. C. Mann and S. A. Thompson. 1988. Rhetorical
structure theory: Toward a functional theory of text
organization. Text, 8(3):243–281.

C. D. Manning, M. Surdeanu, J. Bauer, J. Finkel, S. J.
Bethard, and D. McClosky. 2014. The Stanford
CoreNLP natural language processing toolkit. In Pro-
ceedings of the 52nd Annual Meeting of the Associa-
tion for Computational Linguistics.

D. Marcu. 2000. The Theory and Practice of Discourse
Parsing and Summarization. MIT Press.

R. Sharp, P. Jansen, M. Surdeanu, and P. Clark. 2015.
Spinning straw into gold: Using free text to train
monolingual alignment models for non-factoid ques-
tion answering. In Proceedings of the Conference of
the North American Chapter of the Association for
Computational Linguistics - Human Language Tech-
nologies (NAACL HLT).

R. Soricut and D. Marcu. 2003. Sentence level discourse
parsing using syntactic and lexical information. In
Proceedings of the Human Language Technology and
North American Association for Computational Lin-
guistics Conference.

5

Proceedings of NAACL-HLT 2015, pages 6–10,
Denver, Colorado, May 31 – June 5, 2015. c©2015 Association for Computational Linguistics

Analyzing and Visualizing Coreference Resolution Errors

Sebastian Martschat1, Thierry Göckel2 and Michael Strube1

1Heidelberg Institute for Theoretical Studies gGmbH, Heidelberg, Germany
(sebastian.martschat|michael.strube)@h-its.org

2iQser GmbH, Walldorf, Germany
thierry.goeckel@iqser.com

Abstract

We present a toolkit for coreference resolution
error analysis. It implements a recently pro-
posed analysis framework and contains rich
components for analyzing and visualizing re-
call and precision errors.

1 Introduction

Coreference resolution is the task of determining
which mentions in a text refer to the same en-
tity. Both the natural language processing engineer
(who needs a coreference resolution system for the
problem at hand) and the coreference resolution re-
searcher need tools to facilitate and support system
development, comparison and analysis.

In Martschat and Strube (2014), we propose a
framework for error analysis for coreference resolu-
tion. In this paper, we present cort1, an implementa-
tion of this framework, and show how it can be use-
ful for engineers and researchers. cort is released as
open source and is available for download2.

2 Error Analysis Framework

Due to the set-based nature of coreference resolu-
tion, it is not clear how to extract errors when an
entity is not correctly identified. The idea underly-
ing the analysis framework of Martschat and Strube
(2014) is to employ spanning trees in a graph-based
entity representation.

1Short for coreference resolution toolkit.
2http://smartschat.de/software

Figure 1 summarizes their approach. They repre-
sent reference and system entities as complete one-
directional graphs (Figures 1a and 1b). To extract
recall errors, they compute a spanning tree of the
reference entity (Figure 1a). All edges in the span-
ning tree which do not appear in the system output
are extracted as recall errors (Figure 1c). For ex-
tracting precision errors, the roles of reference and
system entities are switched.

The analysis algorithm is parametrized only by
the spanning tree algorithm employed: different al-
gorithms lead to different notions of errors. In
Martschat and Strube (2014), we propose an algo-
rithm based on Ariel’s accessibility theory (Ariel,
1990) for reference entities. For system entity span-
ning trees, we take each output pair as an edge.

3 Architecture

Our toolkit is available as a Python library. It
consists of three modules: the core module pro-
vides mention extraction and preprocessing, the
coreference module implements features for
and approaches to coreference resolution, and the
analysis module implements the error analysis
framework described above and ships with other
analysis and visualization utilities.

3.1 core

All input and output must conform to the format of
the CoNLL-2012 shared task on coreference resolu-
tion (Pradhan et al., 2012). We employ a rule-based
mention extractor, which also computes a rich set of
mention attributes, including tokens, head, part-of-
speech tags, named entity tags, gender, number, se-

6

(a)
m1

Obama

m2

he

m3

the president

m4

his

(b)
m1

m2

m3

the president

m4

n1 n2n3

(c)
m1

m3

the president

Figure 1: (a) a reference entity r (represented as a complete one-directional graph) and its spanning tree Tr, (b) a set
S of three system entities, (c) the errors: all edges in Tr which are not in S.

mantic class, grammatical function, coarse mention
type and fine-grained mention type.

3.2 coreference

cort ships with two coreference resolution ap-
proaches. First, it includes multigraph, which is a
deterministic approach using a few strong features
(Martschat and Strube, 2014). Second, it includes
a mention-pair approach (Soon et al., 2001) with
a large feature set, trained via a perceptron on the
CoNLL’12 English training data.

System MUC B3 CEAFe Average

StanfordSieve 64.96 54.49 51.24 56.90
BerkeleyCoref 70.27 59.29 56.11 61.89

multigraph 69.13 58.61 56.06 61.28
mention-pair 69.09 57.84 53.56 60.16

Table 1: Comparison of systems on CoNLL’12 English
development data.

In Table 1, we compare both approaches with
StanfordSieve (Lee et al., 2013), the winner of the
CoNLL-2011 shared task, and BerkeleyCoref (Dur-
rett and Klein, 2013), a state-of-the-art structured
machine learning approach. The systems are eval-
uated via the CoNLL scorer (Pradhan et al., 2014).

Both implemented approaches achieve competi-
tive performance. Due to their modular implemen-
tation, both approaches are easily extensible with
new features and with training or inference schemes.
They therefore can serve as a good starting point for
system development and analysis.

3.3 analysis

The core of this module is the ErrorAnalysis
class, which extracts and manages errors extracted
from one or more systems. The user can define
own spanning tree algorithms to extract errors. We
already implemented the algorithms discussed in
Martschat and Strube (2014). Furthermore, this
module provides functionality to

• categorize and filter sets of errors,
• visualize these sets,
• compare errors of different systems, and
• display errors in document context.

Which of these features is interesting to the user de-
pends on the use case. In the following, we will
describe the popular use case of improving a coref-
erence system in detail. Our system also supports
other use cases, such as the cross-system analysis
described in Martschat and Strube (2014).

4 Use Case: Improving a Coreference
Resolution System

A natural language processing engineer might be in-
terested in improving the performance of a corefer-
ence resolution system since it is necessary for an-
other task. The needs may differ depending on the
task at hand: for some tasks proper name corefer-
ence may be of utmost importance, while other tasks
need mostly pronoun coreference. Through model
and feature redesign, the engineer wants to improve
the system with respect to a certain error class.

The user will start with a baseline system, which
can be one of the implemented systems in our toolkit
or a third-party system. We now describe how cort
facilitates improving the system.

7

4.1 Initial Analysis

To get an initial assessment, the user can extract all
errors made by the system and then make use of the
plotting component to compare these errors with the
maximum possible number of errors3.

For a meaningful analysis, we have to find a suit-
able error categorization. Suppose the user is inter-
ested in improving recall for non-pronominal coref-
erence. Hence, following Martschat and Strube
(2014), we categorize all errors by coarse mention
type of anaphor and antecedent (proper name, noun,
pronoun, demonstrative pronoun or verb)4.

Both name Noun-Name Name-Noun Both noun
Category

0

500

1000

1500

2000

2500

3000

3500

4000

N
u
m

b
e
r

o
f

e
rr

o
rs

Recall Errors
maximum

multigraph

Figure 2: Recall errors of the multigraph baseline.

Figure 2 compares the recall error numbers of
the multigraph system with the maximum possible
number of errors for the categories of interest to
the engineer. The plot was created by our toolkit
via matplotlib (Hunter, 2007). We can see that the
model performs very well for proper name pairs.
Relative to the maximum number of errors, there are
much more recall errors in the other categories. A
plot for precision errors shows that the system makes
only relatively few precision errors, especially for
proper name pairs.

After studying these plots the user decides to im-
prove recall for pairs where the anaphor is a noun
and the antecedent is a name. This is a frequent cat-
egory which is handled poorly by the system.

3For recall, the maximum number of errors are the errors
made by a system which puts each mention in its own cluster.
For precision, we take all pairwise decisions of a model.

4For a pair of mentions constituting an error, we call the
mention appearing later in the text the anaphor, the other men-
tion antecedent.

4.2 Detailed Analysis

In order to determine how to improve the system,
the user needs to perform a detailed analysis of
the noun-name errors. Our toolkit provides sev-
eral methods to do so. First of all, one can browse
through the pairwise error representations. This sug-
gests further subcategorization (for example by the
presence of token overlap). An iteration of this pro-
cess leads to a fine-grained categorization of errors.

However, this approach does not provide any doc-
ument context, which is necessary to understand
some errors. Maybe context features can help in re-
solving the error, or the error results from multiple
competing antecedents. We therefore include a visu-
alization component, which also allows to study the
interplay between recall and precision.

Figure 3 shows a screenshot of this visualiza-
tion component, which runs in a web browser using
JavaScript. The header displays the identifier of the
document in focus. The left bar contains the naviga-
tion panel, which includes

• a list of all documents in the corpus,
• a summary of all errors for the document in fo-

cus, and
• lists of reference and system entities for the

document in focus.
To the right of the navigation panel, the document in
focus is shown. When the user picks a reference or
system entity from the corresponding list, cort dis-
plays all recall and precision errors for all mentions
which are contained in the entity (as labeled red ar-
rows between mentions). Alternatively, the user can
choose an error category from the error summary. In
that case, all errors of that category are displayed.

We use color to distinguish between entities:
mentions in different entities have different back-
ground colors. Additionally mentions in reference
entities have a yellow border, while mentions in sys-
tem entities have a blue border (for example, the
mention the U.S.-backed rebels is in a reference en-
tity and in a system entity). The user can choose to
color the background of mentions either depending
on their gold entity or depending on their system en-
tity.

These visualization capabilities allow for a de-
tailed analysis of errors and enable the user to take
all document information into account.

8

Figure 3: Screenshot of the visualization component.

The result of the analysis is that almost all errors
are missed is-a relations, such as in the examples in
Figure 3 (the U.S.-backed rebels and the Contras).

4.3 Error Comparison
Motivated by this, the user can add features to the
system, for example incorporating world knowledge
from Wikipedia. The output of the changed model
can be loaded into the ErrorAnalysis object
which already manages the errors made by the base-
line system.

To compare the errors, cort implements various
functions. In particular, the user can access com-
mon errors and errors which are unique to one or
more systems. This allows for an assessment of the
qualitative usefulness of the new feature. Depend-

ing on the results of the comparison, the user can
decide between discarding, retaining and improving
the feature.

5 Related Work

Compared to our original implementation of the
error analysis framework (Martschat and Strube,
2014), we made the analysis interface more user-
friendly and provide more analysis functionality.
Furthermore, while our original implementation did
not include any visualization capabilities, we now
allow for both data visualization and document vi-
sualization.

We are aware of two other software packages for
coreference resolution error analysis. Our toolkit

9

complements these. Kummerfeld and Klein (2013)
present a toolkit which extracts errors from transfor-
mation of reference to system entities. Hence, their
definition of what an error is not rooted in a pairwise
representation, and is therefore conceptually differ-
ent from our definition. They do not provide any
visualization components.

ICE (Gärtner et al., 2014) is a toolkit for corefer-
ence visualization and corpus analysis. In particu-
lar, the toolkit visualizes recall and precision errors
in a tree-based visualization of coreference clusters.
Compared to ICE, we provide more extensive func-
tionality for error analysis and can accommodate for
different notions of errors.

6 Conclusions and Future Work

We presented cort, a toolkit for coreference reso-
lution error analysis. It implements a graph-based
analysis framework, ships with two strong coref-
erence resolution baselines and provides extensive
functionality for analysis and visualization.

We are currently investigating whether the analy-
sis framework can also be applied to structurally re-
lated tasks, such as cross-document coreference res-
olution (Singh et al., 2011) or entity linking.

Acknowledgements

This work has been funded by the Klaus Tschira
Foundation, Heidelberg, Germany. The first author
has been supported by a HITS PhD scholarship.

References

Mira Ariel. 1990. Accessing Noun Phrase Antecedents.
Routledge, London, U.K.; New York, N.Y.

Greg Durrett and Dan Klein. 2013. Easy victories and
uphill battles in coreference resolution. In Proceed-
ings of the 2013 Conference on Empirical Methods in
Natural Language Processing, Seattle, Wash., 18–21
October 2013, pages 1971–1982.

Markus Gärtner, Anders Björkelund, Gregor Thiele,
Wolfgang Seeker, and Jonas Kuhn. 2014. Visualiza-
tion, search, and error analysis for coreference anno-
tations. In Proceedings of 52nd Annual Meeting of
the Association for Computational Linguistics: System
Demonstrations, Baltimore, Md., 22–27 June 2014,
pages 7–12.

John D. Hunter. 2007. Matplotlib: A 2D graphics
environment. Computing in Science & Engineering,
9(3):90–95.

Jonathan K. Kummerfeld and Dan Klein. 2013. Error-
driven analysis of challenges in coreference resolution.
In Proceedings of the 2013 Conference on Empiri-
cal Methods in Natural Language Processing, Seattle,
Wash., 18–21 October 2013, pages 265–277.

Heeyoung Lee, Angel Chang, Yves Peirsman, Nathanael
Chambers, Mihai Surdeanu, and Dan Jurafsky. 2013.
Deterministic coreference resolution based on entity-
centric, precision-ranked rules. Computational Lin-
guistics, 39(4):885–916.

Sebastian Martschat and Michael Strube. 2014. Recall
error analysis for coreference resolution. In Proceed-
ings of the 2014 Conference on Empirical Methods
in Natural Language Processing, Doha, Qatar, 25–29
October 2014, pages 2070–2081.

Sameer Pradhan, Alessandro Moschitti, Nianwen Xue,
Olga Uryupina, and Yuchen Zhang. 2012. CoNLL-
2012 Shared Task: Modeling multilingual unrestricted
coreference in OntoNotes. In Proceedings of the
Shared Task of the 16th Conference on Computational
Natural Language Learning, Jeju Island, Korea, 12–14
July 2012, pages 1–40.

Sameer Pradhan, Xiaoqiang Luo, Marta Recasens, Ed-
uard Hovy, Vincent Ng, and Michael Strube. 2014.
Scoring coreference partitions of predicted mentions:
A reference implementation. In Proceedings of the
52nd Annual Meeting of the Association for Compu-
tational Linguistics (Volume 2: Short Papers), Balti-
more, Md., 22–27 June 2014, pages 30–35.

Sameer Singh, Amarnag Subramanya, Fernando Pereira,
and Andrew McCallum. 2011. Large-scale cross-
document coreference using distributed inference and
hierarchical models. In Proceedings of the 49th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), Portland, Oreg.,
19–24 June 2011, pages 793–803.

Wee Meng Soon, Hwee Tou Ng, and Daniel Chung Yong
Lim. 2001. A machine learning approach to corefer-
ence resolution of noun phrases. Computational Lin-
guistics, 27(4):521–544.

10

Proceedings of NAACL-HLT 2015, pages 11–15,
Denver, Colorado, May 31 – June 5, 2015. c©2015 Association for Computational Linguistics

hyp: A Toolkit for Representing, Manipulating, and Optimizing Hypergraphs

Markus Dreyer∗
SDL Research

6060 Center Drive Suite 150
Los Angeles, CA 90045

markus.dreyer@gmail.com

Jonathan Graehl
SDL Research

6060 Center Drive Suite 150
Los Angeles, CA 90045
graehl@sdl.com

Abstract

We present hyp, an open-source toolkit for
the representation, manipulation, and opti-
mization of weighted directed hypergraphs.
hyp provides compose, project, in-
vert functionality, k-best path algorithms,
the inside and outside algorithms, and more.
Finite-state machines are modeled as a spe-
cial case of directed hypergraphs. hyp con-
sists of a C++ API, as well as a command
line tool, and is available for download at
github.com/sdl-research/hyp.

1 Introduction

We present hyp, an open-source toolkit that pro-
vides data structures and algorithms to process
weighted directed hypergraphs.

Such hypergraphs are important in natural lan-
guage processing and machine learning, e.g., in
parsing (Klein and Manning (2005), Huang and
Chiang (2005)), machine translation (Kumar et al.,
2009), as well as in logic (Gallo et al., 1993) and
weighted logic programming (Eisner and Filardo,
2011).

The hyp toolkit enables representing and ma-
nipulating weighted directed hypergraphs, pro-
viding compose, project, invert functional-
ity, k-best path algorithms, the inside and out-
side algorithms, and more. hyp also implements
a framework for estimating hypergraph feature
weights by optimization on forests derived from
training data.

∗Markus Dreyer is now at Amazon, Inc., Seattle, WA.

tail1

tail2

tail3

head
w

Figure 1: An arc leading from three tail states to a head state,
with weight w .

2 Definitions

A weighted directed hypergraph (hereinafter hy-
pergraph) is a pair H = 〈V,E〉, where V is a set of
vertices and E a set of edges. Each edge (also called
hyperedge) is a triple e = 〈T(e),h(e), w(e)〉, where
T(e) is an ordered list of tails (i.e., source vertices),
h(e) is the head (i.e., target vertex) and w(e) is the
semiring weight (see Section 3.4) of the edge (see
Figure 1).

We regard hypergraphs as automata and call the
vertices states and edges arcs. We add an optional
start state S ∈ V and a final state F ∈ V.

Each state s has an input label i (s) ∈ (Σ∪ {∅})
and output label o(s) ∈ (Σ∪ {∅}); if o(s) = ∅ then
we treat the state as having o(s) = i (s). The label
alphabet Σ is divided into disjoint sets of nonter-
minal, lexical, and special {ε,φ,ρ,σ} labels. The
input and output labels are analogous to those of
a finite-state transducer in some hyp operations
(Section 3.3).

The set of incoming arcs into a state s is called
the Backward Star of s, or short, BS(s). Formally,
BS(s) = {a ∈ E : h(a) = s}. A path π is a sequence
of arcs π = (a1 . . . ak) ∈ E∗ such that ∀a ∈ π,∀t ∈
T(a), (∃a′ ∈π : h(a′) = t)∨BS(t) =;. Each tail state

11

t of each arc on the path must be the head of some
arc on the path, unless t is the start state or has
no incoming arcs and a terminal (lexical or spe-
cial) input label, in which case we call t an axiom.
The rationale is that each tail state of each arc on
the path must be derived, by traveling an arc that
leads to it, or given as an axiom. If the hypergraph
has a start state, the first tail of the first arc of any
path must be the start state. The head of the last
arc must always be the final state, h(ak) = F. Paths
correspond to trees, or proofs that the final state
may be reached from axioms.

Hypergraph arcs have exactly one head; some
authors permit multiple heads and would call our
hypergraphs B-hypergraphs (Gallo et al., 1993).

3 Representing hypergraphs

Text representation. hyp uses a simple human-
readable text format for hypergraphs. For exam-
ple, see the first two lines in Figure 2. Each hyper-
graph arc has the following format:

head <- tail1 tail2 ... tailn / weight

Head and tail states are non-negative integers
followed by an optional label in parentheses (or
a pair of (input output) labels). If it is lexi-
cal (i.e., a word), then it is double-quoted with the
usual backslash-escapes; nonterminal and special
symbols are unquoted. Special symbols like ε, φ,
ρ, σ are written with brackets, as <eps>, <phi>,
<rho>, <sigma>. Each arc may optionally have
a slash followed by a weight, which is typically a
negative log probability (i.e., the cost of the arc). A
final state n is marked as FINAL <- n. Figure 2
shows the text and visual representation of a hy-
pergraph with only one arc; it represents and ac-
cepts the string he eats rice.

Visual representation. A provided Draw com-
mand can render hypergraphs using Graphviz
(Gansner and North, 2000). Small gray numbers
indicate the order of arc tails. Axiom nodes are
filled gray.1 The final state is drawn as a double cir-
cle, following finite-state convention.

1Gray is used analogously in graphical models for observed
nodes.

0(S) <- 1("he") 2("eats") 3("rice") / 0.693
FINAL <- 0(S)

S

"he"

1

"eats"
2

"rice"

3
0.693

Figure 2: The text and visual representation of a hypergraph
with a single arc, similar to Figure 1. The visual representation
leaves out the state IDs of labeled states.

0(S) <- 1(NP) 2(VP)
1(NP) <- 3(PRON)
2(VP) <- 4(V) 5(NP) 6(PP)
3(PRON) <- 10("He")
4(V) <- 11("eats")
5(NP) <- 7(N)
6(PP) <- 8(PREP) 9(N)
7(N) <- 12("rice")
8(PREP) <- 13("with")
9(N) <- 14("sticks")
FINAL <- 0(S)
These added arcs
make it into a forest:
15(NP) <- 7(N) 6(PP)
2(VP) <- 4(V) 15(NP)

S

NP 1

VP

2

PRON

V
1

1

NP
2

PP
3

2

N 1
PREP 1

N

2

"He"

"eats"

"rice"
"with"

"sticks"

NP

2

Figure 3: A packed forest.

Reducing redundancy. State labels need not be
repeated at every mention of that state’s ID; if a
state has a label anywhere it has it always. For ex-
ample, we write the label S for state 0 in Figure 2
only once:
0(S) <- 1("he") 2("eats") 3("rice") / 0.693
FINAL <- 0

Similarly, state IDs may be left out wherever a
label uniquely identifies a particular state:
0(S) <- ("he") ("eats") ("rice") / 0.693
FINAL <- 0

hyp generates state IDs for these states automati-
cally.

3.1 Trees and forests

A forest is a hypergraph that contains a set of trees.
A forest may be packed, in which case its trees
share substructure, like strings in a lattice. An ex-
ample forest in hyp format is shown in Figure 3.
Any two or more arcs pointing into one state have
OR semantics; the depicted forest compactly rep-

12

0 1he 2eats 3rice

Figure 4: A one-sentence finite-state machine in OpenFst.

START <- 0
1 <- 0 4("he")
2 <- 1 5("eats")
3 <- 2 6("rice")
FINAL <- 3

0 1

1
1

2
1

3

"he"

2

"eats"

2

"rice"

2

Figure 5: A one-sentence finite-state hypergraph in hyp.

resents two interpretations of one sentence: (1) he
eats rice using sticks OR he eats rice that has sticks.
Hypergraphs can represent any context-free gram-
mar, where the strings in the grammar are the lex-
ical yield (i.e., leaves in order) of the hypergraph
trees.

3.2 Strings, lattices, and general FSMs

In addition to trees and forests, hypergraphs can
represent strings, lattices, and general finite-state
machines (FSMs) as a special case. A standard
finite-state representation of a string would look
like Figure 4, which shows a left-recursive bracket-
ing as (((he) eats) rice), i.e., we read “he”,
combine it with “eats”, then combine the result
with “rice” to accept the whole string (Allauzen et
al., 2007).

We can do something similar in hyp using
hypergraphs—see Figure 5. The hypergraph can
be traversed bottom-up by first reading start state
0 and the “he” axiom state, reaching state 1, then
reading the following words until finally arriving at
the final state 3. The visual representation of this
left-recursive hypergraph can be understood as an
unusual way to draw an FSM, where each arc has
an auxiliary label state. If a hypergraph has a start
state and all its arcs are finite-state arcs, hyp recog-
nizes it as an FSM; some operations may require or
optimize for an FSM rather than a general hyper-
graph. A finite-state arc has two tails, where the
first one is a structural state and the second one a
terminal label state.2 Adding additional arcs to the

2Some operations may efficiently transform a generaliza-
tion of FSM that we call a “graph”, where there are zero or
more label states following the structural or “source” state,

simple sentence hypergraph of Figure 5, we could
arrive at a more interesting lattice or even an FSM
with cycles and so infinitely many paths.

3.3 Transducers

A leaf state s with an output label o(s) 6= i (s)
rewrites the input label. This applies to finite-state
as well as general hypergraphs. The following arc,
for example, reads “eats” and an NP and derives a
VP; it also rewrites “eats” to “ate”:
(V) <- ("eats" "ate") (NP)

If a state has an output label, it must then have an
input label, though it may be <eps>. The start
state conventionally has no label.

3.4 Semirings and features

Each hypergraph uses a particular semiring, which
specifies the type of weights and defines how
weights are added and multiplied. hyp provides
the standard semirings (Mohri, 2009), as well as
the expectation semiring (Eisner, 2002), and a new
“feature” semiring. The feature semiring pairs with
tropical semiring elements a sparse feature vector
that adds componentwise in the semiring prod-
uct and follows the winning tropical element in the
semiring sum. Features 0 and 8 fire with different
strengths on this arc:
(V) <- 11("eats" "ate") / 3.2[0=1.3,8=-0.5]

By using the expectation or the feature semiring,
we can keep track of what features fire on what
arcs when we perform compositions or other oper-
ations. Using standard algorithms that are imple-
mented in hyp (e.g., the inside-outside algorithm,
see below), it is possible to train arc feature weights
from data (see Section 6).

4 Using the hyp executable

The hyp toolkit provides an executable that
implements several commands to process and
manipulate hypergraphs. It is generally called
as hyp <command> <options> <input-
files>, where <command> may be Compose,
Best, or others. We now describe some of these
commands.

rather than exactly one.

13

Compose hyp Compose composes two
semiring-weighted hypergraphs. Composition
is used to parse an input into a structure and/or
rewrite its labels. Composition can also rescore
a weighted hypergraph by composing with a
finite-state machine, e.g., a language model.

Example call:

$ hyp Compose cfg.hyp fsa.hyp

Since context-free grammars are not closed un-
der composition, one of the two composition ar-
guments must be finite-state (Section 3.2). If both
structures are finite-state, hyp uses a fast finite-
state composition algorithm (Mohri, 2009).3 Oth-
erwise, we use a generalization of the Earley al-
gorithm (Earley (1970), Eisner et al. (2005), Dyer
(2010)).4

Best and PruneToBest. hyp Best prints the k-
best entries from any hypergraph. hyp Prune-
ToBest removes structure not needed for the best
path.

Example calls:

$ hyp Best --num-best=2 h.hyp > k.txt
$ hyp PruneToBest h.hyp > best.hyp

For acyclic finite-state hypergraphs, hyp uses
the Viterbi algorithm to find the best path; other-
wise it uses a general best-tree algorithm for CFGs
(Knuth (1977), Graehl (2005)).

Other executables. Overall, hyp provides more
than 20 commands that perform hypergraph op-
erations. They can be used to concatenate, in-
vert, project, reverse, draw, sample paths, create
unions, run the inside algorithm, etc. A detailed
description is provided in the 25-page hyp tutorial
document (Dreyer and Graehl, 2015).

5 Using the hyp C++ API

In addition to the command line tools described,
hyp includes an open-source C++ API for con-
structing and processing hypergraphs, for maxi-

3If the best path rather than the full composition is re-
quested, that composition is lazy best-first and may, weights
depending, avoid creating most of the composition.

4In the current hyp version, the Earley-inspired algorithm
computes the full composition and should therefore be used
with smaller grammars.

mum flexibility and performance.5 The following
code snippet creates the hypergraph shown in Fig-
ure 2:
typedef ViterbiWeight Weight;
typedef ArcTpl<Weight> Arc;
MutableHypergraph<Arc> hyp;
StateId s = hyp.addState(S);
hyp.setFinal(s);
hyp.addArc(new Arc(Head(s),

Tails(hyp.addState(he),
hyp.addState(eats),
hyp.addState(rice)),

Weight(0.693)));

The code defines weight and arc types, then
constructs a hypergraph and adds the final state,
then adds an arc by specifying the head, tails,
and the weight. The variables S, he, eats,
rice are symbol IDs obtained from a vocabulary
(not shown here). The constructed hypergraph
hyp can then be manipulated using provided C++
functions. For example, calling
reverse(hyp);

reverses all paths in the hypergraph. All other op-
erations described in Section 4 can be called from
C++ as well.

The hyp distribution includes additional C++
example code and doxygen API documentation.

6 Optimizing hypergraph feature weights

hyp provides functionality to optimize hyper-
graph feature weights from training data. It trains
a regularized conditional log-linear model, also
known as conditional random field (CRF), with op-
tional hidden derivations (Lafferty et al. (2001),
Quattoni et al. (2007)). The training data con-
sist of observed input-output hypergraph pairs
(x, y). x and y are non-loopy hypergraphs and
so may represent string, lattice, tree, or forest.
A user-defined function, which is compiled and
loaded as a shared object, defines the search space
of all possible outputs given any input x, with
their features. hyp then computes the CRF func-
tion value, feature expectations and gradients, and
calls gradient-based optimization methods like L-
BFGS or Adagrad (Duchi et al., 2010). This may
be used to experiment with and train sequence or
tree-based models. For details, we refer to the hyp
tutorial (Dreyer and Graehl, 2015).

5Using the C++ API to perform a sequence of operations,
one can keep intermediate hypergraphs in memory and so
avoid the cost of disk write and read operations.

14

7 Conclusions

We have presented hyp, an open-source toolkit for
representing and manipulating weighted directed
hypergraphs, including functionality for learning
arc feature weights from data. The hyp toolkit
provides a C++ library and a command line ex-
ecutable. Since hyp seamlessly handles trees,
forests, strings, lattices and finite-state transduc-
ers and acceptors, it is well-suited for a wide range
of practical problems in NLP (e.g., for implement-
ing a parser or a machine translation pipeline) and
related areas. hyp is available for download at
github.com/sdl-research/hyp.

Acknowledgments

We thank Daniel Marcu and Mark Hopkins for
guidance and advice; Kevin Knight for encour-
aging an open-source release; Bill Byrne, Ab-
dessamad Echihabi, Steve DeNeefe, Adria de Gis-
pert, Gonzalo Iglesias, Jonathan May, and many
others at SDL Research for contributions and early
feedback; the anonymous reviewers for comments
and suggestions.

References

Cyril Allauzen, Michael Riley, Johan Schalkwyk, Wo-
jciech Skut, and Mehryar Mohri. 2007. Open-
Fst: A general and efficient weighted finite-state
transducer library. In Proceedings of the Ninth In-
ternational Conference on Implementation and Ap-
plication of Automata, (CIAA 2007), volume 4783
of Lecture Notes in Computer Science, pages 11–23.
Springer.

Markus Dreyer and Jonathan Graehl. 2015.
Tutorial: The hyp hypergraph toolkit.
http://goo.gl/O2qpi2.

J. Duchi, E. Hazan, and Y. Singer. 2010. Adaptive sub-
gradient methods for online learning and stochastic
optimization. Journal of Machine Learning Research,
12:2121–2159.

Christopher Dyer. 2010. A formal model of ambigu-
ity and its applications in machine translation. Ph.D.
thesis, University of Maryland.

Jay Earley. 1970. An efficient context-free parsing algo-
rithm. Communications of the ACM, 13(2):94–102.

Jason Eisner and Nathaniel W. Filardo. 2011. Dyna: Ex-
tending datalog for modern AI. In Datalog Reloaded,
pages 181–220. Springer.

Jason Eisner, Eric Goldlust, and Noah A. Smith. 2005.
Compiling comp ling: Practical weighted dynamic
programming and the Dyna language. In In Ad-
vances in Probabilistic and Other Parsing.

Jason Eisner. 2002. Parameter estimation for proba-
bilistic finite-state transducers. In Proceedings of the
40th Annual Meeting of the Association for Compu-
tational Linguistics (ACL), pages 1–8, Philadelphia,
July.

Giorgio Gallo, Giustino Longo, and Stefano Pallottino.
1993. Directed hypergraphs and applications. Dis-
crete Applied Mathematics, 42(2):177–201.

Emden R. Gansner and Stephen C. North. 2000. An
open graph visualization system and its applications
to software engineering. Software: Practice and Ex-
perience, 30(11):1203–1233.

Jonathan Graehl. 2005. Context-free algorithms.
arXiv:1502.02328 [cs.FL].

Liang Huang and David Chiang. 2005. Better k-best
parsing. In Proceedings of the Ninth International
Workshop on Parsing Technology, pages 53–64. Asso-
ciation for Computational Linguistics.

Dan Klein and Christopher D. Manning. 2005. Parsing
and hypergraphs. In New developments in parsing
technology, pages 351–372. Springer.

Donald E. Knuth. 1977. A generalization of Dijkstra’s
algorithm. Information Processing Letters, 6(1):1–5.

Shankar Kumar, Wolfgang Macherey, Chris Dyer, and
Franz Och. 2009. Efficient minimum error rate train-
ing and minimum bayes-risk decoding for transla-
tion hypergraphs and lattices. In Proceedings of
the Joint Conference of the 47th Annual Meeting of
the ACL and the 4th International Joint Conference
on Natural Language Processing of the AFNLP: Vol-
ume 1, pages 163–171. Association for Computa-
tional Linguistics.

John Lafferty, Andrew McCallum, and Fernando
Pereira. 2001. Conditional random fields: Prob-
abilistic models for segmenting and labeling se-
quence data. In Proceedings of the 18th International
Conference on Machine Learning, pages 282–289.
Morgan Kaufmann, San Francisco, CA.

Mehryar Mohri. 2009. Weighted automata algorithms.
In Handbook of weighted automata, pages 213–254.
Springer.

A. Quattoni, S. Wang, L. P. Morency, M. Collins, and
T. Darrell. 2007. Hidden conditional random fields.
IEEE Transactions on Pattern Analysis and Machine
Intelligence, 29(10):1848–1852.

15

Proceedings of NAACL-HLT 2015, pages 16–20,
Denver, Colorado, May 31 – June 5, 2015. c©2015 Association for Computational Linguistics

Enhancing Instructor-Student and Student-Student Interactions with
Mobile Interfaces and Summarization

Wencan Luo, Xiangmin Fan, Muhsin Menekse, Jingtao Wang, Diane Litman
University of Pittsburgh

Pittsburgh, PA 15260 USA
{wel55, xif14, muhsin, jingtaow, dlitman}@pitt.edu

Abstract

Educational research has demonstrated that
asking students to respond to reflection
prompts can increase interaction between in-
structors and students, which in turn can im-
prove both teaching and learning especially
in large classrooms. However, administer-
ing an instructor’s prompts, collecting the
students’ responses, and summarizing these
responses for both instructors and students
is challenging and expensive. To address
these challenges, we have developed an ap-
plication called CourseMIRROR (Mobile In-
situ Reflections and Review with Optimized
Rubrics). CourseMIRROR uses a mobile
interface to administer prompts and collect
reflective responses for a set of instructor-
assigned course lectures. After collection,
CourseMIRROR automatically summarizes
the reflections with an extractive phrase sum-
marization method, using a clustering algo-
rithm to rank extracted phrases by student cov-
erage. Finally, CourseMIRROR presents the
phrase summary to both instructors and stu-
dents to help them understand the difficulties
and misunderstandings encountered.

1 Introduction

In recent years, researchers in education have
demonstrated the effectiveness of using reflection
prompts to improve both instructors’ teaching qual-
ity and students’ learning outcomes in domains such
as teacher and science education (Boud et al., 2013;
Menekse et al., 2011). However, administrating an
instructor’s prompts, collecting the students’ reflec-
tive responses, and summarizing these responses for

instructors and students is challenging and expen-
sive, especially for large (e.g., introductory STEM)
and online courses (e.g., MOOCs). To address these
challenges, we have developed CourseMIRROR, a
mobile application1 for collecting and sharing learn-
ers’ in-situ reflections in large classrooms. The in-
stant on, always connected ability of mobile de-
vices makes the administration and collection of re-
flections much easier compared to the use of tra-
ditional paper-based methods, while the use of an
automatic summarization algorithm provides more
timely feedback compared to the use of manual sum-
marization by the course instructor or TA.

From a natural language processing (NLP) per-
spective, the need in aggregating and displaying re-
flections in a mobile application has led us to modify
traditional summarization methods in two primary
ways. First, since the linguistic units of student in-
puts range from single words to multiple sentences,
our summaries are created from extracted phrases
rather than from sentences. Phrases are also easy
to read and browse, and fit better on small devices
when compared to sentences. Second, based on the
assumption that concepts (represented as phrases)
mentioned by more students should get more in-
structor attention, the phrase summarization algo-
rithm estimates the number of students semantically
covered by each phrase in a summary. The set of
phrases in a summary and the associated student
coverage estimates are presented to both the instruc-

1CourseMIRROR homepage: http://www.
coursemirror.com; free download link in Google Play
Store: https://play.google.com/store/apps/
details?id=edu.pitt.cs.mips.coursemirror

16

tors and the students to help them understand the
difficulties and misunderstandings encountered from
lectures.

2 Demonstration

One key challenge for both instructors and students
in large classes is how to become aware of the dif-
ficulties and misunderstandings that students are en-
countering during lectures. Our demonstration will
show how CourseMIRROR can be used to address
this problem. First, instructors use the server side in-
terface to configure a set of reflection prompts for an
associated lecture schedule. Next, students use the
mobile client to submit reflective responses to each
assigned prompt according to the schedule. Finally,
after each submission deadline, both students and in-
structors use CourseMIRROR to review an automat-
ically generated summary of the student responses
submitted for each prompt. The whole functionality
of CourseMIRROR will be demonstrated using the
scenario described below. In this scenario, Alice is
an instructor teaching an introduction to engineering
class and Bob is one of her students.

In order to use CourseMIRROR, Alice first logs
in to the server and sets up the lecture schedule and
a collection of reflection prompts.

Bob can see all the courses he enrolled in af-
ter logging into the CourseMIRROR client applica-
tion2. After selecting a course, he can view all the
lectures of that course (Fig. 1.a).

After each lecture, Bob writes and submits re-
flections through the reflection writing interface
(Fig. 1.b). These reflections are transmitted to the
server and stored in the database. In order to collect
timely and in-situ feedback, CourseMIRROR im-
poses submission time windows synchronized with
the lecture schedule (from the beginning of one lec-
ture to the beginning of the next lecture, indicated
by an edit icon shown in Fig. 1.a). In addition, to
encourage the students to submit feedback on time,
instructors can send reminders via mobile push no-
tifications to the students’ devices.

After the reflection collection phase for a given
lecture, CourseMIRROR runs a phrase summariza-

2Only Android client is provided. The iOS version is under
development. Non-Android users now can use an isomorphic
web client, optimized for mobile browsers.

tion algorithm on the server side to generate a sum-
mary of the reflections for each prompt. In the
CourseMIRROR interface, the reflection prompts
are highlighted using a green background, and are
followed by the set of extracted phrases constituting
the summary. The summary algorithm is described
in Section 3; the summary length is controlled by
a user-defined parameter and was 4 phrases for the
example in Fig. 1.c.

For Bob, reading these summaries (Fig. 1.c) is as-
sumed to remind him to recapture the learning con-
tent and rethink about it. It allows him to get an
overview of the peers’ interesting points and confu-
sion points for each lecture. To motivate the students
to read the summaries, CourseMIRROR highlights
the phrases (by using light-yellow background) that
were included or mentioned by the current user. This
functionality is enabled by the proposed summa-
rization technique which tracks the source of each
phrase in the summary (who delivers it). We hypoth-
esize that highlighting the presence of one’s own re-
flections in the summaries can trigger the students’
curiosity to some extent; thus they would be more
likely to spend some time on reading the summaries.

For Alice, seeing both text and student cover-
age estimates in the summaries can help her quickly
identify the type and extent of students’ misunder-
standings and tailor future lectures to meet the needs
of students.

3 Phrase Summarization

When designing CourseMIRROR’s summarization
algorithm, we evaluated different alternatives on
an engineering course corpus consisting of hand-
written student reflections generated in response
to instructor prompts at the end of each lecture,
along with associated summaries manually gener-
ated by the course TA (Menekse et al., 2011). The
phrase summarization method that we incorporated
into CourseMIRROR achieved significantly better
ROUGE scores than baselines including MEAD
(Radev et al., 2004), LexRank (Erkan and Radev,
2004), and MMR (Carbonell and Goldstein, 1998).
The algorithm involves three stages: candidate
phrase extraction, phrase clustering, and phrase
ranking by student coverage (i.e., how many stu-
dents are associated with those phrases).

17

(a) (b) (c)
Figure 1: CourseMIRROR main interfaces; a) Lecture list; b) Reflection writing; c) Summary display: the numbers
shown in square brackets are the estimated number of students semantically covered by a phrase and a student’s own
phrase is highlighted in yellow.

3.1 Candidate Phrase Extraction

To normalize the student reflections, we use a parser
from the Senna toolkit (Collobert, 2011) to extract
noun phrases (NPs) as candidate phrases for sum-
marization. Only NP is considered because all re-
flection prompts used in our task are asking about
“what”, and knowledge concepts are usually repre-
sented as NPs. This could be extended to include
other phrases if future tasks suggested such a need.

Malformed phrases are excluded based on Marujo
et al. (2013) due to the noisy parsers, including sin-
gle stop words (e.g. “it”, “I”, “we”, “there”) and
phrases starting with a punctuation mark (e.g. “’t”,
“+ indexing”, “?”).

3.2 Phrase Clustering

We use a clustering paradigm to estimate the number
of students who mention a phrase (Fig. 1.c), which
is challenging since different words can be used for
the same meaning (i.e. synonym, different word or-
der). We use K-Medoids (Kaufman and Rousseeuw,
1987) for two reasons. First, it works with an ar-
bitrary distance matrix between datapoints. This
gives us a chance to try different distance matrices.
Since phrases in student responses are sparse (e.g.,
many appear only once), instead of using frequency-
based similarity like cosine, we found it more useful
to leverage semantic similarity based on SEMILAR
(Rus et al., 2013). Second, it is robust to noise and
outliers because it minimizes a sum of pairwise dis-

similarities instead of squared Euclidean distances.
Since K-Medoids picks a random set of seeds to ini-
tialize as the cluster centers and we prefer phrases in
the same cluster are similar to each other, the clus-
tering algorithm runs 100 times and the result with
the minimal within-cluster sum of the distances is
retained.

For setting the number of clusters without tun-
ing, we adapted the method used in Wan and Yang
(2008), by letting K =

√
V , where K is the number

of clusters and V is the number of candidate phrases
instead of the number of sentences.

3.3 Phrase Ranking

The phrase summaries in CourseMIRROR are
ranked by student coverage, with each phrase itself
associated with the students who mention it (this en-
ables CourseMIRROR to highlight the phrases that
were mentioned by the current user (Fig. 1.c)). In or-
der to estimate the student coverage number, phrases
are clustered and phrases possessed by the same
cluster tend to be similar. We assume any phrase in a
cluster can represent it as a whole and therefore the
coverage of a phrase is assumed to be the same as
the coverage of a cluster, which is a union of the stu-
dents covered by each phrase in the cluster. Within a
cluster, LexRank (Erkan and Radev, 2004) is used to
score the extracted candidate phrases. Only the top
ranked phrase in the cluster is added to the output.
This process repeats for the next cluster according

18

to the student coverage until the length limit of the
summary is reached.

4 Pilot Study

In order to investigate the overall usability and effi-
cacy of CourseMIRROR, we conducted a semester-
long deployment in two graduate-level courses (i.e.,
CS2001 and CS2610) during Fall 2014. These are
introductory courses on research methods in Com-
puter Science and on Human Computer Interaction,
respectively. 20 participants volunteered for our
study; they received $10 for signing up and in-
stalling the application and another $20 for complet-
ing the study. Both courses had 21 lectures open for
reflections; 344 reflections were collected overall.
We used the same reflection prompts as the study by
Menekse et al. (2011), so as to investigate the impact
of mobile devices and NLP on experimental results.
Here we only focus on interesting findings from an
NLP perspective. Findings from a human-computer
interaction perspective are reported elsewhere (Fan
et al., 2015).

Reflection Length. Students type more words
than they write. The number of words per reflec-
tion in both courses using CourseMIRROR is sig-
nificantly higher compared to the handwritten re-
flections in Menekse’s study (11.6 vs. 9.7, p <
0.0001 for one course; 10.9 vs. 9.7, p < 0.0001
for the other course) and there is no significant dif-
ference between the two CourseMIRROR courses.
This result runs counter to our expectation because
typing is often slow on small screens. A potential
confounding factor might be that participants in our
study are Computer Science graduate students while
Menekse’s participants are Engineering undergradu-
ates at a different university who had to submit the
reflection within a few minutes after the lecture. We
are conducting a larger scale controlled experiment
(200+ participants) to further verify this finding.3

Questionnaire Ratings. Students have positive
experiences with CourseMIRROR. In the closing
lecture of each course, participants were given a
Likert-scale questionnaire that included two ques-
tions related to summarization (“I often read reflec-

3Due to a currently low response rate, we are also deploying
CourseMIRROR in another engineering class where about 50
out of 68 students regularly submit the reflection feedback.

tion summaries” and “I benefited from reading the
reflection summaries”). Participants reported posi-
tive experiences on both their quantitative and qual-
itative responses. Both questions had modes of 3.7
(on a scale of 1-5, σ = 0.2). In general, participants
felt that they benefited from writing reflections and
they enjoyed reading summaries of reflections from
classmates. For example, one comment from a free
text answer in the questionnaire is “It’s interesting
to see what other people say and that can teach me
something that I didn’t pay attention to.” The partic-
ipants also like the idea of highlighting their own
viewpoints in the summaries (Fig. 1.c). Two ex-
ample comments are “I feel excited when I see my
words appear in the summary.” and “Just curious
about whether my points are accepted or not.”

5 Conclusion

Our live demo will introduce CourseMIRROR, a
mobile application that leverages mobile interfaces
and a phrase summarization technique to facili-
tate the use of reflection prompts in large class-
rooms. CourseMIRROR automatically produces
and presents summaries of student reflections to
both students and instructors, to help them capture
the difficulties and misunderstandings encountered
from lectures. Summaries are produced using a
combination of phrase extraction, phrase clustering
and phrase ranking based on student coverage, with
the mobile interface highlighting the students’ own
viewpoint in the summaries and noting the student
coverage of each extracted phrase. A pilot deploy-
ment yielded positive quantitative as well as quali-
tative user feedback across two courses, suggesting
the promise of CourseMIRROR for enhancing the
instructor-student and student-student interactions.
In the future, we will examine how the students’ re-
sponses (e.g., response rate, length, quality) relate to
student learning performance.

Acknowledgments

This research is in-part supported by an RDF from
the Learning Research and Development Center at
the University of Pittsburgh. We also thank all the
participants and anonymous reviewers for insightful
comments and suggestions.

19

References
David Boud, Rosemary Keogh, David Walker, et al.

2013. Reflection: Turning experience into learning.
Routledge.

Jaime Carbonell and Jade Goldstein. 1998. The use
of mmr, diversity-based reranking for reordering doc-
uments and producing summaries. In Proceedings
of the 21st Annual International ACM SIGIR Confer-
ence on Research and Development in Information Re-
trieval, SIGIR ’98, pages 335–336.

Ronan Collobert. 2011. Deep learning for efficient dis-
criminative parsing. In International Conference on
Artificial Intelligence and Statistics, number EPFL-
CONF-192374.

Günes Erkan and Dragomir R. Radev. 2004. Lexrank:
Graph-based lexical centrality as salience in text sum-
marization. J. Artif. Int. Res., 22(1):457–479.

Xiangmin Fan, Wencan Luo, Muhsin Menekse, Diane
Litman, and Jingtao Wang. 2015. CourseMIRROR:
Enhancing large classroom instructor-student interac-
tions via mobile interfaces and natural language pro-
cessing. In Works-In-Progress of ACM Conference on
Human Factors in Computing Systems. ACM.

Leonard Kaufman and Peter Rousseeuw. 1987. Clus-
tering by means of medoids. Statistical Data Analy-
sis Based on the L1-Norm and Related Method, pages
405–416.

Luis Marujo, Márcio Viveiros, and João Paulo da Silva
Neto. 2013. Keyphrase cloud generation of broadcast
news. arXiv preprint arXiv:1306.4606.

Muhsin Menekse, Glenda Stump, Stephen J. Krause, and
Michelene T.H. Chi. 2011. The effectiveness of stu-
dents daily reflections on learning in engineering con-
text. In Proceedings of the American Society for Engi-
neering Education (ASEE) Annual Conference.

Dragomir R. Radev, Hongyan Jing, Małgorzata Styś,
and Daniel Tam. 2004. Centroid-based summariza-
tion of multiple documents. Inf. Process. Manage.,
40(6):919–938, November.

Vasile Rus, Mihai C Lintean, Rajendra Banjade, Nobal B
Niraula, and Dan Stefanescu. 2013. Semilar: The se-
mantic similarity toolkit. In ACL (Conference System
Demonstrations), pages 163–168.

Xiaojun Wan and Jianwu Yang. 2008. Multi-document
summarization using cluster-based link analysis. In
Proceedings of the 31st Annual International ACM SI-
GIR Conference on Research and Development in In-
formation Retrieval, SIGIR ’08.

20

Proceedings of NAACL-HLT 2015, pages 21–25,
Denver, Colorado, May 31 – June 5, 2015. c©2015 Association for Computational Linguistics

RExtractor: a Robust Information Extractor

Vincent Krı́ž and Barbora Hladká
Charles University in Prague

Faculty of Mathematics and Physics
Institute of Formal and Applied Linguistics
{kriz, hladka}@ufal.mff.cuni.cz

Abstract

The RExtractor system is an information ex-
tractor that processes input documents by nat-
ural language processing tools and conse-
quently queries the parsed sentences to ex-
tract a knowledge base of entities and their re-
lations. The extraction queries are designed
manually using a tool that enables natural
graphical representation of queries over de-
pendency trees. A workflow of the system is
designed to be language and domain indepen-
dent. We demonstrate RExtractor on Czech
and English legal documents.

1 Introduction

In many domains, large collections of semi/un-
structured documents form main sources of informa-
tion. Their efficient browsing and querying present
key aspects in many areas of human activities.

We have implemented an information extrac-
tion system, RExtractor, that extracts informa-
tion from texts enriched with linguistic structures,
namely syntactic dependency trees. This structure
is represented as a rooted ordered tree with nodes
and edges and the dependency relation between
two nodes is captured by an edge between them.
Namely, we work with the annotation framework de-
signed in the Prague Dependency Treebank project.1

RExtractor forms an extraction unit of a com-
plex system performing both information extraction
and data publication according to the Linked Data
Principles. More theoretical and practical details

1http://ufal.mff.cuni.cz/pdt3.0

on the system are provided in (Krı́ž et al., 2014).
The system focuses on processing Czech legal doc-
uments and has been implemented in an applied re-
search project addressed by research and business
partners.2

The extraction systems known from literature
were evaluated against gold standard data, e.g.
DKPro Keyphrases (Erbs et al., 2014), Relation-
Factory (Roth et al., 2014), KELVIN (McNamee
et al., 2013), Propminer (Akbik et al., 2013), OL-
LIE (Mausam et al., 2012). We name this type
of evaluation as academic one. According to the
statistics provided by International Data Corpora-
tion (Gantz and Reinsel, 2010), 90% of all avail-
able digital data is unstructured and its amount cur-
rently grows twice as fast as structured data. Nat-
urally, there is no capacity to prepare gold stan-
dard data of statistically significant amount for each
domain. When exploring domains without gold
standard data, a developer can prepare a small set
of gold standard data and do academic evaluation.
He gets a rough idea about his extractor perfor-
mance. But he builds a system that will be used
by users/customers, not researchers serving as eval-
uators. So it is user/customer feedback what pro-
vides evidence of performance. This particular fea-
ture of information extraction systems is discussed
in (Chiticariu et al., 2013) together with techniques
they use academic systems and commercial systems.

We decided to do a very first RExtractor testing
by experts in accountancy. It has not done yet so we
have no evidence about its quality from their per-
spective. However, we know what performance the

2http://ufal.mff.cuni.cz/intlib

21

system achieves on the gold standard data that we
prepared in the given domain. We list it separately
for entity extraction, where Precision = 57.4%, Re-
call = 91.7%, and relation extraction, where P =
80.6%, R = 63.2%. Details are provided in (Krı́ž
et al., 2014).

2 RExtractor Description

RExtractor is an information extractor that processes
input documents by natural language processing
tools and consequently queries the parsed sentences
to extract a knowledge base of entities and their re-
lations. The parsed sentences are represented as
dependency trees with nodes bearing morphologi-
cal and syntactic attributes. The knowledge base
has the form of (subject, predicate, object) triples
where subject and object are entities and predicate
represents their relation. One has to carefully distin-
guish subjects, predicates and objects in dependency
trees from subjects, predicates and objects in entity-
relation triples.

Figure 1: RExtractor workflow

RExtractor is designed as a four-component sys-
tem displayed in Figure 1. The NLP component out-
puts a syntactic dependency tree for each sentence
from the input documents using tools available in the
Treex framework.3 Then the dependency trees are
queried in the Entity Detection and Relation Extrac-
tion components using the PML-TQ search tool (Pa-
jas and Štěpánek, 2009). The Entity Detection com-
ponent detects entities stored in Database of Entities
(DBE). Usually, this database is built manually by
a domain expert. The Relation Extraction compo-
nent exploits dependency trees with detected entities
using queries stored in Database of queries (DBQ).
This database is built manually by a domain expert

3http://ufal.mff.cuni.cz/treex

Figure 2: Extraction of who creates what

Subject Predicate Object
accounting unit create fixed item
accounting unit create reserve

Table 1: Data extracted by the query displayed in Figure 2

in cooperation with an NLP expert. Typically, do-
main experts describe what kind of information they
are interested in and their requests are transformed
into tree queries by NLP experts.

Illustration Let’s assume this situation. A domain
expert is browsing a law collection and is interested
in the to create something responsibility of any body.
In other words, he wants to learn who creates what
as is specified in the collection. We illustrate the
RExtractor approach for extracting such informa-
tion using the sentence Accounting units create fixed
items and reserves according to special legal regu-
lations.

Firstly, the NLP component generates a depen-
dency tree of the sentence, see Figure 2. Secondly,
the Entity Detection component detects the entities
from DBE in the tree: accounting unit, fixed item,
reserve, special legal regulation (see the highlighted
subtrees in Figure 2). Then an NLP expert formu-
lates a tree query matching the domain expert’s issue
who creates what. See the query at the top-right cor-
ner of Figure 2: (1) he is searching for creates, i.e.
for the predicate having lemma create (see the root
node), (2) he is searching for who, i.e. the subject

22

Figure 3: Extraction of who should do what

Subject Predicate Object
operator submit proposal

Table 2: Data extracted by the query displayed in Figure 3

(see the left son of the root and its syntactic function
afun=Sb), and what, i.e. the object (see the right
son of the root and its syntactic function afun=Obj).
Even more, he restricts the subjects to those that are
pre-specified in DBE (see the left son of the root and
its restriction entity=true). Finally, the Relation
Extraction component matches the query with the
sentence and outputs the data presented in Table 1.

A domain expert could be interested in more gen-
eral responsibility, namely he wants to learn who
should do what where who is an entity in DBE. A
tree query matching this issue is displayed in Fig-
ure 3. The query is designed to extract (subject,
predicate, object) relations where the subject is the
object in a sentence. We extract the data listed in
Table 2 using this query for entity-relation extrac-
tion from the sentence The proposal for entry into
the register shall be submitted by the operator.

Technical details RExtractor is conceptualized as
a modular framework. It is implemented in Perl pro-
gramming language and its code and technical de-
tails are available on Github:

http://github.com/VincTheSecond/rextractor

Each RExtractor component is implemented as a
standalone server. The servers regularly check new
documents waiting for processing. A document pro-
cessing progress is characterized by a document pro-
cessing status in the extraction pipeline, e.g. 520 –
Entity detection finished.

The system is designed to be domain independent.
However, to achieve better performance, one would
like to adapt the default components for a given do-
main. Modularity of the system allows adding, mod-
ifying or removing functionalities of existing com-
ponents and creating new components. Each com-
ponent has a configuration file to enable various set-
tings of document processing.

A scenario with all settings for the whole extrac-
tion pipeline (set up in a configuration file) is called
an extraction strategy. An extraction strategy sets a
particular configuration for the extraction pipeline,
e.g. paths to language models for NLP tools, paths
to DBE and DBQ.

The RExtractor API enables easy integration into
more complex systems, like search engines.

3 RExtractor Demonstration

The RExtractor architecture comprises two core
components: (a) a background server processing
submitted documents, and (b) a Web application to
view a dynamic display of submitted document pro-
cessing.

Web interface enables users to submit documents
to be processed by RExtractor. In the submission
window, users are asked to select one of the extrac-
tion strategies. Users can browse extraction strate-
gies and view their detailed description. After suc-
cessful document submission, the document waits
in a queue to be processed according to the speci-
fied extraction strategy. Users can view a display of
submitted document processing that is automatically
updated, see Figure 4.

In Figure 5, the following information is visual-
ized: (1) Details section contains metadata about
document processing. (2) Entities section shows an

23

Figure 4: RExtractor web interface, part 1

Figure 5: RExtractor web interface, part 2

input document with the highlighted entities that can
be viewed interactively: by clicking on the entity, an
additional information about the entity is uploaded
and presented. (3) Relations section consists of
tables where (subject, predicate, object) triples are
listed. In addition, the relevant part of the document
with the highlighted triples is presented as well.

Our demonstration enables users to submit texts
from legal domain and process them according to
two currently available extraction strategies, Czech
and English. Once the document processing is
finished, users can browse extracted entity-relation
triples.

4 RExtractor Online

http://odcs.xrg.cz/demo-rextractor

5 Conclusion

We presented the RExtractor system with the follow-
ing features:

• Our ambition is to provide users with an inter-
active and user-friendly information extraction
system that enables submitting documents and
browsing extracted data without spending time
with understanding technical details.

• A workflow of RExtractor is language inde-
pendent. Currently, two extraction strategies
are available, for Czech and English. Creat-
ing strategies for other languages requires NLP
tools, Database of entities (DBE) and Database
of queries (DBQ) for a given language.

• A workflow of RExtractor is domain indepen-
dent. Currently, the domain of legislation is
covered. Creating strategies for other domains
requires building DBE and DBQ. It is a joint
work of domain and NLP experts.

• RExtractor extracts information from syntactic
dependency trees. This linguistic structure en-
ables to extract information even from complex
sentences. Also, it enables to extract even com-
plex relations.

• RExtractor has both user-friendly interface and
API to address large-scale tasks. The system
has already processed a collection of Czech le-
gal documents consisting of almost 10,000 doc-
uments.

• RExtractor is an open source system but some
language models used by NLP tools can be ap-
plied under a special license.

Our future plans concern the following tasks:

• experimenting with syntactic parsing proce-
dures in the NLP component that are of a cru-
cial importance for extraction

• evaluating RExtractor against the data that are
available for various shared tasks and confer-
ences on information retrieval, e.g. TAC4,
TRAC5

4http://www.nist.gov/tac/
5http://trec.nist.gov/

24

• making tree query design more user-friendly
for domain experts

• getting feedback from customers

• incorporating automatic procedures for extrac-
tion of both entities and relations that are
not pre-specified in Database of Entities and
Database of Queries, resp.

• creating strategies for other languages and
other domains

Through this system demonstration we hope to re-
ceive feedback on the general approach, explore its
application to other domains and languages, and at-
tract new users and possibly developers.

Acknowledgments

We gratefully acknowledge support from the Tech-
nology Agency of the Czech Republic (grant no.
TA02010182), The Bernard Bolzano Foundation
and SVV project no. 260 224. This work has been
using language resources developed and/or stored
and/or distributed by the LINDAT/CLARIN project.
We highly appreciate RExtractor-related discussions
with Martin Nečaský and colleagues from Sysnet,
Ltd.

References
Alan Akbik, Oresti Konomi, and Michail Melnikov.

2013. Propminer: A workflow for interactive infor-
mation extraction and exploration using dependency
trees. In Proceedings of the 51st Annual Meeting of the
ACL: System Demonstrations, pages 157–162. ACL.

Laura Chiticariu, Yunyao Li, and Frederick R. Reiss.
2013. Rule-based information extraction is dead! long
live rule-based information extraction systems! In
EMNLP, pages 827–832. ACL.

Nicolai Erbs, Bispo Pedro Santos, Iryna Gurevych, and
Torsten Zesch. 2014. Dkpro keyphrases: Flexible and
reusable keyphrase extraction experiments. In Pro-
ceedings of 52nd Annual Meeting of the ACL: System
Demonstrations, pages 31–36. ACL.

John Gantz and David Reinsel. 2010. The digital uni-
verse decade – Are you ready?

Vincent Krı́ž, Barbora Hladká, Martin Nečaský, and
Tomáš Knap. 2014. Data extraction using NLP
techniques and its transformation to linked data. In
Human-Inspired Computing and Its Applications -

13th Mexican International Conference on Artificial
Intelligence, MICAI 2014, Tuxtla Gutiérrez, Mexico,
November 16-22, 2014. Proceedings, Part I, pages
113–124.

Mausam, Michael Schmitz, Robert Bart, Stephen Soder-
land, and Oren Etzioni. 2012. Open language learn-
ing for information extraction. In Proceedings of the
2012 Joint Conference on Empirical Methods in Natu-
ral Language Processing and Computational Natural
Language Learning, EMNLP-CoNLL ’12, pages 523–
534, Stroudsburg, PA, USA. ACL.

Paul McNamee, James Mayfield, Tim Finin, Tim Oates,
Dawn Lawrie, Tan Xu, and Douglas Oard. 2013.
Kelvin: a tool for automated knowledge base construc-
tion. In Proceedings of the 2013 NAACL HLT Demon-
stration Session, pages 32–35. ACL.

Petr Pajas and Jan Štěpánek. 2009. System for query-
ing syntactically annotated corpora. In Gary Lee and
Sabine Schulte im Walde, editors, Proceedings of the
ACL-IJCNLP 2009 Software Demonstrations, pages
33–36, Suntec, Singapore. Association for Computa-
tional Linguistics.

Benjamin Roth, Tassilo Barth, Grzegorz Chrupała, Mar-
tin Gropp, and Dietrich Klakow. 2014. Relation-
factory: A fast, modular and effective system for
knowledge base population. In Proceedings of the
Demonstrations at the 14th Conference of the Euro-
pean Chapter of the ACL, pages 89–92, Gothenburg,
Sweden, April. ACL.

25

Proceedings of NAACL-HLT 2015, pages 26–30,
Denver, Colorado, May 31 – June 5, 2015. c©2015 Association for Computational Linguistics

An AMR parser for English, French, German, Spanish and Japanese

and a new AMR-annotated corpus

Lucy Vanderwende, Arul Menezes, Chris Quirk

Microsoft Research

One Microsoft Way

Redmond, WA 98052
{lucyv,arulm,chrisq}@microsoft.com

Abstract

In this demonstration, we will present our

online parser1 that allows users to submit any

sentence and obtain an analysis following the

specification of AMR (Banarescu et al., 2014)

to a large extent. This AMR analysis is gener-

ated by a small set of rules that convert a na-

tive Logical Form analysis provided by a pre-

existing parser (see Vanderwende, 2015) into

the AMR format. While we demonstrate the

performance of our AMR parser on data sets

annotated by the LDC, we will focus attention

in the demo on the following two areas: 1) we

will make available AMR annotations for the

data sets that were used to develop our parser,

to serve as a supplement to the LDC data sets,

and 2) we will demonstrate AMR parsers for

German, French, Spanish and Japanese that

make use of the same small set of LF-to-AMR

conversion rules.

1 Introduction

Abstract Meaning Representation (AMR) (Bana-

rescu et al., 2014) is a semantic representation for

which a large amount of manually-annotated data

is being created, with the intent of constructing and

evaluating parsers that generate this level of se-

mantic representation for previously unseen text.

1 Available at: http://research.microsoft.com/msrsplat

Already one method for training an AMR parser

has appeared in (Flanigan et al., 2014), and we an-

ticipate that more attempts to train parsers will fol-

low. In this demonstration, we will present our

AMR parser, which converts our existing semantic

representation formalism, Logical Form (LF), into

the AMR format. We do this with two goals: first,

as our existing LF is close in design to AMR, we

can now use the manually-annotated AMR datasets

to measure the accuracy of our LF system, which

may serve to provide a benchmark for parsers

trained on the AMR corpus. We gratefully

acknowledge the contributions made by Banarescu

et al. (2014) towards defining a clear and interpret-

able semantic representation that enables this type

of system comparison. Second, we wish to con-

tribute new AMR data sets comprised of the AMR

annotations by our AMR parser of the sentences

we previously used to develop our LF system.

These sentences were curated to cover a wide-

range of syntactic-semantic phenomena, including

those described in the AMR specification. We will

also demonstrate the capabilities of our parser to

generate AMR analyses for sentences in French,

German, Spanish and Japanese, for which no man-

ually-annotated AMR data is available at present.

2 Abstract Meaning Representation

Abstract Meaning Representation (AMR) is a se-

mantic representation language which aims to as-

sign the same representation to sentences that have

26

the same basic meaning (Banarescu et al., 2014).

Some of the basic principles are to use a graph rep-

resentation, to abstract away from syntactic idio-

syncrasies (such as active/passive alternation), to

introduce variables corresponding to entities, prop-

erties and events, and to ground nodes to OntoNo-

tes (Pradhan et al., 2007) wherever possible.

 As a semantic representation, AMR describes the

analysis of an input sentence at both the conceptual

and the predicative level, as AMR does not anno-

tate individual words in a sentence (see annotation

guidelines, introduction). AMR, for example, pro-

vides a single representation for the constructions

that are typically thought of as alternations: “it is

tough to please the teacher” and “the teacher is

tough to please” have the same representation in

AMR, as do actives and their passive variant, e.g.,

“a girl read the book” and “the book was read by a

girl”. AMR also advocates the representation of

nominative constructions in verbal form, so that “I

read about the destruction of Rome by the Van-

dals” and “I read how the Vandals destroyed

Rome” have the same representation in AMR, with

the nominal “destruction” recognized as having the

same basic meaning as the verbal “destroy”. Such

decisions are part-conceptual and part-predicative,

and rely on the OntoNotes lexicon having entries

for the nominalized forms. AMR annotators also

can reach in to OntoNotes to represent “the soldier

was afraid of battle” and “the soldier feared bat-

tle”: linking “be afraid of” to “fear” depends on the

OntoNotes frameset at annotation time.

3 Logical Form

The Logical Form (LF) which we convert to AMR

via a small set of rules is one component in a

broad-coverage grammar pipeline (see

Vanderwende, 2015, for an overview). The goal of

the LF is twofold: to compute the predicate-

argument structure for each clause (“who did what

to whom when where and how?”) and to normalize

differing syntactic realizations of what can be con-

sidered the same “meaning”. In so doing, concepts

that are possibly distant in the linear order of the

sentence or distant in the constituent structure can

be brought together, because the Logical Form is

represented as a graph, where linear order is no

longer primary. In addition to alternations and pas-

sive/active, other operations include: unbounded

dependencies, functional control, indirect object

paraphrase, and assigning modifiers.

 As in AMR, the Logical Form is a directed, la-

beled graph. The nodes in this graph have labels

that are either morphologically or derivationally

related to the input tokens, and the arcs are labeled

with those relations that are defined to be semantic.

Surface words that convey syntactic information

only (e.g. by in a passive construction, do-support,

singular/passive, or (in)definite articles) are not

part of the graph, their meaning, however is pre-

served as annotations on the conceptual nodes

(similar to the Prague T-layer, Hajič et al., 2003).

Figure 1. The LF representation of "African elephants,

which have been hunted for decades, have large tusks."

In Figure 1, we demonstrate that native LF uses re-

entrancy in graph notation, as does AMR, whenev-

er an entity plays multiple roles in the graph. Note

how the node elephant1 is both the Dsub of have1

and the Dobj of hunt1. The numerical identifiers

on the leaf nodes are a unique label name, not a

sense identification.

 We also point out that LF attempts to interpret

the syntactic relation as a general semantic relation

to the degree possible, but when it lacks infor-

mation for disambiguation, LF preserves the ambi-

guity. Thus, in Figure 1, the identified semantic

relations are: Dsub (“deep subject”), Attrib (at-

tributive), Dobj (“deep object”), but also the under-

specified relation “for”.

 The canonical LF graph display proceeds from

the root node and follows a depth first exploration

of the nodes. When queried, however, the graph

can be viewed with integrity from the perspective

of any node, by making use of relation inversions.

Thus, a query for the node elephant1 in Figure 1

returns elephant1 as the DsubOf have1 and also

the DobjOf hunt1.

27

4 LF to AMR conversion

The description of LF in section 3 emphasized the

close similarity of LF and AMR. Thus, conversion

rules can be written to turn LF into AMR-similar

output, thus creating an AMR parser. To convert

the majority of the relations, only simple renaming

is required; for example LF Dsub is typically AMR

ARG0, LF Locn is AMR location, and so on.

 We use simple representational transforms to

convert named entities, dates, times, numbers and

percentages, since the exact representation of these

in AMR are slightly different from LF.

 Some of the more interesting transforms to en-

courage similarity between LF and AMR are map-

ping modal verbs can, may and must to possible

and obligate in AMR and adjusting how the copula

is handled. In both AMR and LF the arguments of

the copula are moved down to the object of the

copula, but in LF the vestigial copula remains,

whereas in AMR it is removed.

5 Evaluation

Using smatch (Cai and Knight, 2013), we compare

the performance of our LF system to the JAMR

system of Flanigan et al. (2014). Both systems rely

on the Illinois Named Entity Tagger (Ratinov and

Roth, 2009). LF strives to be a broad coverage par-

ser without bias toward a particular domain. There-

fore, we wanted to evaluate across a number of

corpora. When trained on all available data, JAMR

should be less domain dependent. However, the

newswire data is both larger and important, so we

also report numbers for JAMR trained on proxy

data alone.

To explore the degree of domain dependence of

these systems, we evaluate on several genres pro-

vided by the LDC: DFA (discussion forums data

from English), Bolt (translated discussion forum

data), and Proxy (newswire data). We did not ex-

periment on the consensus, mt09sdl, or Xinhua

subsets because the data was pre-tokenized. This

tokenization must be undone before our parser is

applied.

We evaluate in two conditions: “without word

sense annotations” indicates that the specific sense

numbers were discarded in both the gold standard

and the system output; “with word sense annota-

tions” leaves the sense annotations intact.

 The AMR specification requires that concepts,

wherever possible, be annotated with a sense ID

referencing the OntoNotes sense inventory. Recall

that the LF system intentionally does not have a

word sense disambiguation component due to the

inherent difficulty of defining and agreeing upon

task-independent sense inventories (Palmer et al.

2004, i.a.). In order to evaluate in the standard

evaluation setup, we therefore construct a word-

sense disambiguation component for LF lemmas.

Our approach is quite simple: for each lemma, we

find the predominant sense in the training set

(breaking ties in favor of the lowest sense ID), and

use that sense for all occurrences of the lemma in

test data. For those lemmas that occur in the test

but not in the training data, we attempt to find a

verb frame in OntoNotes. If found, we use the

lowest verb sense ID not marked with DO NOT

TAG; otherwise, the lemma is left unannotated for

sense. Such a simple system should perform well

because 95% of sense-annotated tokens in the

proxy training set use the predominant sense. An

obvious extension would be sensitive to parts-of-

speech.

As shown in Table 1, the LF system outper-

forms JAMR in broad-domain semantic parsing, as

measured by macro-averaged F1 across domains.

This is primarily due to its better performance on

discussion forum data. JAMR, when trained on

newswire data, is clearly the best system on news-

wire data. Adding training data from other sources

leads to improvements on the discussion forum

 Test without word sense annotations Test with word sense annotations

System Proxy DFA Bolt Average Proxy DFA Bolt Average

JAMR: proxy 64.4 40.4 44.2 49.7 63.3 38.1 42.6 48.0

JAMR: all 60.9 44.5 47.5 51.0 60.1 43.2 46.0 49.8

LF 59.0 50.7 52.6 54.1 55.2 46.9 49.2 50.4

Table 1. Evaluation results: balanced F-measure in percentage points. JAMR (proxy) is the system of

Flanigan et al. (2014) trained on only the proxy corpus; JAMR (all) is the system trained on all data in

LDC2014T12; and LF is the system described in this paper. We evaluate with and without sense annota-

tions in three test corpora.

28

data, but at the cost of accuracy on newswire. The

lack of sophisticated sense disambiguation in LF

causes a substantial degradation in performance on

newswire.

6 Data Sets for LF development

The LF component was developed by authoring

rules that access information from a rich lexicon

consisting of several online dictionaries as well as

information output by a rich grammar formalism.

Authoring these LF rules is supported by a suite of

tools that allow iterative development of an anno-

tated test suite (Suzuki, 2002). We start by curating

a sentence corpus that exemplifies the syntactic

and semantic phenomena that the LF is designed to

cover; one might view this sentence corpus as the

LF specification. When, during development, the

system outputs the desired representation, that LF

is saved as “gold annotation”. In this way, the gold

annotations are produced by the LF system itself,

automatically, and thus with good system internal

consistency. We note that this method of system

development is quite different from SemBanking

AMR, but is similar to the method described in

Flickinger et al. (2014).

 As part of this demonstration, we share with par-

ticipants the gold annotations for the curated sen-

tence corpora used during LF development,

currently 550 sentences that are vetted to produce

correct LF analyses. Note that the example in Fig-

ure 2 requires a parser to handle both the pas-

sive/active alternation as well as control verbs. We

believe that there is value in curated targeted da-

tasets to supplement annotating natural data; e.g.,

AMR clearly includes control phenomena in its

spec (the first example is “the boy wants to go”)

but in the data, there are only 3 instances of “per-

suade” in the amr-release-1.0-training-proxy, e.g.,

and no instances in the original AMR-bank.

7 AMR parsers for French, German,

Spanish and Japanese

The demonstrated system includes not only a par-

ser for English, but also parsers for French, Ger-

man, Spanish and Japanese that produce analyses

at the LF level. Thus, using the same set of conver-

sion rules, we demonstrate AMR annotations gen-

erated by our parsers in these additional languages,

for which there are currently no manually-

annotated AMR SemBanks. Such annotations may

be useful to the community as initial analyses that

can be manually edited and corrected where their

output does not conform to AMR-specifications

already. Consider Figures 3-6 and the brief de-

scription of the type of alternation they are intend-

ed to demonstrate in each language.

Input: el reptil se volteó, quitándoselo de encima.

Gloss: the crocodile rolled over, throwing it off.
(v / voltear

 :ARG0 (r / reptil)

 :manner (q / quitar

 :ARG0 r

 :ARG1 (x / "él")

 :prep-de (e / encima)))

Figure 3 AMR in Spanish with clitic construction.

Input: Et j'ai vu un petit bonhomme tout à fait ex-

traordinaire qui me considérait gravement.

Gloss: And I saw a small chap totally extraordinary

who me looked seriously.

 (e / et

 :op (v / voir

 :ARG0 (j / je)

 :ARG1 (b / bonhomme

 :ARG0-of (c / "considérer"

 :ARG1 j

 :mod (g / gravement))

 :mod (p / petit)

 :mod (e2 / extraordinaire

 :degree (t / "tout_à_fait")))))

Figure 4 AMR in French with re-entrant node “j”

Pat was persuaded by Chris to eat the apple.

(p / persuade

 :ARG0 (p2 / person

 :name (c / name :op1 Chris))

 :ARG2 (e / eat

 :ARG0 (p4 / person

 :name (p3 / name :op1 Pat))

 :ARG1 (a / apple))

 :ARG1 p3)

Figure 2. LF-AMR for the input sentence “Pat was

persuaded by Chris to eat the apple”, with both pas-

sive and control constructions.

29

Input: Die dem wirtschaftlichen Aufschwung zu

verdankende sinkende Arbeitslosenquote führe zu

höheren Steuereinnahmen.

Gloss: The the economic upturn to thank-for sink-

ing unemployment rate led to higher tax-revenue

 (f / "führen"

 :ARG0 (a / Arbeitslosenquote

 :ARG0-of (s / sinken)

 :ARG0-of (v / verdanken

 :ARG2 (a2 / Aufschwung

 :mod (w / wirtschaftlich))

 :degree (z / zu)))

 :prep-zu (s2 / Steuereinnahme

 :mod (h / hoch)))

Figure 5 AMR in German for complex participial

construction

Input: 東国 の 諸 藩主 に 勤王 を 誓わせた。

Gloss: eastern_lands various feudal_lords

serve_monarchy swear-CAUS-PAST

Figure 6. AMR in Japanese illustrating a causative

construction

8 Conclusion

In the sections above, we have attempted to

highlight those aspects of the system that will be

demonstrated. To summarize, we show a system

that:

• Produces AMR output that can be compared

to the manually-annotated LDC resources. Avail-

able at: http://research.microsoft.com/msrsplat,

• Produces AMR output for a new data set

comprised of the sentences selected for the devel-

opment of our LF component. This curated data set

was selected to represent a wide range of phenom-

ena and representational challenges. These sen-

tences and their AMR annotations are available at:

http://research.microsoft.com/nlpwin-amr

• Produces AMR annotations for French, Ger-

man, Spanish and Japanese input, which may be

used to speed-up manual annotation/correction in

these languages.

Acknowledgements

We are grateful to all our colleagues who worked on

NLPwin. For this paper, we especially recognize Karen

Jensen, Carmen Lozano, Jessie Pinkham, Michael

Gamon and Hisami Suzuki for their work on Logical

Form. We also acknowledge Jeffrey Flanigan and his

co-authors for their contributions of making the JAMR

models and code available.

References

Laura Banarescu, Claire Bonial, Shu Cai, Madalina

Georgescu, Kira Griffitt, Ulf Hermjakob, Kevin

Knight, Philipp Koehn, Martha Palmer, and Nathan

Schneider. 2014. Abstract Meaning Representation

(AMR) 1.2.1 Specification. Available at

https://github.com/amrisi/amr-

guidelines/blob/master/amr.md

Shu Cai and Kevin Knight. 2013. Smatch: an evaluation

metric for semantic feature structures. In Proceedings

of ACL.

Jeffrey Flanigan, Sam Thomson, Jaime Carbonell, Chris

Dyer, and Noah Smith. 2014. A Discriminative

Graph-Based Parser for the Abstract Meaning Repre-

sentation. In Proceedings of ACL 2014.

Dan Flickinger, Emily M. Bender and Stephan Oepen.

2014. Towards an Encyclopedia of Compositional

Semantics: Documenting the Interface of the English

Resource Grammar. In Proceedings of LREC.

Jan Hajič, Alena Böhmová, Hajičová, Eva, and Hladká,

Barbara. (2003). The Prague Dependency Treebank:

A Three Level Annotation Scenario. In Abeillé,

Anne, editor, Treebanks: Building and Using Anno-

tated Corpora. Kluwer Academic Publishers.

Martha Palmer, Olga Babko-Malaya, Hoa Trang Dang.

2004. Different Sense Granularities for Different Ap-

plications. In Proceedings of Workshop on Scalable

Natural Language Understanding.

Sameer. S. Pradhan, Eduard Hovy, Mitch Marcus, Mar-

tha Palmer, Lance Ramshaw, and Ralph Weischedel.

2007. OntoNotes: A Unified Relational Semantic

Representation. In Proceedings of the International

Conference on Semantic Computing (ICSC ’07).

Hisami Suzuki. 2002. A development environment for

large-scale multi-lingual parsing systems. In Pro-

ceedings of the 2002 workshop on Grammar engi-

neering and evaluation - Volume 15, Pages 1-7.

Lucy Vanderwende. 2015. NLPwin – an introduction.

Microsoft Research tech report no. MSR-TR-2015-

23, March 2015.

30

Proceedings of NAACL-HLT 2015, pages 31–35,
Denver, Colorado, May 31 – June 5, 2015. c©2015 Association for Computational Linguistics

ICE: Rapid Information Extraction Customization for NLP Novices

Yifan He and Ralph Grishman
Computer Science Department

New York University
New York, NY 10003, USA

{yhe,grishman}@cs.nyu.edu

Abstract

We showcase ICE, an Integrated Customiza-
tion Environment for Information Extraction.
ICE is an easy tool for non-NLP experts to
rapidly build customized IE systems for a new
domain.

1 Introduction

Creating an information extraction (IE) system for a
new domain, with new vocabulary and new classes
of entities and relations, remains a task requiring
substantial time, training, and expense. This has
been an obstacle to the wider use of IE technol-
ogy. The tools which have been developed for this
task typically do not take full advantage of linguis-
tic analysis and available learning methods to pro-
vide guidance to the user in building the IE system.
They also generally require some understanding of
system internals and data representations. We have
created ICE [the Integrated Customization Environ-
ment], which lowers the barriers to IE system devel-
opment by providing guidance while letting the user
retain control, and by allowing the user to interact in
terms of the words and phrases of the domain, with
a minimum of formal notation.

In this paper, we review related systems and ex-
plain the technologies behind ICE. The code, docu-
mentation, and a demo video of ICE can be found at
http://nlp.cs.nyu.edu/ice/

2 Related Work

Several groups have developed integrated systems
for IE development:

The extreme extraction system from BBN
(Freedman et al., 2011) is similar in several regards:
it is based on an extraction system initially devel-
oped for ACE1, allows for the customization of enti-
ties and relations, and uses bootstrapping and active
learning. However, in contrast to our system, it is
aimed at skilled computational linguists.

The Language Computer Corporation has de-
scribed several tools developed to rapidly extend
an IE system to a new task (Lehmann et al., 2010;
Surdeanu and Harabagiu, 2002). Here too the em-
phasis is on tools for use by experienced IE system
developers. Events and relations are recognized us-
ing finite-state rules, with meta-rules to efficiently
capture syntactic variants and a provision for super-
vised learning of rules from annotated corpora.

A few groups have focused on use by NLP
novices:

The WIZIE system from IBM Research
(Li et al., 2012) is based on a finite-state rule
language. Users prepare some sample annotated
texts and are then guided in preparing an extraction
plan (sequences of rule applications) and in writing
the individual rules. IE development is seen as a
rule programming task. This offers less in the way
of linguistic support (corpus analysis, syntactic
analysis) but can provide greater flexibility for
extraction tasks where linguistic models are a poor
fit.

The SPIED system (Gupta and Manning, 2014)
focuses on extracting lexical patterns for entity
recognition in an interactive fashion. Our system, on

1https://www.ldc.upenn.edu/
collaborations/past-projects/ace

31

the other hand, aims at extracting both entities and
relations. Furthermore, SPIED produces token se-
quence rules, while our system helps the user to con-
struct lexico-syntactic extraction rules that are based
on dependency paths.

The PROPMINER system from T. U. Berlin
(Akbik et al., 2013) takes an approach more similar
to our own. In particular, it is based on a depen-
dency analysis of the text corpus and emphasizes ex-
ploratory development of the IE system, supported
by search operations over the dependency structures.
However, the responsibility for generalizing initial
patterns lies primarily with the user, whereas we
support the generalization process through distribu-
tional analysis.

1. Preprocessing

2. Key phrase

extraction

3. Entity set

construction

4. Dependency

paths extraction

5. Relation pattern

bootstrapping

Text extraction

Tokenization

POS Tagging

DEP Parsing

NE Tagging

Coref Resolution

Key

phrase

Index

Entity

Sets

Path

Index

Relation

Extractor

Corpus

in new

domain

Processed

corpus in

general

domain

Processed

corpus in

new

domain

Figure 1: System architecture of ICE

3 System Description

3.1 Overall architecture

The information to be extracted by the IE system
consists of user-specified types of entities and user-
specified types of relations connecting these entities.
Standard types of entities (people, organizations, lo-
cations, etc.) are built in; new entity types are de-
fined extensionally as lists of terms. Relation types
are captured in the form of sets of lexicalized depen-
dency paths, discussed in more detail below.

For NLP novices, it is much easier to provide ex-
amples for what they want and make binary choices,

than to come up with linguistic rules or compre-
hensive lists. ICE therefore guides users through a
series of linguistic processing steps, presents them
with entities and dependency relations that are po-
tential seeds, and helps them to expand the seeds by
answering yes/no questions.

Figure 1 illustrates the five steps of ICE process-
ing: given a new corpus, preprocessing builds a
cache of analyzed documents to speed up further
processing; key phrase extraction and entity set con-
struction build new entity types; dependency path
extraction and relation pattern bootstrapping build
new semantic relations.

3.2 Preprocessing
We rely on distributional analysis to collect entity
sets and relation patterns on a new domain. Ef-
fective distributional analysis requires features from
deep linguistic analysis that are too time-consuming
to perform more than once. ICE therefore al-
ways preprocesses a new corpus with the Jet NLP
pipeline2 when it is first added, and saves POS tags,
noun chunks, dependency relations between tokens,
types and extents of named-entities, and coreference
chains to a cache. After preprocessing, each of the
following steps can be completed within minutes on
a corpus of thousands of documents, saving the time
of the domain expert user.

3.3 Key phrase extraction
In ICE, key phrases of a corpus are either nouns
or multi-word terms. We extract multi-word terms
from noun chunks: if a noun chunk has N adjec-
tives and nouns preceding the head noun, we obtain
N + 1 multi-word term candidates consisting of the
head noun and its preceding i (0 ≤ i ≤ N) nouns
and adjectives.

We count the absolute frequency of the nouns and
multi-word terms and rank them with a ratio score,
which is the relative frequency compared to a gen-
eral corpus. We use the ratio score St to measure the
representativeness of term t with regard to the given
domain, as defined in Eq (1).

St =
#pos(t) · logα(#pos(t))

#neg(t)
(1)

where #pos(t) is the number of occurrences of term
t in the in-domain corpus, #neg(t) is the number of

2http://cs.nyu.edu/grishman/jet/jet.html

32

occurrences of term t in the general corpus, and α is
a user-defined parameter to favor either common or
rare words, default to 0.

We present the user with a ranked list, where
words or multi-word terms that appear more often in
the in-domain corpus than in general language will
rank higher.

3.4 Entity set construction

ICE constructs entity sets from seeds. Seeds are en-
tities that are representative of a type: if we want to
construct a DRUGS type, “methamphetamine” and
“oxycodone” can be possible seeds. Seeds are pro-
vided by the user (normally from the top scoring
terms), but if the user is uncertain, ICE can recom-
mend seeds automatically, using a clustering-based
heuristic.

3.4.1 Entity set expansion
Given a seed set, we compute the distributional

similarity of all terms in the corpus with the cen-
troid of the seeds, using the dependency analysis as
the basis for computing term contexts. We repre-
sent each term with a vector that encodes its syn-
tactic context, which is the label of the dependency
relation attached to the term in conjunction with the
term’s governor or dependent in that relation.

Consider the entity set of DRUGS. Drugs often
appear in the dependency relations dobj(sell, drug)
and dobj(transport, drug) (where dobj is the direct
object relation), thus members in the DRUGS set will
share the features dobj sell and dobj transport. We
use pointwise mutual information (PMI) to weight
the feature vectors and use a cosine metric to mea-
sure the similarity between two term vectors.

The terms are displayed as a ranked list, and the
user can accept or reject individual members of the
entity set. At any point the user can recompute the
similarities and rerank the list (where the ranking
is based the centroids of the accepted and rejected
terms, following (Min and Grishman, 2011)). When
the user is satisfied, the set of accepted terms will be-
come a new semantic type for tagging further text.

3.5 Dependency path extraction and
linearization

ICE captures the semantic relation (if any) be-
tween two entity mentions by the lexicalized

Parker

oversaw

business

distribution

crack cocaine

PERSON

DRUGS

a sophisticated

nsubj dobj

nn

nn

Figure 2: A parse tree; dotted relations ignored by LDP

dependency path (LDP) and the semantic types
of the two entities. LDP includes both the la-
bels of the dependency arcs and the lemmatized
form of the lexical items along the path. For
example, for the sentence “[Parker] oversaw a
sophisticated [crack cocaine] distribution busi-
ness.”, consider the parse tree in Figure 2. The
path from “Parker” to “crack cocaine” would be
nsubj−1:oversee:dobj:business:nn:distribution:nn,
where the −1 indicates that the nsubj arc is being
traversed from dependent to governor. The deter-
miner “a” and the adjective modifier “sophisticated”
are dropped in the process, making the LDP more
generalized than token sequence patterns.

We linearize LDPs before presenting them to the
user to keep the learning curve gentle for NLP
novices: given an LDP and the sentence from which
it is extracted, we only keep the word in the sentence
if it is the head word of the entity or it is on the LDP.
The linearized LDP for the path in Figure 2 , “PER-
SON oversee DRUGS distribution business”, is more
readable than the LDP itself.

3.6 Bootstrapping relation extractors

3.6.1 Relation extractor
ICE builds two types of dependency-path based

relation extractors. Given two entities and an LDP
between them, the exact extractor extracts a relation
between two entities if the types of the two enti-
ties match the types required by the relation, and the
words on the candidate LDP match the words on an
extraction rule. When the two nodes are linked by
an arc in the dependency graph (i.e. no word but a
type label on the LDP), we require the dependency
label to match.

ICE also builds a fuzzy extractor that calculates
edit distance (normalized by the length of the rule)
between the candidate LDP and the rules in the rule
set. It extracts a relation if the minimum edit dis-

33

tance between the candidate LDP and the rule set
falls below a certain threshold (0.5 in ICE). We tune
the edit costs on a development set, and use insertion
cost 0.3, deletion cost 1.2, and substitution cost 0.8.

Fuzzy extractors with large rule sets tend to pro-
duce false positive relations. ICE therefore boot-
straps both positive and negative rules, and requires
that the candidate LDP should be closer to (the clos-
est element in) the positive rule set than to the neg-
ative rule set, in order to be extracted by the fuzzy
LDP matcher.

3.6.2 Bootstrapper
The learner follows the style of Snowball

(Agichtein and Gravano, 2000), with two key dif-
ferences: it bootstraps both positive and negative
rules, and performs additional filtering of the top k
(k = 20 in ICE) candidates to ensure diversity.

Starting with a seed LDP, the learner gathers all
the pairs of arguments (endpoints) which appear
with this LDP in the corpus. It then collects all other
LDPs which connect any of these pairs in the corpus,
and presents these LDPs to the user for assessment.
If the set of argument pairs connected by any of the
seeds is S and the set of argument pairs of a candi-
date LDP x is X , the candidate LDPs are ranked by
| S ∩ X | / | X |, so that LDPs most distribution-
ally similar to the seed set are ranked highest. The
linearized LDPs which are accepted by the user as
alternative expressions of the semantic relation are
added to the seed set. At any point the user can ter-
minate the bootstrapping and accept the set of LDPs
as a model of the relation.

Bidirectional bootstrapping. If the user explic-
itly rejects a path, but it is similar to a path in the
seed set, we still bootstrap from the arg pairs of this
path. We save all the paths rejected by the user as
the negative rule set.

Diversity-based filtering. When presenting the
bootstrapped LDPs, we require paths presented in
the first ICE screen (top 20 candidates) to be distant
enough from each other.

4 Experiments

We perform end-to-end relation extraction experi-
ments to evaluate the utility of ICE: we start from

SELL RESIDENT-OF

P R F P R F

Fuzzy 0.60 0.22 0.32 0.68 0.51 0.58
-neg 0.59 0.22 0.32 0.55 0.51 0.53

Exact 0.92 0.10 0.18 0.72 0.47 0.57

Table 1: End-to-end relation extraction using small rule
sets. Fuzzy: fuzzy match relation extractor with negative
rule set; -neg: fuzzy match extractor without negative rule
set; Exact: exact match extractor; P / R / F: Precision /
Recall / F-score

SELL RESIDENT-OF

P R F P R F

Fuzzy 0.46 0.36 0.40 0.56 0.53 0.55
-neg 0.31 0.38 0.34 0.30 0.56 0.39

Exact 0.76 0.20 0.32 0.75 0.53 0.62

Table 2: End-to-end relation extraction using large rule
sets. Same configurations as Table 1

plain text, extract named entities, and finally ex-
tract drug names and relations with models built
by ICE. We collect approximately 5,000 web news
posts from the U.S. Drug Enforcement Administra-
tion 3 (DEA) for our experiments.

Entity Set Construction. In our first experiment,
we extracted 3,703 terms from this corpus and man-
ually identified 119 DRUGS names and 97 law en-
forcement agent (AGENTS) mentions, which we use
as the “gold standard” sets. We then ran our cus-
tomizer in the following manner: 1) we provided
the entity set expansion program with two seeds
(“methamphetamine” and “oxycodone” for DRUGS;
“special agents” and “law enforcement officers” for
AGENTS); 2) the program produced a ranked list of
terms; 3) in each iteration, we examined the top 20
terms that had not been examined in previous iter-
ations; 4) if a term is in the gold standard set, we
added it to the expander as a positive seed, other-
wise, we added it as a negative seed; 5) we continued
the expansion with the updated seed set, repeating
the process for 10 iterations. This process produced
high-recall dictionary-based entity taggers (74% for

3http://www.justice.gov/dea/index.shtml

34

drugs, 82% for agents) in just a few minutes.

Relation Extraction. With the ICE-built DRUGS

dictionary, we performed end-to-end extraction of
two relations: SELL, in which a PERSON sells
DRUGS, using “PERSON sell DRUGS” as seed, and
RESIDENT-OF, which indicates that a PERSON re-
sides in a GPE4, using “PERSON of GPE” as seed.
We manually annotated 51 documents from the
DEA collection. There are 110 SELL relations and
45 RESIDENT-OF relations in the annotated corpus.

We first extracted small rule sets. For both rela-
tions, we asked a user to review the presented LDPs
on the first screen (20 LDPs in total) and then ran
bootstrapping using the expanded seeds. We did
this for 3 iterations, so the user evaluated 60 LDPs,
which took less than half an hour. We report the
results in Table 1. Note that these are end-to-end
scores, reflecting in part errors of entity extraction.
After entity tagging and coreference resolution, the
recall of entity mentions is 0.76 in our experiments.

We observe that fuzzy LDP match with negative
rule sets obtains best results for both relations. If
we remove the negative rule set, the precision of
RESIDENT-OF is hurt more severely than the SELL
relations. On the other hand, if we require exact
match, the recall of SELL will decrease very signif-
icantly. This discrepancy in performance is due to
the nature of the two relations. RESIDENT-OF is a
relatively closed binary relation, with fewer lexical
variations: the small RESIDENT-OF model covers
around 50% of the relation mentions with 7 positive
LDPs, so it is easier to rule out false positives than
to further boost recall. SELL, in contrast, can be
expressed in many different ways, and fuzzy LDP
match is essential for reasonable recall.

We report experimental results on larger rule sets
in Table 2. The large rule sets were bootstrapped in
3 iterations as well, but the user reviewed 250 LDPs
in each iteration. The best score in this setting im-
proves to 0.4 F-score for SELL and 0.62 F-score for
RESIDENT-OF, as we have more LDP rules. The
exact match extractor performs better than the fuzzy
match extractor for RESIDENT-OF, as the latter is
hurt by false positives.

4Geo-political entity, or GPE, is an entity type defined in
Ace, meaning location with a government

5 Conclusion and Future Work
We described ICE, an integrated customization en-
vironment for information extraction customization
and evaluated its end-to-end performance. We plan
to explore more expressive models than LDP that
can handle arbitrary number of arguments, which
will enable ICE to build event extractors.

Acknowledgements
We thank Lisheng Fu, Angus Grieve-Smith, and Thien
Huu Nguyen for discussions.

References
Eugene Agichtein and Luis Gravano. 2000. Snowball:

Extracting relations from large plain-text collections.
In Proceedings of the Fifth ACM Conference on Digi-
tal Libraries, pages 85–94.

Alan Akbik, Oresti Konomi, Michail Melnikov, et al.
2013. Propminer: A workflow for interactive infor-
mation extraction and exploration using dependency
trees. In Proceedings of the 51st Annual Meeting of
the Association for Computational Linguistics: Sys-
tems Demonstrations, pages 157–162.

Marjorie Freedman, Lance Ramshaw, Elizabeth Boschee,
Ryan Gabbard, Gary Kratkiewicz, Nicolas Ward, and
Ralph Weischedel. 2011. Extreme extraction: ma-
chine reading in a week. In Proceedings of the Confer-
ence on Empirical Methods in Natural Language Pro-
cessing, pages 1437–1446.

Sonal Gupta and Christopher Manning. 2014. SPIED:
Stanford pattern based information extraction and di-
agnostics. In Proceedings of the Workshop on Interac-
tive Language Learning, Visualization, and Interfaces,
pages 38–44.

John Lehmann, Sean Monahan, Luke Nezda, Arnold
Jung, and Ying Shi. 2010. LCC approaches to knowl-
edge base population at tac 2010. In Proc. TAC 2010
Workshop.

Yunyao Li, Laura Chiticariu, Huahai Yang, Frederick R
Reiss, and Arnaldo Carreno-Fuentes. 2012. WizIE: a
best practices guided development environment for in-
formation extraction. In Proceedings of the ACL 2012
System Demonstrations, pages 109–114.

Bonan Min and Ralph Grishman. 2011. Fine-grained
entity refinement with user feedback. In Proceedings
of RANLP 2011 Workshop on Information Extraction
and Knowledge Acquisition.

Mihai Surdeanu and Sanda M. Harabagiu. 2002. Infras-
tructure for open-domain information extraction. In
Proceedings of the second international conference on
Human Language Technology Research, pages 325–
330.

35

Proceedings of NAACL-HLT 2015, pages 36–40,
Denver, Colorado, May 31 – June 5, 2015. c©2015 Association for Computational Linguistics

AMRICA: an AMR Inspector for Cross-language Alignments

Naomi Saphra
Center for Language and Speech Processing

Johns Hopkins University
Baltimore, MD 21211, USA
nsaphra@jhu.edu

Adam Lopez
School of Informatics

University of Edinburgh
Edinburgh, United Kingdom
alopez@inf.ed.ac.uk

Abstract

Abstract Meaning Representation (AMR), an
annotation scheme for natural language se-
mantics, has drawn attention for its simplic-
ity and representational power. Because AMR
annotations are not designed for human read-
ability, we present AMRICA, a visual aid for
exploration of AMR annotations. AMRICA
can visualize an AMR or the difference be-
tween two AMRs to help users diagnose in-
terannotator disagreement or errors from an
AMR parser. AMRICA can also automati-
cally align and visualize the AMRs of a sen-
tence and its translation in a parallel text. We
believe AMRICA will simplify and streamline
exploratory research on cross-lingual AMR
corpora.

1 Introduction

Research in statistical machine translation has be-
gun to turn to semantics. Effective semantics-based
translation systems pose a crucial need for a practi-
cal cross-lingual semantic representation. One such
schema, Abstract Meaning Representation (AMR;
Banarescu et al., 2013), has attracted attention for its
simplicity and expressive power. AMR represents
the meaning of a sentence as a directed graph over
concepts representing entities, events, and properties
like names or quantities. Concepts are represented
by nodes and are connected by edges representing
relations—roles or attributes. Figure 1 shows an ex-
ample of the AMR annotation format, which is opti-
mized for text entry rather than human comprehen-
sion.

For human analysis, we believe it is easier to visu-
alize the AMR graph. We present AMRICA, a sys-

(b / be-located-at-91 :li 4
:ARG1 (i / i)
:ARG2 (c / country

:name (n / name
:op1 "New" :op2 "Zealand"))

:time (w / week :quant 2
:time (p / past)))

Figure 1: AMR for “I’ve been in New Zealand the past
two weeks.” (Linguistic Data Consortium, 2013)

tem for visualizing AMRs in three conditions. First,
AMRICA can display AMRs as in Figure 2. Sec-
ond, AMRICA can visualize differences between
aligned AMRs of a sentence, enabling users to diag-
nose differences in multiple annotations or between
an annotation and an automatic AMR parse (Sec-
tion 2). Finally, to aid researchers studying cross-
lingual semantics, AMRICA can visualize differ-
ences between the AMR of a sentence and that of
its translation (Section 3) using a novel cross-lingual
extension to Smatch (Cai and Knight, 2013). The
AMRICA code and a tutorial are publicly available.1

2 Interannotator Agreement

AMR annotators and researchers are still exploring
how to achieve high interannotator agreement (Cai
and Knight, 2013). So it is useful to visualize a
pair of AMRs in a way that highlights their disagree-
ment, as in Figure 3. AMRICA shows in black those
nodes and edges which are shared between the anno-
tations. Elements that differ are red if they appear in
one AMR and blue if they appear in the other. This
feature can also be used to explore output from an

1http://github.com/nsaphra/AMRICA

36

Figure 2: AMRICA visualization of AMR in Figure 1.

Figure 3: AMRICA visualization of the disagreement
between two independent annotations of the sentence in
Figure 1.

automatic AMR parser in order to diagnose errors.
To align AMRs, we use the public implementation

of Smatch (Cai and Knight, 2013).2 Since it also
forms the basis for our cross-lingual visualization,
we briefly review it here.

AMR distinguishes between variable and con-
stant nodes. Variable nodes, like i in Figure 1, rep-
resent entities and events, and may have multiple in-
coming and outgoing edges. Constant nodes, like 2
in Figure 1, participate in exactly one relation, mak-
ing them leaves of a single parent variable. Smatch
compares a pair of AMRs that have each been de-
composed into three kinds of relationships:

2http://amr.isi.edu/download/smatch-v2.0.tar.gz

1. The set V of instance-of relations describe the
conceptual class of each variable. In Figure 1,
(c / country) specifies that c is an in-
stance of a country. If node v is an instance
of concept c, then (v, c) ∈ V .

2. The set E of variable-to-variable relations like
ARG2(b, c) describe relationships between
entities and/or events. If r is a relation from
variable v1 to variable v2, then (r, v1, v2) ∈ E.

3. The set C of variable-to-constant relations like
quant(w, 2) describe properties of entities
or events. If r is a relation from variable v to
constant x, then (r, v, x) ∈ C.

Smatch seeks the bijective alignment b̂ : V → V ′

between an AMR G = (V,E,C) and a larger AMR
G′ = (V ′, E′, C ′) satisfying Equation 1, where I is
an indicator function returning 1 if its argument is
true, 0 otherwise.

b̂ = arg max
b

∑
(v,c)∈V

I((b(v), c) ∈ V ′)+ (1)

∑
(r,v1,v2)∈E

I((r, b(v1), b(v2)) ∈ E′)+∑
(r,v,c)∈C

I((r, b(v), c) ∈ C ′)

Cai and Knight (2013) conjecture that this opti-
mization can be shown to be NP-complete by reduc-
tion to the subgraph isomorphism problem. Smatch
approximates the solution with a hill-climbing algo-
rithm. It first creates an alignment b0 in which each
node of G is aligned to a node in G′ with the same
concept if such a node exists, or else to a random
node. It then iteratively produces an alignment bi
by greedily choosing the best alignment that can be
obtained from bi−1 by swapping two alignments or
aligning a node in G to an unaligned node, stopping
when the objective no longer improves and returning
the final alignment. It uses random restarts since the
greedy algorithm may only find a local optimum.

3 Aligning Cross-Language AMRs

AMRICA offers the novel ability to align AMR an-
notations of bitext. This is useful for analyzing

37

AMR annotation differences across languages, and
for analyzing translation systems that use AMR as
an intermediate representation. The alignment is
more difficult than in the monolingual case, since
nodes in AMRs are labeled in the language of
the sentence they annotate. AMRICA extends the
Smatch alignment algorithm to account for this dif-
ficulty.

AMRICA does not distinguish between constants
and variables, since their labels tend to be grounded
in the words of the sentence, which it uses for align-
ment. Instead, it treats all nodes as variables and
computes the similarities of their node labels. Since
node labels are in their language of origin, exact
string match no longer works as a criterion for as-
signing credit to a pair of aligned nodes. There-
fore AMRICA uses a function L : V × V → R
indicating the likelihood that the nodes align. These
changes yield the new objective shown in Equation 2
for AMRs G = (V,E) and G′ = (V ′, E′), where V
and V ′ are now sets of nodes, and E and E′ are de-
fined as before.

b̂ = arg max
b

∑
v∈V

L(v, b(v))+ (2)∑
(r,v1,v2)∈E

I((r, b(v1), b(v2)) ∈ E′)

If the labels of nodes v and v′ match, then
L(v, v′) = 1. If they do not match, then L de-
composes over source-node-to-word alignment as,
source-word-to-target-word alignment a, and target-
word-to-node at, as illustrated in Figure 5. More
precisely, if the source and target sentences contain
n and n′ words, respectively, then L is defined by
Equation 3. AMRICA takes a parameter α to con-
trol how it weights these estimated likelihoods rela-
tive to exact matches of relation and concept labels.

L(v, v′) = α
n∑

i=1

Pr(as(v) = i)× (3)

n′∑
j=1

Pr(ai = j) · Pr(at(v′) = j)

Node-to-word probabilities Pr(as(v) = i) and
Pr(as(v′) = j) are computed as described in Sec-
tion 3.1. Word-to-word probabilities Pr(ai = j)

are computed as described in Section 3.2. AM-
RICA uses the Smatch hill-climbing algorithm to
yield alignments like that in Figure 4.

3.1 Node-to-word and word-to-node alignment
AMRICA can accept node-to-word alignments as
output by the heuristic aligner of Flanigan et al.
(2014).3 In this case, the tokens in the aligned span
receive uniform probabilities over all nodes in their
aligned subgraph, while all other token-node align-
ments receive probability 0. If no such alignments
are provided, AMRICA aligns concept nodes to to-
kens matching the node’s label, if they exist. A to-
ken can align to multiple nodes, and a node to multi-
ple tokens. Otherwise, alignment probability is uni-
formly distributed across unaligned nodes or tokens.

3.2 Word-to-word Alignment
AMRICA computes the posterior probability of the
alignment between the ith word of the source and jth
word of the target as an equal mixture between the
posterior probabilities of source-to-target and target-
to-source alignments from GIZA++ (Och and Ney,
2003).4 To obtain an approximation of the pos-
terior probability in each direction, it uses the m-
best alignments a(1) . . . a(m), where a(k)

i = j indi-
cates that the ith source word aligns to the jth target
word in the kth best alignment, and Pr(a(k)) is the
probability of the kth best alignment according to
GIZA++. We then approximate the posterior proba-
bility as follows.

Pr(ai = j) =
∑m

k=1 Pr(a(k))I[a(k)
i = j]∑m

k=1 Pr(a(k))

4 Demonstration Script

AMRICA makes AMRs accessible for data explo-
ration. We will demonstrate all three capabilities
outlined above, allowing participants to visually ex-
plore AMRs using graphics much like those in Fig-
ures 2, 3, and 4, which were produced by AMRICA.
We will then demonstrate how AMRICA can be
used to generate a preliminary alignment for bitext

3Another option for aligning AMR graphs to sentences is
the statistical aligner of Pourdamghani et al. (2014)

4In experiments, this method was more reliable than using
either alignment alone.

38

Figure 5: Cross-lingual AMR example from Nianwen Xue et al. (2014). The node-to-node alignment of the high-
lighted nodes is computed using the node-to-word, word-to-word, and node-to-word alignments indicated by green
dashed lines.

Figure 4: AMRICA visualization of the example in Fig-
ure 5. Chinese concept labels are first in shared nodes.

AMRs, which can be corrected by hand to provide
training data or a gold standard alignment.

Information to get started with AMRICA is avail-
able in the README for our publicly available
code.

Acknowledgments

This research was supported in part by the National
Science Foundation (USA) under awards 1349902
and 0530118. We thank the organizers of the
2014 Frederick Jelinek Memorial Workshop and the
members of the workshop team on Cross-Lingual
Abstract Meaning Representations (CLAMR), who
tested AMRICA and provided vital feedback.

References

L. Banarescu, C. Bonial, S. Cai, M. Georgescu, K. Grif-
fitt, U. Hermjakob, K. Knight, P. Koehn, M. Palmer,
and N. Schneider. 2013. Abstract meaning represen-
tation for sembanking. In Proc. of the 7th Linguistic

39

Annotation Workshop and Interoperability with Dis-
course.

S. Cai and K. Knight. 2013. Smatch: an evaluation met-
ric for semantic feature structures. In Proc. of ACL.

J. Flanigan, S. Thomson, C. Dyer, J. Carbonell, and N. A.
Smith. 2014. A discriminative graph-based parser for
the abstract meaning representation. In Proc. of ACL.

Nianwen Xue, Ondrej Bojar, Jan Hajic, Martha Palmer,
Zdenka Uresova, and Xiuhong Zhang. 2014. Not an
interlingua, but close: Comparison of English AMRs
to Chinese and Czech. In Proc. of LREC.

F. J. Och and H. Ney. 2003. A systematic comparison of
various statistical alignment models. Computational
Linguistics, 29(1):19–51, Mar.

N. Pourdamghani, Y. Gao, U. Hermjakob, and K. Knight.
2014. Aligning english strings with abstract meaning
representation graphs.

Linguistic Data Consortium. 2013. DEFT phase 1 AMR
annotation R3 LDC2013E117.

40

Proceedings of NAACL-HLT 2015, pages 41–45,
Denver, Colorado, May 31 – June 5, 2015. c©2015 Association for Computational Linguistics

Ckylark: A More Robust PCFG-LA Parser

Yusuke Oda Graham Neubig Sakriani Sakti Tomoki Toda Satoshi Nakamura
Graduate School of Information Science
Nara Institute of Science and Technology

8916-5 Takayama, Ikoma, Nara 630-0192, Japan
{oda.yusuke.on9, neubig, ssakti, tomoki, s-nakamura}@is.naist.jp

Abstract

This paper describes Ckylark, a PCFG-LA
style phrase structure parser that is more ro-
bust than other parsers in the genre. PCFG-LA
parsers are known to achieve highly competi-
tive performance, but sometimes the parsing
process fails completely, and no parses can be
generated. Ckylark introduces three new tech-
niques that prevent possible causes for parsing
failure: outputting intermediate results when
coarse-to-fine analysis fails, smoothing lexi-
con probabilities, and scaling probabilities to
avoid underflow. An experiment shows that
this allows millions of sentences can be parsed
without any failures, in contrast to other pub-
licly available PCFG-LA parsers. Ckylark is
implemented in C++, and is available open-
source under the LGPL license.1

1 Introduction

Parsing accuracy is important. Parsing accuracy has
been shown to have a significant effect on down-
stream applications such as textual entailment (Yuret
et al., 2010) and machine translation (Neubig and
Duh, 2014), and most work on parsing evaluates ac-
curacy to some extent. However, one element that is
equally, or perhaps even more, important from the
view of downstream applications is parser robust-
ness, or the ability to return at least some parse re-
gardless of the input. Every failed parse is a sen-
tence for which downstream applications have no
chance of even performing processing in the nor-
mal way, and application developers must perform

1http://github.com/odashi/ckylark

special checks that detect these sentences and either
give up entirely, or fall back to some alternative pro-
cessing scheme.

Among the various methods for phrase-structure
parsing, the probabilistic context free grammar with
latent annotations (PCFG-LA, (Matsuzaki et al.,
2005; Petrov et al., 2006)) framework is among the
most popular for several reasons. The first is that it
boasts competitive accuracy, both in intrisinic mea-
sures such as F1-score on the Penn Treebank (Mar-
cus et al., 1993), and extrinsic measures (it achieved
the highest textual entailment and machine transla-
tion accuracy in the papers cited above). The second
is the availablity of easy-to-use tools, most notably
the Berkeley Parser,2 but also including Egret,3 and
BUBS Parser.4

However, from the point of view of robustness,
existing tools for PCFG-LA parsing leave something
to be desired; to our knowledge, all existing tools
produce a certain number of failed parses when run
on large data sets. In this paper, we introduce Ck-
ylark, a new PCFG-LA parser specifically designed
for robustness. Specifically, Ckylark makes the fol-
lowing contributions:

• Based on our analysis of three reasons why
conventional PCFG-LA parsing models fail
(Section 2), Ckylark implements three im-
provements over the conventional PCFG-LA
parsing method to remedy these problems (Sec-
tion 3).

2https://code.google.com/p/berkeleyparser/
3https://code.google.com/p/egret-parser/
4https://code.google.com/p/bubs-parser/

41

• An experimental evaluation (Section 4) shows
that Ckylark achieves competitive accuracy
with other PCFG-LA parsers, and can robustly
parse large datasets where other parsers fail.

• Ckylark is implemented in C++, and released
under the LGPL license, allowing for free re-
search or commercial use. It is also available
in library format, which means that it can be
incorporated directly into other programs.

2 Failure of PCFG-LA Parsing

The basic idea behind PCFG-LA parsing is that tra-
ditional tags in the Penn Treebank are too coarse,
and more accurate grammars can be achieved by
automatically splitting tags into finer latent classes.
For example, the English words “a” and “the” are
classified as determiners (DT), but these words are
used in different contexts, so can be assigned differ-
ent latent classes. The most widely used method to
discover these classes uses the EM algorithm to esti-
mate latent classes in stages (Petrov et al., 2006).
This method generates hierarchical grammars in-
cluding relationships between each latent class in a
tree structure, and the number of latent classes in-
creases exponentially for each level of the grammar.
The standard search method for PCFG grammars is
based on the CKY algorithm. However, simply ap-
plying CKY directly to the “finest” grammar is not
realistic, as the complexity of CKY is propotional
to the polynomial of the number of latent classes.
To avoid this problem, Petrov et al. (2006) start
the analysis with the “coarse” grammar and apply
pruning to reduce the amount of computation. This
method is called coarse-to-fine analysis. However,
this method is not guaranteed to successfully return
a parse tree. We describe three reasons why PCFG-
LA parsing fails below.

Failure of pruning in coarse-to-fine analysis
Coarse-to-fine analysis prunes away candidate
paths in the parse graph when their probability
is less than a specific threshold ϵ. This pruning
can cause problems in the case that all possible
paths are pruned and the parser cannot generate
any parse tree at the next step.

Inconsistency between model and target If we
parse sentences with syntax that diverges from

the training data, the parser may fail because
the parser needs rules which are not included
in the grammar. For example, symbols “(”
and “)” become a part of phrase “PRN” only
if both of them and some phrase “X” exist
with the order “(X).” One approach for this
problem is to use smoothed grammars (Petrov
et al., 2006), but this increases the size of
the probability table needed to save such a
grammar.

Underflow of probabilities Parsers calculate joint
probabilities of each parse tree, and this value
decreases exponentially according to the length
of the input sequence. As a result, numerical
underflow sometimes occurs if the parser tries
to parse longer sentences. Using calculations in
logarithmic space is one approach to avoid un-
derflow. However, this approach requires log
and exponent operations, which are more com-
putationally expensive than sums or products.

The failure of pruning is a unique problem for
PCFG-LA, and the others are general problems of
parsing methods based on PCFG. In the next sec-
tion, we describe three improvements over the basic
PCFG-LA method that Ckylark uses to avoid these
problems.

3 Improvements of the Parsing Method

3.1 Early Stopping in Coarse-to-fine Analysis

While coarse-to-fine analysis generally uses the
parsing result of the finest grammar as output, in-
termediate grammars also can generate parse trees.
Thus, we can use these intermediate results instead
of the finest result when parsing fails at later stages.
Algorithm 1 shows this “stopping” approach. This
approach can avoid all errors due to coarse-to-fine
pruning, except in the case of failure during the pars-
ing with the first grammar due to problems of the
model itself.

3.2 Lexicon Smoothing

Next, we introduce lexicon smoothing using the
probabilities of unknown words at parsing time.
This approach not only reduces the size of the gram-
mar, but also allows for treatment of any word as

42

Algorithm 1 Stopping coarse-to-fine analysis
Require: w: input sentence
Require: G0, · · · , GL: coarse-to-fine grammars

T−1 ← nil
P0 ← {} ▷ pruned pathes
for l← 0 .. L do

Tl, Pl+1 ← parse and prune(w; Gl, Pl)
if Tl = nil then ▷ parsing failed

return Tl−1 ▷ return intermediate result
end if

end for
return TL ▷ parsing succeeded

“unknown” if the word appears in an unknown syn-
tactic content. Equation (1) shows the smoothed lex-
icon probability:

P ′(X → w) ≡ (1− λ)P (X → w) +
λP (X → wunk), (1)

where X is any pre-terminal (part-of-speech) sym-
bol in the grammar, w is any word, and wunk is
the unknown word. λ is an interpolation factor be-
tween w and wunk, and should be small enough to
cause no effect when the parser can generate the re-
sult without interpolation. Our implementation uses
λ = 10−10.

3.3 Probability Scaling

To solve the problem of underflow, we modify
model probabilities as Equations (2) to (4) to avoid
underflow without other expensive operations:

Q(X → w) ≡ P ′(X → w)/sl(w), (2)

Q(X → Y) ≡ P (X → Y), (3)

Q(X → Y Z) ≡ P (X → Y Z)/sg, (4)

where X, Y, Z are any non-terminal symbols (in-
cluding pre-terminals) in the grammar, and w is any
word. The result of parsing using Q is guaranteed to
be the same as using original probabilities P and P ′,
because Q maintains the same ordering of P and P ′

despite the fact that Q is not a probability. Values
of Q are closer to 1 than the original values, reduc-
ing the risk of underflow. sl(w) is a scaling factor
of a word w defined as the geometric mean of lexi-
con probabilities that generate w, P ′(X → w), as in

Table 1: Dataset Summaries.
Type #sent #word

WSJ-train/dev 41.5 k 990 k
WSJ-test 2.42 k 56.7 k
NTCIR 3.08 M 99.0 M

Equation (5):

sl(w) ≡ exp
∑
X

P (X) log P ′(X → w), (5)

and sg is the scaling factor of binary rules defined as
the geometric mean of all binary rules in the gram-
mar P (X → Y Z) as in Equation (6):

sg ≡ exp
∑
X

P (X)H(X), (6)

H(X) ≡
∑
Y,Z

P (X → Y Z) log P (X → Y Z). (7)

Calculating P (X) is not trivial, but we can retrieve
these values using the graph propagation algorithm
proposed by Petrov and Klein (2007).

4 Experiments

We evaluated parsing accuracies of our parser Ck-
ylark and conventional PCFG-LA parsers: Berke-
ley Parser and Egret. Berkeley Parser is a conven-
tional PCFG-LA parser written in Java with some
additional optimization techniques. Egret is also a
conventional PCFG-LA parser in C++ which can
generate a parsing forest that can be used in down-
stream application such forest based machine trans-
lation (Mi et al., 2008).

4.1 Dataset and Tools
Table 1 shows summaries of each dataset.

We used GrammarTrainer in the Berkeley Parser
to train a PCFG-LA grammar with the Penn Tree-
bank WSJ dataset section 2 to 22 (WSJ-train/dev).
Egret and Ckylark can use the same model as the
Berkeley Parser so we can evaluate only the perfor-
mance of the parsers using the same grammar. Each
parser is run on a Debian 7.1 machine with an Intel
Core i7 CPU (3.40GHz, 4 cores, 8MB caches) and
4GB RAM.

We chose 2 datasets to evaluate the performances
of each parser. First, WSJ-test, the Penn Tree-
bank WSJ dataset section 23, is a standard dataset

43

Table 2: Bracketing F1 scores of each parser.

Parser F1 (all) F1 (|w| ≤ 40)
Berkeley Parser 89.98 90.54
Egret 89.05 89.70
Ckylark (10−5) 89.44 90.07
Ckylark (10−7) 89.85 90.39

Table 3: Tagging accuracies of each parser.

Parser Acc (all) Acc (|w| ≤ 40)
Berkeley Parser 97.39 97.37
Egret 97.33 97.28
Ckylark (10−5) 97.37 97.35
Ckylark (10−7) 97.39 97.38

to evaluate parsing accuracy including about 2000
sentences. Second, we use NTCIR, a large English
corpus including more than 3 million sentences, ex-
tracted from the NTCIR-8 patent translation task
(Yamamoto and Shimohata, 2010).

Input sentences of each parser must be tokenized
in advance, so we used a tokenization algorithm
equivalent to the Stanford Tokenizer5 for tokenizing
the NTCIR dataset.

4.2 Results

Table 2 shows the bracketing F1 scores6 of parse
trees for each parser on the WSJ-test dataset and Ta-
ble 3 also shows the part-of-speech tagging accura-
cies. We show 2 results for Ckylark with pruning
threshold ϵ as 10−5 and 10−7. These tables show
that the result of Ckylark with ϵ = 10−7 achieves
nearly the same parsing accuracy as the Berkeley
Parser.

Table 4 shows calculation times of each parser on
the WSJ-test dataset. When the pruning threshold ϵ
is smaller, parsing takes longer, but in all cases Ck-
ylark is faster than Egret while achieving higher ac-
curacy. Berkeley Parser is the fastest of all parsers, a
result of optimizations not included in the standard
PCFG-LA parsing algorithm. Incorporating these
techniques into Ckylark is future work.

Table 5 shows the number of parsing failures of
each parser. All parsers generate no failure in the
WSJ-test dataset, however, in the NTCIR dataset,

5http://nlp.stanford.edu/software/tokenizer.shtml
6http://nlp.cs.nyu.edu/evalb/

Table 4: Calculation times of each parser.

Parser Time [s]
Berkeley Parser 278
Egret 3378
Ckylark (10−5) 923
Ckylark (10−7) 2157

Table 5: Frequencies of parsing failure of each parser.

Failure
Parser WSJ-test NTCIR

(#) (%) (#) (%)
Berkeley Parser 0 0 419 0.0136
Egret 0 0 17287 0.561
Ckylark (10−5) 0 0 0 0

Table 6: Number of failures of each coarse-to-fine level.
Smooth Failure level

0 1 2 3 4 5 6
λ = 0 1741 135 24 11 5 57 1405
λ = 10−10 0 130 19 8 4 51 1389

0.01% and 0.5% of sentences could not be parsed
with the Berkeley Parser and Egret respectively. In
contrast, our parser does not fail a single time.

Table 6 shows the number of failures of Ckylark
with ϵ = 10−5 and without the stopping approach; if
the parser failed at the level l analysis then it returns
the result of the l − 1 level. Thus, the stopping ap-
proach will never generate any failure, unless failure
occurs at the initial level. The reason for failure at
the initial level is only due to model mismatch, as
no pruning has been performed. These errors can be
prevented by lexicon smoothing at parsing time as
shown in the case of level 0 with λ = 10−10 in the
table.

5 Conclusion

In this paper, we introduce Ckylark, a parser that
makes three improvements over standard PCFG-LA
style parsing to prevent parsing failure. Experiments
show that Ckylark can parse robustly where other
PCFG-LA style parsers (Berkeley Parser and Egret)
fail. In the future, we plan to further speed up Ck-
ylark, support forest output, and create interfaces to
other programming languages.

44

Acknowledgement

Part of this work was supported by JSPS’s Research
Fellowship for Young Scientists.

References
Mitchell P Marcus, Mary Ann Marcinkiewicz, and Beat-

rice Santorini. 1993. Building a large annotated cor-
pus of english: The Penn Treebank. Computational
linguistics, 19(2).

Takuya Matsuzaki, Yusuke Miyao, and Jun’ichi Tsujii.
2005. Probabilistic CFG with latent annotations. In
Proc. ACL.

Haitao Mi, Liang Huang, and Qun Liu. 2008. Forest-
based translation. In Proc. ACL-HLT.

Graham Neubig and Kevin Duh. 2014. On the elements
of an accurate tree-to-string machine translation sys-
tem. In Proc. ACL.

Slav Petrov and Dan Klein. 2007. Improved inference
for unlexicalized parsing. In Proc. NAACL-HLT.

Slav Petrov, Leon Barrett, Romain Thibaux, and Dan
Klein. 2006. Learning accurate, compact, and inter-
pretable tree annotation. In Proc. COLING-ACL.

Atsushi Fujii Masao Utiyama Mikio Yamamoto and Say-
ori Shimohata. 2010. Overview of the patent transla-
tion task at the NTCIR-8 workshop. In Proc. NTCIR-
8.

Deniz Yuret, Aydin Han, and Zehra Turgut. 2010.
Semeval-2010 task 12: Parser evaluation using textual
entailments. In Proc. SemEval.

45

Proceedings of NAACL-HLT 2015, pages 46–50,
Denver, Colorado, May 31 – June 5, 2015. c©2015 Association for Computational Linguistics

ELCO3: Entity Linking with Corpus Coherence Combining

Open Source Annotators

Pablo Ruiz, Thierry Poibeau and Frédérique Mélanie
Laboratoire LATTICE

CNRS, École Normale Supérieure, U Paris 3 Sorbonne Nouvelle

1, rue Maurice Arnoux, 92120 Montrouge, France

{pablo.ruiz.fabo,thierry.poibeau,frederique.melanie}@ens.fr

Abstract

Entity Linking (EL) systems’ performance is

uneven across corpora or depending on entity

types. To help overcome this issue, we pro-

pose an EL workflow that combines the out-

puts of several open source EL systems, and

selects annotations via weighted voting. The

results are displayed on a UI that allows the

users to navigate the corpus and to evaluate

annotation quality based on several metrics.

1 Introduction

The Entity Linking (EL) literature has shown that

the performance of EL systems varies widely de-

pending on the corpora they are applied to and of

the types of entities considered (Cornolti et al.,

2013). For instance, a system linking to a wide set

of entity types can be less accurate at basic types

like Organization, Person, Location than systems

specializing in those basic types. These issues

make it difficult for users to choose an optimal EL

system for their corpora.

To help overcome these difficulties, we have

created a workflow whereby entities can be linked

to Wikipedia via a combination of the results of

several existing open source EL systems. The out-

puts of the different systems are weighted accord-

ing to how well they performed on corpora similar

to the user’s corpus.

Our target users are social science researchers,

who need to apply EL in order to, for instance,

create entity co-occurrence network visualizations.

These researchers need to make informed choices

about which entities to include in their analyses,

and our tool provides metrics to facilitate these

choices.

The paper is structured as follows: Section 2 de-

scribes related work. Section 3 presents the differ-

ent steps in the workflow, and Section 4 focuses on

the steps presented in the demo.

2 Related work

Cornolti et al. (2013) provide a general survey on

EL. Work on combining EL systems and on help-

ing users select a set of linked entities to navigate a

corpus is specifically relevant to our workflow.

Systems that combine entity linkers exist, e.g.

NERD (Rizzo et al., 2012). However, there are two

important differences in our workflow. First, the

set of entity linkers we combine is entirely open

source and public. Second, we use a simple voting

scheme to optionally offer automatically chosen

annotations when linkers provide conflicting out-

puts. This type of weighted vote had not previously

been attempted for EL outputs to our knowledge,

and is inspired on the ROVER method (Fiscus,

1997, De la Clergerie et al., 2008).

Regarding systems that help users navigate a

corpus by choosing a representative set of linked

entities, our reference is the ANTA tool (Venturini

and Guido, 2012).
1
 This tool helps users choose

entities via an assessment of their corpus frequency

and document frequency. Our tool provides such

information, besides a measure of each entity’s

coherence with the rest of entities in the corpus.

1 https://github.com/medialab/ANTA

46

3 Workflow description

The user’s corpus is first annotated by making

requests to three EL systems’ web services: Tag-

me 2
2
 (Ferragina and Scaiella, 2010), DBpedia

Spotlight
3
 (Mendes et al. 2011) and Wikipedia

Miner
4
 (Milne and Witten, 2008). Annotations are

filtered out if their confidence score is below the

optimal thresholds for those services, reported in

Cornolti et al. (2013) and verified using the BAT-

Framework.
5

3.1 Annotation voting

The purpose of combining several linkers’ results

is obtaining combined annotations that are more

accurate than each of the linkers’ individual re-

sults. To select among the different linkers’ out-

puts, a vote is performed on the annotations that

remain after the initial filtering described above.

Our voting scheme is based on De la Clergerie

et al.’s (2008) version of the ROVER method. An

implementation was evaluated in (Ruiz and

Poibeau, 2015). Two factors that our voting

scheme considers are annotation confidence, and

the number of linkers having produced an annota-

tion. An important factor is also the performance

of the annotator having produced each annotation

on a corpus similar to the user’s corpus: At the

outset of the workflow, the user’s corpus is com-

pared to a set of reference corpora along dimen-

sions that affect EL results, e.g. text-length or

lexical cohesion
6
 in the corpus’ documents. Anno-

tators that perform better on the reference corpus

that is most similar along those dimensions to the

user’s corpus are given more weight in the vote.

In sum, the vote helps to select among conflict-

ing annotation candidates, besides helping identify

unreliable annotations.

3.2 Entity types

Entity types are assigned by exploiting infor-

mation provided in the linkers’ responses, e.g.

DBpedia ontology types or Wikipedia category

2 http://tagme.di.unipi.it/tagme_help.html
3 https://github.com/dbpedia-spotlight/dbpedia-spotlight/wiki
4 http://wikipedia-miner.cms.waikato.ac.nz/
5 https://github.com/marcocor/bat-framework
6 Our notion of lexical cohesion relies on token overlap across

consecutive token sequences, inspired on the block compari-

son method from Hearst (1997).

labels. The entity types currently assigned are Or-

ganization, Person, Location, Concept.

3.3 Entity coherence measures

Once entity selection is completed, a score that

quantifies an entity’s coherence with the rest of

entities in the corpus is computed. This notion of

coherence consists of two components. The first

one is an entity’s relatedness to other entities in

terms of Milne and Witten’s (2008) Wikipedia

Link-based Measure (WLM, details below). The

second component is the distance between entities’

categories in a Wikipedia category graph.

WLM scores were obtained with Wikipedia

Miner’s compare method for Wikipedia entity

IDs.
7
 WLM evaluates the relatedness of two Wik-

ipedia pages as a function of the number of Wik-

ipedia pages linking to both, and the number of

pages linking to each separately. In the literature,

WLM has been exploited to disambiguate among

competing entity senses within a document, taking

into account each sense’s relatedness to each of the

possible senses for the remaining entity-mentions

in the document. We adopt this idea to assess enti-

ty relatedness at corpus level rather than at docu-

ment level. To do so, we obtain each entity’s

averaged WLM relatedness to the most representa-

tive entities in the corpus. The most representative

entities in the corpus were defined as a top per-

centage of the entities, sorted by decreasing anno-

tation confidence, whose annotation frequency and

confidence are above given thresholds.

The second component of our entity coherence

measure is based on distance between nodes in a

Wikipedia category graph (see Strube and

Ponzetto, 2006 for a review of similar methods).

Based on the category graph, the averaged shortest

path
8
 between an entity and the most representative

entities (see criteria above) of the same type was

computed. Some categories like “People from

{City}” were ignored, since they created spurious

connections.

3.4 Annotation attributes

The final annotations contain information like po-

sition (document, character and sentence), confi-

7 http://wikipedia-miner.cms.waikato.ac.nz/services/?compare
8 Using igraph.GraphBase.get_all_shortest_paths from the

Python interface to igraph: http://igraph.org/python/

47

dence, and entity-type. This can be exploited for

further textual analyses, e.g. co-occurrence net-

works.

4 Demonstrator

The goal of the workflow is to help users choose a

representative set of entities to model a corpus,

with the help of descriptive statistics and other

measures like annotation confidence, or the coher-

ence scores described above. A practical way to

access this information is a UI, where users can

assess the validity of an entity by simultaneously

looking at its metrics, and at the documents where

that entity was annotated. We present an early

stage prototype of such a UI, which shows some of

the features of the workflow above, using prepro-

cessed content—the possibility to tag a new corpus

is not online.

The demo interface
9
 allows navigating a corpus

through search and entity facets. In Figure 1, a

Search Text query displays, on the right panel, the

documents matching the query,
10

 while the entities

annotated in those documents are shown in the left

panel. A Search Entities query displays the entities

matching the query on the left panel, and, on the

right, the documents where those entities were

annotated. Refine Search restricts the results on the

right panel to documents containing certain entities

or entity types, if the corresponding checkboxes at

9 http://129.199.228.10/nav/gui/
10 The application’s Solr search server requires access to

traffic on port 8983. A connection refused (or similar) error

message in the search results panel is likely due to traffic

blocked on that port at the user’s network.

the end of each entity row, or items on the entity-

types list have been selected. The colors provide a

visual indication of the entity’s confidence for each

linker (columns, T, S, W, All), scaled
11

 to a range

between 0 (red) and 1 (green). Hovering over the

table reveals the scores in each cell.

For the prototype, the corpus was indexed in

Solr
12

 and the annotations were stored in a MySQL

DB. The EL workflow was implemented in Python

and the UI is in PHP.

Examples of the utility of the information on the

UI and of the workflow’s outputs follow.

Usage example 1: Spotting incorrect annota-

tions related to a search term. The demo corpus

is about the 2008 financial crisis. Suppose the user

is interested in organizations appearing in texts that

mention credit ratings (Figure 1). Several relevant

organizations are returned for documents matching

the query, but also an incorrect one: Nielsen rat-

ings. This entity is related to ratings in the sense of

audience ratings, not credit ratings. The coherence

score (column Coh) for the incorrect entity is much

lower (red, dark) than the scores for the relevant

entities (green, light). The score helps to visually

identify the incorrect annotation, based on its lack

of coherence with representative entities in the

corpus.

Figure 1 also gives an indication how the differ-

ent linkers complement each other: Some annota-

tions have been missed by one linker (grey cells),

but the other two provide the annotation.

11 scikit-learn: sklearn.preprocessing.MinMaxScaler.html
12 http://lucene.apache.org/solr/

Figure 1: Results for query credit ratings. The right panel shows documents matching the query; the left panel shows the

entities that have been annotated in those documents.

48

Usage example 2: Verifying correctness of en-

tities in networks. A common application of EL is

creating co-occurrence networks, e.g. based on an

automatic selection of entities above a certain fre-

quency. This can result in errors. Figure 2 shows a

small area from an entity co-occurrence network

for our corpus. Our corpus comes from the 2014

PoliInformatics challenge (Smith et al., 2014), and

the corpus topic is the 2008 financial crisis. The

network was created independently of the work-

flow described in this paper, using Gephi,
13

 based

on entities annotated by Wikipedia Miner, which is

one of the EL systems whose outputs our workflow

combines. Node Continental Airlines in the net-

work seems odd for the corpus, in the sense that

the corpus is about the financial crisis, and Conti-

nental Airlines was not a major actor in the crisis.

A Search Entities query for Continental on our

13 http://gephi.github.io

GUI returns two annotations (Figure 3): the airline,

and Continental Illinois (a defunct bank). The co-

herence (Coh) score for the bank is higher than for

the airline. If we run a Search Text query for Con-

tinental on our GUI, the documents returned for

the query confirm that the correct entity for the

corpus is the bank (Figure 4 shows one of the doc-

uments returned).

The example just discussed also shows that the

coherence scores can provide information that is

not redundant with respect to annotation frequency

or annotation confidence. It is the bank’s coher-

ence score that suggests its correctness: The incor-

rect annotation (for the airline) is more frequent,

and the confidence scores for both annotations are

equivalent.

In short, this second example is another indica-

tion how our workflow helps spot errors made by

annotation systems and decide among conflicting

annotations.

A final remark about entity networks: Our work-

flow segments documents into sentences, which

would allow to create co-occurrence networks at

sentence level. Some example networks based on

our outputs and created with Gephi are available

on the demo site.
14

 These networks were not creat-

ed programmatically from the workflow: The cur-

rent implementation does not automatically call a

visualization tool to create networks, but this is

future work that would be useful for our target

users.

5 Conclusion

Since entity linking (EL) systems’ results vary

widely according to the corpora and to the annota-

tion types needed by the user, we present a work-

flow that combines different EL systems’ results,

so that the systems complement each other. Con-

flicting annotations are resolved by a voting

scheme which had not previously been attempted

for EL. Besides an automatic entity selection, a

measure of coherence helps users decide on the

validity of an annotation. The workflow’s results

are presented on a UI that allows navigating a cor-

pus using text-search and entity facets. The UI

helps users assess annotations via the measures

displayed and via access to the corpus documents.

14 Follow link Charts on http://129.199.228.10/nav/gui

Figure 4: Example document showing that Continental

Illinois is the correct entity in the corpus

Figure 2: Region of an entity network created outside of

our workflow, based on the individual output of one of

the EL systems we combine. Node Continental Airlines

in the network is an error made by that EL system.

Figure 3: Result of a search in our GUI for entity labels

containing Continental. The lower coherence score

(Coh) for Continental Airlines (orange, dark) vs.

Continental Illinois (green, light) suggests that the latter

is correct and that the airline annotation is an error.

49

Acknowledgements

Pablo Ruiz was supported through a PhD scholarship

from Région Île-de-France.

References

Cornolti, M., Ferragina, P., & Ciaramita, M. (2013). A

framework for benchmarking entity-annotation sys-

tems. In Proc. of WWW, 249–260.

De La Clergerie, É. V., Hamon, O., Mostefa, D.,

Ayache, C., Paroubek, P., & Vilnat, A. (2008). Pas-

sage: from French parser evaluation to large sized

treebank. In Proc. LREC 2008, 3570–3576.

Ferragina, P., & Scaiella, U. (2010). Tagme: on-the-fly

annotation of short text fragments (by wikipedia enti-

ties). In Proc. of CIKM’10, 1625–1628.

Fiscus, J. G. (1997). A post-processing system to yield

reduced word-error rates: Recognizer output voting

error reduction (ROVER). In Proc. of the IEEE

Workshop on Automatic Speech Recognition and

Understanding, 347–354.

Hearst, M. A. (1997). TextTiling: Segmenting text into

multi-paragraph subtopic passages. Computational

Linguistics, 23(1), 33–64.

Mendes, P. N., Jakob, M., García-Silva, A., & Bizer, C.

(2011). DBpedia spotlight: shedding light on the web

of documents. In Proc. I-SEMANTICS’11, 1–8.

Milne, D. & Witten, I. (2008). An effective, low-cost

measure of semantic relatedness obtained from Wik-

ipedia links. In Proc. of AAAI Workshop on Wikipe-

dia and Artificial Intelligence, 25–30

Rizzo, G., & Troncy, R. (2012). NERD: a framework

for unifying named entity recognition and disambig-

uation extraction tools. In Proc. of the Demonstra-

tions at EACL’12, 73–76.

Ruiz, P. and Poibeau, T. (2015). Combining Open

Source Annotators for Entity Linking through

Weighted Voting. In Proceedings of *SEM. Fourth

Joint Conference on Lexical and Computational Se-

mantics. Denver, U.S.

Venturini, T. and Daniele Guido. 2012. Once upon a

text: an ANT tale in Text Analytics. Sociologica, 3:1-

17. Il Mulino, Bologna.

Smith, N. A., Cardie, C., Washington, A. L., Wilkerson,

J. D. (2014). Overview of the 2014 NLP Unshared

Task in PoliInformatics. Proceedings of the ACL

Workshop on Language Technologies and Computa-

tional Social Science, 5–7.

Strube, M. and Ponzetto, S. (2006). WikiRelate! Com-

puting semantic relatedness using Wikipedia. In

AAAI, vol. 6, 1419–1424.

50

Proceedings of NAACL-HLT 2015, pages 51–55,
Denver, Colorado, May 31 – June 5, 2015. c©2015 Association for Computational Linguistics

SETS: Scalable and Efficient Tree Search in Dependency Graphs
Juhani Luotolahti1, Jenna Kanerva1,2, Sampo Pyysalo1 and Filip Ginter1

1Department of Information Technology
2University of Turku Graduate School (UTUGS)

University of Turku, Finland
first.last@utu.fi

Abstract

We present a syntactic analysis query toolkit
geared specifically towards massive depen-
dency parsebanks and morphologically rich
languages. The query language allows arbi-
trary tree queries, including negated branches,
and is suitable for querying analyses with rich
morphological annotation. Treebanks of over
a million words can be comfortably queried
on a low-end netbook, and a parsebank with
over 100M words on a single consumer-grade
server. We also introduce a web-based inter-
face for interactive querying. All contribu-
tions are available under open licenses.

1 Introduction

Syntactic search is one of the basic tools necessary
to work with syntactically annotated corpora, both
manually annotated treebanks of modest size and
massive automatically analyzed parsebanks, which
may go into hundreds of millions of sentences and
billions of words. Traditionally, tools such as
TGrep2 (Rohde, 2004) and TRegex (Levy and An-
drew, 2006) have been used for tree search. How-
ever, these tools are focused on constituency trees
annotated with simple part-of-speech tags, and have
not been designed to deal with dependency graphs
and rich morphologies. Existing search systems are
traditionally designed for searching from treebanks
rarely going beyond million tokens. However, tree-
bank sized corpora may not be sufficient enough for
searching rare linguistic phenomena, and therefore
ability to cover billion-word parsebanks is essen-
tial. Addressing these limitations in existing tools,
we present SETS, a toolkit for search in dependency
treebanks and parsebanks that specifically empha-
sizes expressive search of dependency graphs in-
cluding detailed morphological analyses, simplicity
of querying, speed, and scalability.

Operator Meaning
< governed by
> governs
<@L governed by on the left
<@R governed by on the right
>@L has dependent on the left
>@R has dependent on the right
! negation
& | and / or
+ match if both sets not empty
-> universal quantification

Table 1: Query language operators.

2 Demonstration outline

We demonstrate the query system on the set of all
available Universal Dependencies1 treebanks, cur-
rently covering 10 languages with the largest tree-
bank (Czech) consisting of nearly 90K trees with
1.5M words. We demonstrate both the command
line functionality as well as an openly accessible
web-based interface for the graph search and visual-
ization on multiple languages. We also demonstrate
how new treebanks in the CoNLL formats are added
to the system.

3 Query language

The query language is loosely inspired by TRegex,
modified extensively for dependency structures.
Each query specifies the words together with any
restrictions on their tags or lemmas, and then con-
nects them with operators that specify the depen-
dency structure. Table 1 shows the operators defined
in the query language, and Table 2 illustrates a range
of queries from the basic to the moderately complex.

1universaldependencies.github.io/docs.
Note that while the SETS system is completely generic, we
here use UD tagsets and dependency relations in examples
throughout.

51

Target Query
The word dog as subject dog <nsubj
A verb with dog as the object VERB >dobj dog
A word with two nominal modifiers >nmod >nmod
A word with a nominal modifier that has a nominal modifier >nmod (>nmod)
An active verb without a subject VERB&Voice=Act !>nsubj
A word which is a nominal modifier but has no adposition <nmod !>case
A word governed by case whose POS tag is not an adposition !ADP <case

Table 2: Example queries.

The query language is explained in detail in the fol-
lowing.

3.1 Words
Word positions in queries can be either unspeci-
fied, matching any token, or restricted for one or
more properties. Unspecified words are marked
with the underscore character. Lexical token restric-
tions include wordform and lemma. Wordforms can
appear either as-is (word) or in quotation marks
("word"). Quotation marks are required to dis-
ambiguate queries where the wordform matches a
feature name, such as a query for the literal word
NOUN instead of tokens with the NOUN POS tag.
Words can be searched by lemma using the L= pre-
fix: for example, the query L=be matches all tokens
with the lemma (to) be.

Words can also be restricted based on any
tags, including POS and detailed morphologi-
cal features. These tags can be included in the
query as-is: for example, the query for search-
ing all pronouns is simply PRON. All word
restrictions can also be negated, combined ar-
bitrarily using the and and or logic operators,
and grouped using parentheses. For example,
(L=climb|L=scale)&VERB&!Tense=Past
searches for tokens with either climb or scale as
lemma whose POS is verb and that are not in the
past tense.

3.2 Dependency relations
Dependency relations between words are queried
with the dependency operators (< and >), option-
ally combined with the dependency relation name.
For example, the query to find tokens governed
by an nsubj relation is <nsubj , and tokens
governing an nsubj relation can be searched with

>nsubj . The left-most word in the search

expression is always the target, and is identified in
the results. While the two preceding nsubj queries
match the same graphs, they thus differ in the tar-
get token. To constrain the linear direction of the
dependency relation, the operators @R and @L can
be used, where e.g. >nsubj@R means that the
token must have a nsubj dependent to the right.

Negations and logical operators can be applied
to the dependency relations in the same manner as
to words. There are two different ways to negate
relations; the whole relation can be negated, as in
!>nsubj , which means that the tokens may

not have an nsubj dependent (not having any depen-
dent is allowed), or only the type can be negated,
as in >!nsubj , where the token must have
a dependent but it cannot be nsubj. Tokens which
have either a nominal or clausal subject dependent
can be queried for with the logical or operator:
>nsubj|>csubj .

Subtrees can be identified in the search expres-
sion by delimiting them with parentheses. For ex-
ample, in >nmod (>nmod), the target to-
ken must have a nominal modifier which also has
a nominal modifier (i.e a chain of two modifiers),
whereas in >nmod >nmod the token must
have two (different) nominal modifiers. Note that
queries such as >nmod >nmod are inter-
preted so that all sibling nodes in the query must be
unique in the match to guarantee that the restriction
is not satisfied twice by the same token in the target
tree.

There is no restriction on the complexity of sub-
trees, which may also include any number of nega-
tions and logical operators. It is also possible to
negate entire subtrees by placing the negation op-
erator ! before the opening parenthesis.

52

3.3 Sentence

The more general properties of the sentence instead
of just the properties of certain token, can be
queried using the operators +, match a sentence
if both sets are not empty and ->, universal
quantification – operators. For example, if we
wanted to find a sentence where all subject de-
pendents are in the third person, we could query
(<nsubj) -> (Person=3 <nsubj).
And to find sentences where we have a token
with two nmod dependents and a word dog
somewhere in the sentence we could query
(>nmod >nmod) + "dog".

4 Design and implementation

The scalability and speed of the system stem from
several key design features, the most important of
which is the that every query is used to generate
an algorithmic implementation that is then compiled
into native binary code, a process which takes typi-
cally less than a second. Search involves the follow-
ing steps:

1) The user query is translated into a sequence of
set operations (intersection, complement, etc.) over
tokens. For example, a query for tokens that are in
the partitive case and dependents of a subject rela-
tion is translated into an intersection of the set of
partitive case tokens and the set of subject depen-
dents. Similarly, negation can in most cases be im-
plemented as the set complement. The code im-
plementing these operations is generated separately
for each query, making it possible to only include
the exact operations needed to execute each specific
query.

2) The code implementing this sequence of op-
erations is translated into C by the Cython compiler.
The set operations are implemented as bit operations
on integers (bitwise and, or, etc.) and can thus be ex-
ecuted extremely fast.

3) An SQL statement is generated and used to
fetch from a database the token sets that are needed
to evaluate the query. The query retrieves the to-
ken sets only for those trees containing at least one
token meeting each of the restrictions (dependency
relations, morphological tags, etc.).

4) The sequence of set operations implementing
the query is used to check whether their configura-

tion matches the query. For each match, the whole
tree is retrieved from the database, reformatted and
output in the CoNLL-U format.

The data is stored in an embedded database as pre-
computed token sets, with separate sets for all dif-
ferent lemmas, wordforms, and morphological fea-
tures. These sets are stored as native integers with
each bit corresponding to a single token position in
a sentence. Since the vast majority of sentences are
shorter than 64 words, these sets typically fit into
a single integer. However, the system imposes no
upper limit on the sentence length, using several in-
tegers when necessary.

The system uses SQLite as its database back-
end and the software is written as a combination of
Python, Cython and C++. Cython enables easy inte-
gration of Python code with fast C-extensions, vital
to assure the efficiency of the system. As it uses the
embedded SQLite database, the system is fully self-
contained and requires no server applications.

In addition to the primary search system, we cre-
ated a simple browser-based frontend to the query
system that provides a dynamic visualization of the
retrieved trees and the matched sections (Figure 1).
This interface was implemented using the Python
Flask2 framework and the BRAT annotation tool
(Stenetorp et al., 2012).

5 Benchmarks

Our graph-search tool is tested and timed on three
different machines and two datasets. Evaluation
platforms include a server-grade machine with good
resources, a standard laptop computer and a small
netbook with limited performance. To compare
the efficiency of our system to the state-of-the-art
treebank searching solutions, we employ ICARUS
(Gärtner et al., 2013) search and visualization tool
which also focuses on querying dependency trees.
ICARUS system loads the data into the computer’s
main memory, while our system uses a database,
which is optimized by caching. The comparison of
our graph-search tool and the ICARUS baseline is
run on server machine with a dataset of roughly 90K
trees.

Three test queries are chosen so that both
systems support the functionality needed in or-

2http://flask.pocoo.org/

53

Figure 1: Web interface showing trees in Finnish.

der to run the tests. The first query is a
straightforward search for all subject dependents
(<nsubj) and the second query adds a lex-
ical restraint to it and requires the lemma to be
I (L=I <nsubj). The third query is much
more complex and is inspired by an actual linguis-
tic use case to find examples of an exceptionally
rare transitive verb usage in Finnish. The query
includes chaining of dependencies and a negation
(>nsubj (Case=Gen >) >dobj ...

! <xcomp).

Query 1 Query 2 Query 3
ICARUS 2m30s 2m30s 2m30s
SETS 1.61s 1.2s 2.18s

Table 3: The speed of our system compared to the base-
line on the three different test queries when a treebank of
about 90K sentences is used.

As can be seen from Table 3, when our system and
the baseline system are tested on the server machine
using the three example queries our system clearly
outperforms the baseline. The speed of the baseline
seems to be relatively unaffected by the complexity
of the query, suggesting a bottle-neck somewhere

else than tree-verification. It should be noted that
these measurements are only to illustrate the relative
speed and performance differences, and are subject
to change depending on system cache. Due to their
architecture, neither system has a major advantage in
the use of memory and the results are broadly com-
parable.

Our system is also tested on a standard laptop, and
a netbook using the same three queries and the same
input corpus. The first test query was finished by a
netbook in 37 seconds, the third query, most com-
plex of them, was finished in 13.5 seconds. The lap-
top finished the first query in 16 seconds, the second
in 7 seconds and the third in 16 seconds.

As our system is meant for searching from very
large corpora, we test it with a parsebank of 10 mil-
lion trees and over 120 million tokens. A variant of
the test query number 3, the most complex of the
queries, was executed in time between 1m52s and
48s (depending the system cache). The test query 1
took from 5m10s to 4m30s and the lexicalized ver-
sion (query 2) from 12s to 9s. The test queries were
performed on the same server-machine as the runs
shown in Table 3.

54

Since our system uses pre-indexed databases the
disk space needed for holding the data slightly in-
creases. Indexing the 90K sentence treebank used
in our tests requires about 550M of free disk space,
whereas indexing the 10 million sentence parsebank
uses 35G of space.

6 Conclusion

We have presented a syntax query system especially
geared towards very large treebanks and parsebanks.
In the future, we will implement support for graph
queries, e.g. coindexing of the tokens, since many
treebanks have multiple layers of dependency struc-
tures. Related to this goal, we aim to include sup-
port for properties of the tokens and dependencies,
for example the annotation layer of the dependency,
word sense labels, etc.

The full source code of the system is available un-
der an open license at https://github.com/
fginter/dep_search. Additionally, we main-
tain a server for public online search in all avail-
able Universal Dependencies treebanks (Nivre et
al., 2015) at http://bionlp-www.utu.fi/
dep_search.

Acknowledgments

This work was supported by the Kone Foundation
and the Emil Aaltonen Foundation. Computational
resources were provided by CSC – IT Center for Sci-
ence.

References
[Gärtner et al.2013] Markus Gärtner, Gregor Thiele,

Wolfgang Seeker, Anders Björkelund, and Jonas
Kuhn. 2013. Icarus – an extensible graphical search
tool for dependency treebanks. In Proceedings of
Demonstrations at ACL’13, pages 55–60.

[Levy and Andrew2006] Roger Levy and Galen Andrew.
2006. Tregex and Tsurgeon: tools for querying and
manipulating tree data structures. In Proceedings of
LREC’06).

[Nivre et al.2015] Joakim Nivre, Cristina Bosco, Jinho
Choi, Marie-Catherine de Marneffe, Timothy Dozat,
Richárd Farkas, Jennifer Foster, Filip Ginter, Yoav
Goldberg, Jan Hajič, Jenna Kanerva, Veronika Laip-
pala, Alessandro Lenci, Teresa Lynn, Christopher
Manning, Ryan McDonald, Anna Missilä, Simon-
etta Montemagni, Slav Petrov, Sampo Pyysalo, Na-

talia Silveira, Maria Simi, Aaron Smith, Reut Tsarfaty,
Veronika Vincze, and Daniel Zeman. 2015. Universal
dependencies 1.0.

[Rohde2004] Douglas L. T. Rohde, 2004. TGrep2 User
Manual. Available at http://tedlab.mit.edu/˜dr/Tgrep2.

[Stenetorp et al.2012] Pontus Stenetorp, Sampo Pyysalo,
Goran Topić, Tomoko Ohta, Sophia Ananiadou, and
Jun’ichi Tsujii. 2012. Brat: a web-based tool for nlp-
assisted text annotation. In Proceedings of Demon-
strations at EACL’12, pages 102–107.

55

Proceedings of NAACL-HLT 2015, pages 56–60,
Denver, Colorado, May 31 – June 5, 2015. c©2015 Association for Computational Linguistics

Visualizing Deep-Syntactic Parser Output
Juan Soler-Company1 Miguel Ballesteros1 Bernd Bohnet2

Simon Mille1 Leo Wanner1,3

1Natural Language Processing Group, Pompeu Fabra University, Barcelona, Spain
2Google Inc.

3Catalan Institute for Research and Advanced Studies (ICREA)
1,3{name.lastname}@upf.edu 2bohnetbd@google.com

Abstract

“Deep-syntactic” dependency structures
bridge the gap between the surface-syntactic
structures as produced by state-of-the-art
dependency parsers and semantic logical
forms in that they abstract away from surface-
syntactic idiosyncrasies, but still keep the
linguistic structure of a sentence. They have
thus a great potential for such downstream
applications as machine translation and sum-
marization. In this demo paper, we propose an
online version of a deep-syntactic parser that
outputs deep-syntactic structures from plain
sentences and visualizes them using the Brat
tool. Along with the deep-syntactic structures,
the user can also inspect the visual presen-
tation of the surface-syntactic structures that
serve as input to the deep-syntactic parser
and that are produced by the joint tagger and
syntactic transition-based parser ran in the
pipeline before deep-syntactic parsing takes
place.

1 Introduction

“Deep-syntactic” dependency structures bridge the
gap between surface-syntactic structures as pro-
duced by state-of-the-art dependency parsers and se-
mantic logical forms in that they abstract away from
surface-syntactic idiosyncrasies, but still keep the
linguistic structure of a sentence. More precisely,
a deep-syntactic structure (DSyntS) is a dependency
tree that captures the argumentative, attributive and
coordinative relations between full (i.e., meaning-
ful) words of a sentence. For illustration, Figure
1 shows a surface-syntactic structure (above) and
deep-syntactic structure (below) for the sentence:
almost 1.2 million jobs have been created by the
state in that time.

DSyntSs have a great potential for such down-
stream applications as deep machine translation,

summarization or information extraction. In deep
machine translation as discussed, e.g., by Jones et
al. (2012), DSyntSs simplify the alignment between
the source and target language structures consider-
ably. In extractive summarization, sentence fusion
(Filippova and Strube, 2008) becomes much more
straightforward at the level of DSyntSs. A stochas-
tic sentence realizer that takes as input DSyntSs can
then be used to generate surface sentences (Balles-
teros et al., 2015). In information extraction (Attardi
and Simi, 2014) the procedures for the distillation of
the information to fill the slots of the corresponding
patterns are also simpler at the DSyntS level.

However, it is only recently that deep-syntactic
parsing has been introduced as a new parsing
paradigm; see, e.g., (Ballesteros et al., 2014).1 No
visualization interfaces are available as yet to con-
trol the output of deep-syntactic parsers. In this pa-
per, we propose such a visualization interface. The
interface can be used for both a pipeline consisting
of a syntactic parser and a deep parser and a joint
syntactic+deep parser. In the first configuration, it
facilitates the visualization of the output of the syn-
tactic parser and of the output of the deep parser.
In the second configuration, it visualizes directly the
output of the joint parser.

In what follows, we present its use for the
first configuration applied to English. As surface-
syntactic parser, we use Bohnet and Nivre (2012)’s
joint tagger+lemmatizer+parser. As deep parser, we
use Ballesteros et al. (2014)’s implementation. Both
have been trained on the dependency Penn Tree-
bank (Johansson and Nugues, 2007), which has been
extended by the DSyntS-annotation. The interface
can be inspected online; cf. http://dparse.

1The source code of Ballesteros et al.’s deep parser
and a short manual on how to use it can be down-
loaded from https://github.com/talnsoftware/
deepsyntacticparsing/wiki.

56

(a) almost 1.2 million jobs have been created by the state in that time

adv

quant quant subj analyt perf analyt pass agent

adv

prepos
det

prepos
det

(b) almost 1.2 million job create state in that time

ATTR

ATTR ATTR II I

ATTR
II
ATTR

Figure 1: Sample equivalent (a) SSynt- and (b) DSynt-structures. A SSyntS contains all tokens of the sentence, while
in the corresponding DSyntS the grammatical tokens that are void of lexical meaning are omitted.

multisensor.taln.upf.edu/main. It ac-
cepts as input an English sentence and delivers as
output the surface- and deep-syntactic structures of
this sentence.

Section 2 shows how the online model of the deep
parser is trained and displays its performance for the
English model. Section 3 describes the visualization
interface and its use online. In Section 4, a number
of other existing visualizers of the output of depen-
dency parsers are briefly listed. Section 5, finally,
concludes and makes some suggestions for future
work.

2 Deep-Syntactic Parser

As already mentioned above, we use the joint
PoS-tagger+lemmatizer+parser of Bohnet and Nivre
(2012)2 as surface parser, setting up a pipeline
with the deep-syntactic parser of Ballesteros et al.
(2014).3 The output of the first serves as input to the
latter.

The online versions of the joint PoS-
tagger+lemmatizer+parser and the deep-syntactic
parser have been trained on the dependency
Penn Treebank (Johansson and Nugues, 2007) in
CoNLL09 format. To have an English training
dataset for the deep-syntactic parser, we derived
DSyntSs from the syntactic structures of the de-
pendency Penn Treebank, extending thus the Penn
Treebank by a new layer of annotation, as described
in Section 2.1. The performance figures obtained
using this dataset are shown in Section 2.2.

2The joint PoS-tagger+Lemmatizer+parser is available for
downloading at https://code.google.com/p/mate-tools/.

3The deep-syntactic parser is availabe for download at
https://code.google.com/p/deepsyntacticparsing/.

2.1 Training Dataset for the Deep-Syntactic
Parser

The English deep-syntactic dataset has been ob-
tained using a rule-based graph transducer that con-
verts the syntactic annotation of the dependency
Penn Treebank into a DSyntS annotation in the
CoNLL09 format. The conversion removes definite
and indefinite determiners, auxiliaries, THAT com-
plementizers, TO infinitive markers, and all func-
tional (or lexically-bound) prepositions which we
were able to recover in PropBank and NomBank.
In these two resources, 11,781 disambiguated pred-
icates are described and their semantic roles are
listed. We use two fields of their XML files to gather
prepositions: the last word of the field “descr” in
“roles”, and the first word of the field of the corre-
sponding role in “example”. In this way, we retrieve,
for instance, for the lexical unit beg.01 the prepo-
sition from for the second semantic role (as in beg
from someone), and the preposition for for the third
role (as in beg someone for something). The corre-
spondence between prepositions and semantic roles
is also used for the mapping of dependency relations
(Mille and Wanner, 2015).

For each surface dependency relation, a default
mapping that is conditioned by the encountered syn-
tactic structure and dictionary entries is defined.
Thus, a subject is by default mapped to a first ar-
gument I unless it is the subject of a passive verb.
In this case, the subject is mapped to the second
argument II. Along similar lines, a dictionary en-
try may specify in the subcategorization pattern of
a headword the association of a given preposition to
a different argument slot than indicated by the de-
fault mapping. For instance, in the sentence Sony
announced its plans to hire Mr. Guber, to is a depen-

57

POS LEMMA LAS UAS
English 98.50 99.46 89.70 92.21

Table 1: Performance of Bohnet and Nivre’s joint PoS-
tagger+dependency parser trained on the PTB Treebank
for English.

Hypernode Detection (English)
MeasureSSyntS–DSyntS Transducer

ph 98.42 (41967/42461)
rh 98.82 (41967/42467)

F1h 98.62
Attachment and labeling (English)
Measure SSynS–DSyntS Transducer

LAP 81.80 (34882/42461)
UAP 85.82 (36598/42461)
LA-P 89.11 (37998/42641)
LAR 82.14 (34882/42467)
UAR 86.18 (36598/42467)
LA-R 89.48 (37998/42467)

Table 2: Performance of the Ballesteros et al. deep-
syntactic parser trained on the adapted version of the PTB
Treebank for English.

dent of plan with the surface dependency NMOD.
NMOD is by default mapped to the deep relation
ATTR, but in the dictionary entry of plan it is stated
that a dependent introduced by to is mapped to II,
such that in the case of plan, the default will be over-
written in that NMOD will be mapped to II.

2.2 Parser Results

Our models offer state-of-the-art performance for
part-of-speech tagging, lemmatization, syntactic de-
pendency parsing and deep-syntactic parsing.4 Ta-
bles 15 and 26 show the results of both parsers.

4This is the first attempt to build English deep-syntactic
structures; Ballesteros et al. (2014) report results for Spanish
only.

5‘POS’ stands for part-of-speech accuracy, ‘LEMMA’ for
lemma accuracy, ‘LAS’ for labeled attachment score, and
‘UAS’ for unlabeled attachment score

6‘ph’ stands for hypernode detection precision, ‘rh’ for hy-
pernode detection recall, ‘F1h’ for hypernode detection F1
measure, ‘LAP’ for labeled attachment precision, ‘UAP’ for un-
labeled attachment precision, ‘LA-P’ for label accuracy preci-
sion, ‘LAR’ for labeled attachment recall, ‘UAR’ for unlabeled
attachment recall, and ‘LA-R’ for label accuracy recall.

3 Tree Visualization

Our visualization interface is built with a Java
HTTPServer, which is bound to an IP address and
port number that listens to incoming connections
from users. The HTTPServer Java class connects
with both the joint tagger+lemmatizer+parser and
the deep-syntactic parser and provides the output of
plain text input sentences in real time. To ensure real
time performance, a model of both parsers is already
loaded, and the interface waits for new input given
by the users.

The main page (see http://dparse.
multisensor.taln.upf.edu/main) lets the
user introduce a text and select what kind of parsing
she wants to see in the output, the surface-syntactic,
deep-syntactic or both at the same time. Depending
on the choice of the user, after parsing the CoNLL
outputs (surface- and/or deep-syntactic) are shown.
If desired, they can be also downloaded. A click on
the corresponding link takes the user to the graphic
representation of the parse tree.

The visualization of the output is performed by
the annotation tool Brat (Stenetorp et al., 2012). Brat
takes an annotation file, which is produced by trans-
forming the CoNLL files that the parsers output into
Brat’s native format, and generates the graphical in-
terface for the dependency trees.

Figure 2 shows three sample surface syntactic
structures in Brat. In Figure 3, their equivalent deep-
syntactic structures are displayed. As already Fig-
ure 1, the figures illustrate the difference of both
types of structures with respect to the abstraction
of linguistic phenomena. The DSyntSs are clearly
much closer to semantics. As a matter of fact, they
are equivalent to PropBank structures (Palmer et
al., 2005). However, this does not mean that they
must per se be “simpler” than their corresponding
surface-syntactic structures—compare, for instance,
the structures (3a) and (3b) in Figures 2 and 3, where
both SSyntS and DSyntS contain the same number
of nodes, i.e., are isomorphic.

The structures (2a) and (2b) illustrate the capacity
of the deep parser to correctly identify the arguments
of a lexical item without that explicit hints are avail-
able in the surface structure.

58

(1a)

(2a)

(3a)

Figure 2: Visualization of surface syntactic structures with Brat

(1b)

(2b)

(3b)

Figure 3: Visualization of deep-syntactic structures with Brat

4 Related Work

Visualization interfaces normally offer a universal
and simple way to access the output of NLP tools,
among them parsers. This leads to better compre-
hension of their outputs and a better usability for
downstream applications. Therefore, it is not sur-
prising that visualization interfaces have been a rel-
evant topic during the last years in the NLP com-
munity; see, e.g., (Collins et al., 2008; Collins et
al., 2009; Feng and Lapata, 2010). In the pars-
ing area, tools such as MaltEval (Nilsson and Nivre,
2008), the Mate Tools (Bohnet and Wanner, 2010),
XLDD (Culy et al., 2011), TreeExplorer (Thiele et
al., 2013), ViZPar (Ortiz et al., 2014), MaltDiver
(Ballesteros and Carlini, 2013), or XLike Services
(Carreras et al., 2014) have been proposed for the vi-
sualization of parse trees and their subsequent eval-
uation. The interface described in this paper serves
a similar purpose. To the best of our knowledge,
it is the first interface that uses the flexible off-the-
shelf tool Brat and that serves for the visualization
of deep-syntactic structures.

5 Conclusions and Future Work

We have presented an operational interface for the
visualization of the output of a deep-syntactic parser
and of surface-syntactic structures that serve it as in-
put. The interface is flexible in that it allows for the
display of any additional structural information pro-
vided by an extended parsing pipeline. For instance,
if the obtained deep-syntactic structure is projected
onto a frame-like structure (Chen et al., 2010) with
semantic roles as arc labels, this frame structure can
be displayed as well. We are currently working on
such an extension. Furthermore, we aim to expand
our visualization interface to facilitate active explo-
ration of linguistic structures with Brat and thus add
to the static display of structures the dimension of
Visual Analytics (Keim et al., 2008).

Acknowledgments

This work has been partially funded by the European
Union’s Seventh Framework and Horizon 2020 Re-
search and Innovation Programmes under the Grant
Agreement numbers FP7-ICT-610411, FP7-SME-
606163, and H2020-RIA-645012.

59

References
G. Attardi and M. Simi. 2014. Dependency parsing tech-

niques for information extraction. In Proceedings of
Evalita 2014.

M. Ballesteros and R. Carlini. 2013. Maltdiver: A
transition-based parser visualizer. In Demonstrations
of the Sixth International Joint Conference on Natural
Language Processing, page 25. IJCNLP.

M. Ballesteros, B. Bohnet, S. Mille, and L. Wanner.
2014. Deep-syntactic parsing. In Proceedings of the
25th International Conference on Computational Lin-
guistics (COLING).

M. Ballesteros, B. Bohnet, S. Mille, and L. Wanner.
2015. Data-driven sentence generation with non-
isomorphic trees. In Proceedings of the 2015 Con-
ference of the North American Chapter of the Asso-
ciation for Computational Linguistics – Human Lan-
guage Technologies (NAACL HLT 2015).

B. Bohnet and J. Nivre. 2012. A transition-based sys-
tem for joint part-of-speech tagging and labeled non-
projective dependency parsing. In EMNLP-CoNLL.

B. Bohnet and L. Wanner. 2010. Open Source Graph
Transducer Interpreter and Grammar Development
Environment. In Proceedings of the International
Conference on Linguistic Resources and Evaluation
(LREC).

X. Carreras, L. Padró, L. Zhang, Z. Rettinger, A.and Li,
E. Garcıa-Cuesta, Z. Agic, B. Bekavec, B. Fortuna,
and T. Štajner. 2014. Xlike project language analysis
services. Proceedings of the Demonstrations Session
at EACL, pages 9–12.

D. Chen, N. Schneider, D. Das, and N.A. Smith. 2010.
Semafor: Frame argument resolution with log-linear
models. In Proceedings of the 5th international work-
shop on semantic evaluation, pages 264–267. Associ-
ation for Computational Linguistics.

C. Collins, G. Penn, and S. Carpendale. 2008. Inter-
active visualization for computational linguistics. In
Proceedings of the 46th Annual Meeting of the Asso-
ciation for Computational Linguistics on Human Lan-
guage Technologies, Stroudsburg, PA, USA. Associa-
tion for Computational Linguistics.

C. Collins, S. Carpendale, and G. Penn. 2009.
DocuBurst: Visualizing Document Content Us-
ing Language Structure. In Proceedings of the
Eurographics/IEEE-VGTC Symposium on Visualiza-
tion (EuroVis ’09), pages 1039–1046. Eurographics
Association.

C. Culy, V. Lyding, and H. Dittmann. 2011. xLDD:
Extended Linguistic Dependency Diagrams. In Pro-
ceedings of the 2011 15th International Conference
on Information Visualisation, IV ’11, pages 164–169,
Washington, DC, USA. IEEE Computer Society.

Y. Feng and M. Lapata. 2010. Visual Information
in Semantic Representation. In Proceedings of the
2010 Conference of the North American Chapter of the
Association for Computational Linguistics – Human
Language Technologies (NAACL HLT 2010), pages
91–99, Stroudsburg, PA, USA. Association for Com-
putational Linguistics.

K. Filippova and M. Strube. 2008. Sentence fusion
via dependency graph compression. In Proceedings
of the International Conference on Empirical Methods
in Natural Language Processing (EMNLP).

R. Johansson and P. Nugues. 2007. Extended
constituent-to-dependency conversion for English. In
Proceedings of the 16th Nordic Conference of Com-
putational Linguistics (NODALIDA), pages 105–112,
Tartu, Estonia, May 25-26.

B. Jones, J. Andreas, D. Bauer, K.-M. Hermann, and
K. Knight. 2012. Semantics-based machine transla-
tion with hyperedge replacement grammars. In Pro-
ceedings of the International Conference on Computa-
tional Linguistics (COLING).

D.A. Keim, F. Mansmann, J. Schneidewind, J. Thomas,
and H. Ziegler. 2008. Visual Analytics: Scope and
Challenges. In S. Simoff, editor, Visual Data Mining,
LNCS 4404, pages 76–90. Springer Verlag, Berlin.

S. Mille and L. Wanner. 2015. Towards large-coverage
detailed lexical resources for data-to-text generation.
In Proceedings of the First International Workshop on
Data-to-Text Generation, Edinburgh, Scotland.

Jens Nilsson and Joakim Nivre. 2008. Malteval: an eval-
uation and visualization tool for dependency parsing.
In Proceedings of the Sixth International Conference
on Language Resources and Evaluation (LREC’08),
Marrakech, Morocco, may. European Language Re-
sources Association (ELRA).

I. Ortiz, M. Ballesteros, and Y. Zhang. 2014. ViZPar: A
GUI for ZPar with Manual Feature Selection. Proce-
samiento del lenguaje natural, 53.

Martha Palmer, Paul Kingsbury, and Daniel Gildea.
2005. The Proposition Bank: An annotated corpus of
semantic roles. Computational Linguistics, 31.

P. Stenetorp, S. Pyysalo, G. Topić, T. Ohta, S. Ananiadou,
and J. Tsujii. 2012. BRAT: A Web-based Tool for
NLP-Assisted Text Annotation. In 13th Conference of
the European Chapter of the Association for Compu-
tational Linguistics, pages 102–107. Association for
Computational Linguistics.

G. Thiele, M. Gärtner, W. Seeker, A. Björkelund, and
J. Kuhn. 2013. Treeexplorer – An extensible Graphi-
cal Search Tool for Dependency Treebanks. In Pro-
ceedings of the Demonstrations of the 51st Annual
Meeting of the Association for Computational Linguis-
tics (ACL 2013).

60

Proceedings of NAACL-HLT 2015, pages 61–65,
Denver, Colorado, May 31 – June 5, 2015. c©2015 Association for Computational Linguistics

WOLFE: An NLP-friendly Declarative Machine Learning Stack

Sameer Singh† Tim Rocktäschel∗ Luke Hewitt∗ Jason Naradowsky∗ Sebastian Riedel∗
†University of Washington ∗University College London

Seattle WA London UK
sameer@cs.washington.edu {t.rocktaschel,luke.hewitt.10,j.narad,s.riedel}@cs.ucl.ac.uk

Abstract

Developing machine learning algorithms for
natural language processing (NLP) applica-
tions is inherently an iterative process, involv-
ing a continuous refinement of the choice of
model, engineering of features, selection of in-
ference algorithms, search for the right hyper-
parameters, and error analysis. Existing proba-
bilistic program languages (PPLs) only provide
partial solutions; most of them do not support
commonly used models such as matrix factor-
ization or neural networks, and do not facilitate
interactive and iterative programming that is
crucial for rapid development of these models.

In this demo we introduce WOLFE, a stack de-
signed to facilitate the development of NLP ap-
plications: (1) the WOLFE language allows the
user to concisely define complex models, en-
abling easy modification and extension, (2) the
WOLFE interpreter transforms declarative ma-
chine learning code into automatically differ-
entiable terms or, where applicable, into factor
graphs that allow for complex models to be
applied to real-world applications, and (3) the
WOLFE IDE provides a number of different
visual and interactive elements, allowing intu-
itive exploration and editing of the data rep-
resentations, the underlying graphical models,
and the execution of the inference algorithms.

1 Introduction

Machine learning has become a critical component
of practical NLP systems, however designing and
training an appropriate, accurate model is an itera-
tive and time-consuming process for a number of rea-
sons. First, initial intuitions that inform model design

(such as which features to use) are often inaccurate,
requiring incremental model tweaking based on per-
formance. Even if the model is accurate, the final
performance depends quite critically on the choice of
the algorithms and their hyper-parameters. Further,
bugs that are introduced by the user may not even be
reflected directly in the performance (such as a fea-
ture computation bug may not degrade performance).
All these concerns are further compounded due to the
variety of approaches commonly used in NLP, such
as conditional random fields (Sutton and McCallum,
2007), Markov random networks (Poon and Domin-
gos, 2007), Bayesian networks (Haghighi and Klein,
2010), matrix factorization (Riedel et al., 2013), and
Deep learning (Socher et al., 2013).

Probabilistic programming languages (PPLs), by
closing the gap between traditional programming
and probabilistic modeling, go a long way in aiding
quick design and modification of expressive models1.
However, creating accurate machine learning models
using these languages remains challenging. Of the
probabilistic programming languages that exist today,
no language can easily express the variety of models
used in NLP, focusing instead on a restricted set of
modeling paradigms, for example, Markov logic net-
works can be models by Alchemy (Richardson and
Domingos, 2006), Bayesian generative networks by
Church (Goodman et al., 2008), undirected graphi-
cal models by Factorie (McCallum et al., 2009), and
so on. Further, these toolkits are only restricted to
model design and inference execution, and do not
provide the appropriate debugging and interactive

1For a comprehensive list of PPLs, see http://
probabilistic-programming.org/.

61

User

REPL Interface

Language Visualization

Interpreter

Efficient Implementation

Figure 1: Overview of the WOLFE Stack.

visualization tools required for developing such mod-
els in practice. Due to these concerns, probabilis-
tic programming has not found significant adoption
in natural language processing, and application of
machine learning to NLP still consists either of ar-
duously designing, debugging, and iterating over a
variety of models, or more commonly, giving up and
using the first model that is “good enough”.

In this demo, we introduce our probabilistic pro-
gramming toolkit WOLFE (Riedel et al., 2014) that
aids in the iterative design of machine learning mod-
els for NLP applications. The underlying proba-
bilistic programming language can be used to con-
cisely express a wide range of models, including
undirected graphical models, matrix factorization,
Bayesian networks, neural networks, and further, its
modular nature allows combinations of these model-
ing paradigms. We additionally present an easy-to-
use IDE for the interactive designing of NLP models,
consisting of an interactive and visual presentation
of structured data, graphical models, and inference
execution. Using the WOLFE language and IDE can
thus enable the users to quickly create, debug, and
iterate on complex models and inference.

2 Overview of the WOLFE Stack

The overall goal of the demo will be to guide users
in creating complex graphical models using an easy-
to-use mathematical language for defining models,
and in performing learning and inference for the cre-
ated model using an IDE. Figure 1 summarizes the
overview of the WOLFE stack, consisting of the lan-
guage and the visualization that form the user-facing
interface, with the interpreter and efficient learning
and inference engine as the back-end.

Figure 2: Implementation of various matrix and ten-
sor factorization models in WOLFE.

2.1 Declarative Modeling Language

Existing PPLs primarily focus on a single represen-
tation for the probabilistic models, and either do not
support, or provide only inefficient implementations
for other kinds of machine learning models. Thus a
practitioner either has to write her own customized
implementation of the models she is trying to explore,
or decide apriori on the family of models she will be
restricted to; both undesirable options. Instead, we
introduce a probabilistic programming language that
is universal in its expression of models, yet allows
for efficient implementations of these models.

The design of the WOLFE language is inspired
by the observation that most machine learning algo-
rithms can be formulated in terms of scalar functions
(such as distributions and objectives/losses), search
spaces (such as the universe of possible labels) and a
small set of mathematical operations such as maxi-
mization, summation and expectations that operate
on these functions and spaces. Using this insight, a
program in WOLFE consists of a declarative descrip-
tion of the machine learning algorithm in terms of
implementations of these scalar functions, definitions
of the search spaces, and the use of appropriate opera-
tors on these. For example, named-entity recognition
tagging using conditional random fields consists of
a scalar function that defines the model score using
a dot product between the parameters and the sum
of node and edge features, while inference using this
model involves finding the label sequence that has
the maximum model score over all label sequences.

The focus on scalar functions as building blocks
allows for rapid prototyping of a large range of ma-

62

chine learning models. For instance, there exist a
variety of matrix and tensor factorization methods for
knowledge base population that have a succinct, uni-
fied mathematical formulation (Nickel et al., 2015).
In WOLFE these models can be easily implemented
with a few lines of code. See Figure 2 for examples
of a Tucker2 decomposition, TransE (Bordes et al.,
2013), and Riedel et al. (2013)’s feature model (F),
entity model (E), and combination of the two (FE),
either based on a log likelihood or Bayesian Person-
alized Ranking (Rendle et al., 2009) objective.

2.2 Interpreter, and Efficient Implementations

In WOLFE users write models using a domain-
specific-language that supports a wide range of math-
ematical expressions. The WOLFE interpreter then
evaluates these expressions. This is non-trivial as
expressions usually contain operators such as the
argmax functions which are, in general, intractable
to compute. For efficient evaluation of WOLFE pro-
grams our interpreter compiles WOLFE expressions
into representations that enable efficient computa-
tion in many cases. For example, for terms that in-
volve maximization over continuous search spaces
WOLFE generates a computation tree that supports
efficient forward and back-propagation for automatic
differentiation. Likewise, when maximizing over dis-
crete search spaces, WOLFE constructs factor graphs
that support efficient message passing algorithm such
as Max-Product or Dual Decomposition. Crucially,
due to the compositional nature of WOLFE, discrete
and continuous optimization problems can be nested
to support a rich class of structured prediction ob-
jectives. In such cases the interpreter constructs
nested computational structures, such as a factor
graph within a back-propagation graph.

2.3 Visual and Interactive IDE

In this demonstration, we present an integrated de-
veloping, debugging and visualization toolkit for ma-
chine learning for NLP. The IDE is based on the read-
eval-print loop (REPL) to allow quick iterations of
writing and debugging, and consists of the following
elements: (1) Editor (read): Users define the model
and inference in the declarative, math-like language
described in Section 2.1 using a syntax highlighted
code editor. (2) Build Automation (eval): The use of
the interpreter as described in the previous section

to provide efficient code that is executed. (3) De-
bugging/Visualization (print): Our tool presents the
underlying factor graph as an interactive UI element
that supports clicking, drag and drop, hover, etc. to
explore the structure and the factors of the model.
We visualize the results of inference in a graphical
manner that adapts to the type of the result (bar charts
for simple distributions, shaded maps for matrix-like
objects, circles/arrows for NLP data types, etc.). For
further fine-grained debugging, we can also surface
intermediate results from inference, for example, vi-
sualizing the messages in belief propagation for each
edge in the factor graph.

3 Demo Outline

The overall objective of the demo is for users to de-
sign, debug, and modify a machine learning model
for an NLP application, starting from scratch. The
demo takes the user through all the steps of loading
data, creating an initial model, observing the out-
put errors, modifying the model accordingly, and
rerunning to see the errors fixed: the complete set of
steps often involved in real-life application of ML for
NLP. We provide pre-built functions for the menial
tasks, such as data loading and feature computation
functions, leaving the more interesting aspects of
model design to the user. Further, we include an
“open-ended” option for interested users to develop
arbitrary models. Based on their interest or area of ex-
pertise, the user has an option of investigating any (or
all) of the following applications: (1) sequence tag-
ging using CRFs, (2) relational learning using MLNs,
(3) matrix factorization for relation extraction, and
(4) dependency parsing (for advanced users). Each
of these are similar in the overall “script”, differing
in the data, models, and inference algorithms used;
we describe the steps of the demo using the CRF
example. All of the demo applications are available
online at http://wolfe.ml/demos/nlp.

1. The first step of the demo allows the user to
read as input a standard dataset of the task, and
visualize instances in an easy-to-read manner. In
Figure 3a for example, we show two sentences
read for the purpose of sequence tagging.

2. The user then defines an initial model for the
task, which is visualized as a factor graph for

63

(a) Data Loading

(b) Initial Model

(c) Error in Prediction

Figure 3: Model Creation and Evaluation: An exam-
ple instance of the demo showing the creation steps, in-
cluding the loading and visualization of the sentences,
designing and presentation of a linear chain CRF, and
Viterbi decoding for the sentences.

the purpose of debugging the model definition.
The initial model for sequence tagging is a sim-
ple linear chain, defined and visualized for a
sentence in Figure 3b.

3. The user writes the declarative definition of in-
ference, and makes predictions of the input data.
The predictions are appropriately visualized, al-

(a) Modify the Model (add skip edge)

(b) Fixed Prediction

Figure 4: Debugging Loop: The remaining steps of the
iterative development, consisting of modification of the
model to fix the error from Figure 3c by adding a skip-
factor to the original model, and confirming the inference
in the skip-chain model results in the correct prediction.

lowing the user to detect mistakes (for example,
the incorrect NER tag of location to “Denver”
in Figure 3c).

4. The user then modifies the model (adding a skip-
factor in Figure 4a) that will likely correct the
mistake. The modified model is then visualized
to confirm it is correct. (Optionally, the user can,
at any point, visualize the execution of the in-
ference to confirm the modifications as well, for
example Figure 4a shows the state of messages
in belief propagation.)

5. On the execution of the model, the user con-
firms that the original error has been fixed, for
example the skip factor allows the correct tag of
person for “Denver” in Figure 4b.

64

4 Conclusions

This demo describes WOLFE, a language, interpreter,
and an IDE for easy, iterative development of com-
plex machine learning models for NLP applications.
The language allows concise definition of the mod-
els and inference by using universal, mathematical
syntax. The interpreter performs program analysis
on the user code to automatically generate efficient
low-level code. The easy-to-use IDE allows the user
to iteratively write and execute such programs, but
most importantly supports intuitive visualizations of
structured data, models, and inference to enable users
to understand and debug their code. The demo thus
allows a user to design, debug, evaluate, and modify
complex machine learning models for a variety of
NLP applications.

Acknowledgments

We would like to thank Larysa Visengeriyeva, Jan
Noessner, and Vivek Srikumar for contributions to
early versions of WOLFE. This work was supported
in part by Microsoft Research through its PhD Schol-
arship Programme, an Allen Distinguished Investiga-
tor Award, a Marie Curie Career Integration Grant,
and in part by the TerraSwarm Research Center, one
of six centers supported by the STARnet phase of the
Focus Center Research Program (FCRP) a Semicon-
ductor Research Corporation program sponsored by
MARCO and DARPA.

References

Antoine Bordes, Nicolas Usunier, Alberto Garcia-Duran,
Jason Weston, and Oksana Yakhnenko. 2013. Trans-
lating embeddings for modeling multi-relational data.
In Advances in Neural Information Processing Systems,
pages 2787–2795.

Noah D. Goodman, Vikash K. Mansinghka, Daniel Roy,
Keith Bonawitz, and Joshua B. Tenenbaum. 2008.
Church: a language for generative models. In Un-
certainty in Artificial Intelligence (UAI).

Aria Haghighi and Dan Klein. 2010. Coreference reso-
lution in a modular, entity-centered model. In North
American Chapter of the Association for Computational
Linguistics - Human Language Technologies (NAACL
HLT), pages 385–393.

Andrew McCallum, Karl Schultz, and Sameer Singh.
2009. FACTORIE: Probabilistic programming via im-

peratively defined factor graphs. In Neural Information
Processing Systems (NIPS).

Maximilian Nickel, Kevin Murphy, Volker Tresp, and
Evgeniy Gabrilovich. 2015. A review of relational
machine learning for knowledge graphs: From multi-
relational link prediction to automated knowledge
graph construction. arXiv preprint arXiv:1503.00759.

Hoifung Poon and Pedro Domingos. 2007. Joint inference
in information extraction. In Proceedings of the 22nd
AAAI Conference on Artificial Intelligence (AAAI ’07),
pages 913–918.

Steffen Rendle, Christoph Freudenthaler, Zeno Gantner,
and Lars Schmidt-Thieme. 2009. BPR: Bayesian per-
sonalized ranking from implicit feedback. In Uncer-
tainty in Artificial Intelligence (UAI).

Matthew Richardson and Pedro Domingos. 2006. Markov
logic networks. Machine Learning, 62(1-2):107–136.

Sebastian Riedel, Limin Yao, Benjamin M. Marlin, and
Andrew McCallum. 2013. Relation extraction with ma-
trix factorization and universal schemas. In Joint Hu-
man Language Technology Conference/Annual Meeting
of the North American Chapter of the Association for
Computational Linguistics (HLT-NAACL ’13), June.

Sebastian Riedel, Sameer Singh, Vivek Srikumar, Tim
Rocktaschel, Larysa Visengeriyeva, and Jan Noessner.
2014. Wolfe: Strength reduction and approximate pro-
gramming for probabilistic programming. In Interna-
tional Workshop on Statistical Relational AI (StarAI).

Richard Socher, Alex Perelygin, Jean Y Wu, Jason
Chuang, Christopher D Manning, Andrew Y Ng, and
Christopher Potts Potts. 2013. Recursive deep models
for semantic compositionality over a sentiment tree-
bank. In Empirical Methods in Natural Language Pro-
cessing (EMNLP).

Charles Sutton and Andrew McCallum. 2007. An intro-
duction to conditional random fields for relational learn-
ing. In Introduction to Statistical Relational Learning.

65

Proceedings of NAACL-HLT 2015, pages 66–70,
Denver, Colorado, May 31 – June 5, 2015. c©2015 Association for Computational Linguistics

Lean Question Answering over Freebase from Scratch

Xuchen Yao
kitt.ai ∗

2157 N Northlake Way
Seattle, WA 98103, USA

Abstract

For the task of question answering (QA) over
Freebase on the WEBQUESTIONS dataset
(Berant et al., 2013), we found that 85% of all
questions (in the training set) can be directly
answered via a single binary relation. Thus we
turned this task into slot-filling for <question
topic, relation, answer> tuples: predicting re-
lations to get answers given a question’s topic.
We design efficient data structures to identify
question topics organically from 46 million
Freebase topic names, without employing any
NLP processing tools. Then we present a lean
QA system that runs in real time (in offline
batch testing it answered two thousand ques-
tions in 51 seconds on a laptop). The system
also achieved 7.8% better F1 score (harmonic
mean of average precision and recall) than the
previous state of the art.

1 Introduction

Large-scale open-domain question answering from
structured Knowledge Base (KB) provides a good
balance of precision and recall in everyday QA
tasks, executed by search engines and personal assis-
tant applications. The release of WEBQUESTIONS

dataset (Berant et al., 2013) has drawn a lot of inter-
est from both academia and industry. One tendency
to notice is that the general trend of research is be-
coming more complex, utilizing various techniques
such as semantic parsing and deep neural networks.

We took a radically different approach by head-
ing for the other direction: simplifying the task as
much as possible with no compromise on speed and
accuracy. We treat the task of QA from Freebase

∗ Incubated by the Allen Institute for Artificial Intelligence.

as a two-step problem: identifying the correct topic
(search problem) and predicting the correct answer
(prediction problem). The common approach to the
first problem is applying basic linguistic processing,
such as part-of-speech (POS) tagging and chunking
to identify noun phrases, and named entity recog-
nition (NER) for interesting topics. The common
approach to the second problem is detailed ques-
tion analysis, which usually involves parsing. In any
case, various components from the natural language
processing (NLP) pipeline are usually applied.

With an emphasis on real-time prediction (usu-
ally making a prediction within 100 milliseconds af-
ter seeing the question), we chose not to use any
NLP preprocessing – not even POS tagging. Instead
we design efficient data structures to help identify
named entities to tackle the search problem.

For the prediction problem, we found that given
a question and its topic, simply predicting the KB
relation between the topic and the answer is suffi-
cient. In other words, we turned QA from Freebase
into a slot-filling problem in the form of <topic, re-
lation, answer> tuples: given a question, the task
is to find the answer, while the search problem is to
find the topic and the prediction problem is to find
the relation. For instance, given the question what’s
sweden’s currency?, the task can be turned into a tu-
ple of <Sweden, /location/country/currency_used,
Swedish krona>. In Section 3 we address how
to identify the topic (Sweden) and in Section 4
how to predict the relation (/location/country/cur-
rency_used). There are obvious limitations in this
task format, which are discussed in Section 6.

Going beyond reporting evaluation scores, we de-
scribe in details our design principle and also report
performance in speed. This paper makes the follow-

66

ing technical contributions to QA from KB:

• We design and compare several data structures
to help identify question topics using the KB
resource itself. The key to success is to search
through 46 million Freebase topics efficiently
while still being robust against noise (such as
typographical or speech recognition errors).

• Our algorithm is high-performance, real-time,
and simple enough to replicate. It achieved
state-of-the-art result on the WEBQUESTIONS

dataset. Training time in total is less than 5
minutes and testing on 2032 questions takes
less than 1 minute. There are no external NLP
library dependencies: the only preprocessing is
lowercasing.

2 Related Work

The task of question answering from Freebase was
first proposed by Berant et al. (2013), who crawled
Google Suggest and annotated 5810 questions that
had answers from Freebase with Amazon Mechan-
ical Turk, thus the WEBQUESTIONS dataset. Re-
searchers have approached this problem from differ-
ent angles. Semantic parsing (Berant et al., 2013;
Berant and Liang, 2014) aims to predict the logic
forms of the question given the distant supervision
of direct answers. Their logic forms were derived
from dependency parses and then converted into
database queries. Reddy et al. (2014) conceptual-
ized semantic parsing as a graph matching prob-
lem by building graphs with Combinatory Catego-
rial Grammar parses. Edges and nodes in parsing
graphs were grounded with respect to Freebase re-
lations and entities. Other research explored the
graph nature of Freebase. For instance, Bordes et al.
(2014) learned low-dimensional word embeddings
for both the question and related topic subgraph.
A scoring function was defined over these embed-
dings so that correct answers yielded a higher score.
Yao and Van Durme (2014) treated this task as a
direct information extraction problem: each entity
node from a topic graph was ranked against others
by searching a massively generated feature space.

All of the above work resorted to using the Free-
base annotation of ClueWeb (Gabrilovich et al.,
2013) to gain extra advantage of paraphrasing QA

pairs or dealing with data sparsity problem. How-
ever, ClueWeb is proprietary data and costs hun-
dreds of dollars to purchase. Moreover, even though
the implementation systems from (Berant et al.,
2013; Yao and Van Durme, 2014; Reddy et al.,
2014) are open-source, they all take considerable
disk space (in tens of gigabytes) and training time
(in days). In this paper we present a system that can
be easily implemented in 300 lines of Python code
with no compromise in accuracy and speed.

3 Search

Given a question, we need to find out all named en-
tities (or topics in Freebase terms). For instance, for
the question what character did natalie portman play
in star wars?, we are mainly interested in the topics
of natalie portman and star wars. Note that all sen-
tences in WEBQUESTIONS are lowercased.

Normal approaches require a combination of ba-
sic NLP processing. For instance, an NER tagger
might recognize natalie portman as a PERSON, but
would not recognize star wars as a movie, unless
there is a pre-defined gazetteer. Then one needs to
resort to basic chunking to at least identify star wars
as a noun phrase. Moreover, these NLP tools need
to be trained to better adapt lowercased sentences.
Even though, one is still limited to a small number
of recognizable types: noun phrases, person, loca-
tion, organization, time, date, etc.

Freebase contains 46 million topics, each of
which is annotated with one or more types. Thus
a natural idea is to use these 46 million topics as
a gazetteer and recognizes named entities from the
question (with ambiguities), with two steps:

1. enumerate all adjacent words (of various
length) of the question, an O(N2) operation
where N is the length of question in words;

2. check whether each adjacent word block exists
in the gazetteer.

We use two common data structures to search effi-
ciently, with three design principles:

1. compact and in-memory, to avoid expensive
hard disk or solid state drive I/O;

2. fuzzy matching, to be robust against noise;

3. easily extensible, to accommodate new topics.

67

3.1 Fuzzy Matching and Generation
To check whether one string is a Freebase topic, the
easiest way is to use a hash set. However, this is not
robust against noise unless a fuzzy matching hash-
ing function (e.g., locality sensitive hashing) is de-
signed. Moreover, 46 million keys in a giant hash set
might cause serious problems of key collision or set
resizing in some programming languages. Instead,
we propose to use two common data structures for
the purpose of fuzzy matching or generation.

Fuzzy Matching with Sorted List 1: a sorted list
can provide basic fuzzy matching while avoiding the
key collision problem with slightly extra computing
time. The search is done via 3 steps:

1. build a sorted list of 46 million topics;

2. to identify whether a string appears in the list,
do a binary search. Since 46 million is between
225 and 226, a search would require in the worst
case 26 steps down the binary random access
ladder, which is a trivial computation on mod-
ern CPUs;

3. For each string comparison during the binary
search, also compute the edit distance. This
checks whether there is a similar string within
an edit distance of d in the list given another
string.

Note that a sorted list does not compute all similar
strings within an edit distance of d efficiently. Ad-
jacent strings in the list also wastes space since they
are highly similar. Thus we also propose to use a
prefix tree:

Fuzzy Generation with Prefix Tree (Trie): a
prefix tree builds a compact representation of all
strings where common prefixes are shared towards
the root of the tree. By careful back tracing, a prefix
tree can also output all similar strings within a fixed
edit distance to a given string. This efficiently solves
the wasted space and generation problems.

3.2 Implementation and Speed Comparison
We maximally re-used existing software for robust-
ness and quick implementation:

1We mix the notion of array vs. list as long as the actual
implementation satisfies two conditions: O(1) random access
time and O(1) appending(resizing) time.

d = 0 d = 1 d = 2
Fuzzy Matching

<0.01ms 7.9ms 7.5ms
(Sorted List, PyPy)
Fuzzy Generation

29ms 210ms 1969ms
(Trie, Elasticsearch)

Table 1: Fuzzy query time per question. d is the edit
distance while d = 0 means strict matching. HTTP
roundtrip overhead from Elasticsearch was also counted.

Sorted List was implemented with vanilla Python
list, compiled with the PyPy just-in-time compiler.

Prefix Tree was implemented with Elasticsearch,
written in Java.

Both implementations held 46 million topic
names (each topic name is 20 characters long on
average) in memory. Specifically, sorted list took
2.06GB RAM while prefix tree took 1.62GB RAM.

Then we tested how fast it was to find out all
topics from a question. To do this, we used the
DEV set of WEBQUESTIONS. Enumerating all ad-
jacent words of various length is an O(N2) opera-
tion where N is a sentence length. In practice we
counted 27 adjacent words on average for one ques-
tion, thus 27 queries per question. Elasticsearch
follows the client-server model where client sends
HTTP queries to the backend database server. To
reduce HTTP roundtrip overhead, we queried the
server in burst mode: client only sends one “mega”
query to the server per question where each “mega”
query contains 27 small queries on average. Exper-
iments were conducted with an Intel Core i5-4278U
CPU @ 2.60GHz.

Table 1 shows the query time per question. Note
that this is an evaluation of real-world computing
situation, not how efficiently either search struc-
ture was implemented (or in what programming lan-
guage). Thus the purpose of comparison is to help
choose the best implementation solution.

3.3 Ranking
After identifying all possible topic names in a ques-
tion, we send them to the official Freebase Search
API to rank them. For instance, for the ques-
tion what character did natalie portman play in star
wars?, possible named entities include character,
natalie, natalie portman, play, star, and star wars.

68

But in general natalie portman and star wars should
be ranked higher. Due to the crowd-sourced nature,
many topics have duplicate entries in Freebase. For
instance, we counted 20 different natalie portman’s
(each one has a unique machine ID), but only one
is extensively edited. One can either locally rank
them by the number of times each topic is cross-
referenced with others, or use the Freebase Search
API in an online fashion. In our experiments the lat-
ter yielded significantly better results. The Freebase
Search API returns a ranked list of topic candidates.
Our next job is to predict answers from this list.

4 Prediction

Given a question and its topic, we directly predict
the relation that connects the topic with the answer.
Our features and model are extremely simple: we
took unigram and bigram words from the question
as our features and used logistic regression to learn
a model that associates lexical words with relations.

The training set of WEBQUESTIONS contains
3778 question and answer pairs. Each question is
also annotated with the Freebase topic used to iden-
tify the answers. Then for each of the topic-answer
pairs, we extracted a direct relation from the topic
to the answer, for instance (TOPIC: Sweden, RELA-
TION: /location/country/currency_used, ANSWER:
Swedish krona). If there were more than one rela-
tions between the topic and the answer (mostly due
to dummy “compound” nodes in between), we chose
the nearest one to the answer node as the direct re-
lation. To be more specific: we first selected the
the shortest path between the topic and answer node,
then chose the relation from the answer node to its
parent node, regardless of whether the parent node
was the topic node. In this way we found direct re-
lations for 3634 of these questions, which count as
96.2% of the whole training set.

Note that we “reverse-engineered” the slot-filling
relations that would predict the correct answers
based on annotated gold answers. It does not mean
that these relations will predict the answers with
100% accuracy. For instance, for the question what
was the first book dr. seuss wrote?, the direct
relation was /book/author/book_editions_published.
However, this relation would predict all books Dr.
Seuss wrote, instead of just the first one. Thus in

the training set, we further counted the number of
relations that point to the exact gold answers. In all,
62% of questions out of the whole training set can
be exactly answered by a single relation.

The remaining 38% presented a complicated case.
We sampled 100 questions and did a manual analy-
sis. There were mainly two reasons that contributed
to the 38%:

1. Noisy Annotation: questions with incomplete
answers. For instance,

(a) for the question what does bob dylan sing?,
the annotated answer was only “like a rolling
stone”, while the direct relation /music/artist/-
track gave a full list;

(b) for the question what kind of currency does
cuba use?, the annotated answer was Cuban
Peso, while the direct relation /location/coun-
try/currency_used led to two answers: Cuban
Peso and Cuban Convertible Peso.

2. Complex Questions: questions with con-
straints that cannot be answered by binary re-
lations. For instance:

(a) who does david james play for 2011?

(b) which province in canada is the most pop-
ulated?

(c) who does jodelle ferland play in eclipse?

For category 1, the answers provided by direct bi-
nary relations will only hurt evaluation scores, but
not user experience. For category 2, we counted
about 40% of them from the samples. Thus in total,
complex questions constructed 38% × 40% = 15%
of the whole training set. In other words, 85% of
questions can be answered by predicting a single bi-
nary relation. This provides statistical evidence that
the task of QA on WEBQUESTIONS can be effec-
tively simplified to a tuple slot-filling task.

5 Results

We applied Liblinear (Fan et al., 2008) via its Scikit-
learn Python interface (Pedregosa et al., 2011) to
train the logistic regression model with L2 regular-
ization. Testing on 2032 questions took 51 seconds.2

2This excluded the time used to call the Freebase Search
API, which is highly dependent on the network and server node.

69

F1

(Berant)
F1

(Yao)
Yao and Van Durme (2014) 33.0 42.0

Berant and Liang (2014) 39.9 43.0
Reddy et al. (2014) 41.3 -
Bordes et al. (2014) 41.8 45.7

this work 44.3 53.5

Table 2: Results on the WEBQUESTIONS test set.

We found no difference in quality but only slightly
in speed in the search results between using sorted
list and prefix tree. Moreover, in specifically the
WEBQUESTIONS dataset, there was no difference in
strict matching and fuzzy matching – the dataset is
somehow void of typographical errors. 3

We evaluated both the average F1 over all ques-
tions (Berant) and the F1 of average precision and
recall values (Yao) following Bordes et al. (2014),
shown in Table 2. Our method outperformed all
previous systems in both F1 measures, with possi-
bly two reasons: 1, the simplicity of this method
minimizes error propagation down the processing
pipeline; 2, we used direct supervision while most
previous work used distant supervision.

6 Limitation and Discussion

The limitation of our method comes from the as-
sumption: most questions can be answered by pre-
dicting a direct binary relation. Thus it cannot han-
dle complex questions that require to resolve a chain
of relations. These complex questions appear about
15% of the time.

Note that WEBQUESTIONS is a realistic dataset:
it was mined off Google Suggest, which reflects
people’s everyday searches. Our manual analysis
showed that these complex questions usually only
contain one type of constraint that comes from either
a ranking/superlative describer (first, most, etc) or a
preposition phrase (in 1998, in some movie, etc). To
adapt to these questions, we can take a further step
of learning to filter a returned list of results. For in-

3This is likely due to the fact that the dataset was crawled
with the Google Suggest API, which aggregates common
queries and common queries are mostly free of typos. For real-
world everyday queries, fuzzy matching should still be applied.

stance, first (first husband, first novel, etc) requires
learning a time ordering; a prepositional constraint
usually picks out a single result from a list of results.
To go beyond to “crossword-like” questions with
multiple constraints, more powerful mechanisms are
certainly needed.

In summary, we have presented a system with
a focus on efficiency and simplicity. Computation
time is minimized to allow more time for network
traffic, while still being able to respond in real time.
The system is based on a simpler assumption: most
questions can be answered by directly predicting a
binary relation from the question topic to the answer.
The assumption is supported by both statistics and
observation. From this simple but verified assump-
tion we gained performance advantages of not only
speed, but also accuracy: the system achieved the
best result so far on this task.

References
Jonathan Berant and Percy Liang. 2014. Semantic pars-

ing via paraphrasing. In Proceedings of ACL.
Jonathan Berant, Andrew Chou, Roy Frostig, and Percy

Liang. 2013. Semantic Parsing on Freebase from
Question-Answer Pairs. In Proceedings of EMNLP.

Antoine Bordes, Sumit Chopra, and Jason Weston. 2014.
Question answering with subgraph embeddings. In
Proceedings of EMNLP 2014, pages 615–620.

Rong-En Fan, Kai-Wei Chang, Cho-Jui Hsieh, Xiang-Rui
Wang, and Chih-Jen Lin. 2008. LIBLINEAR: A li-
brary for large linear classification. The Journal of
Machine Learning Research, 9:1871–1874.

Evgeniy Gabrilovich, Michael Ringgaard, , and
Amarnag Subramanya. 2013. FACC1:
Freebase annotation of ClueWeb corpora.
http://lemurproject.org/clueweb09/FACC1/.

Fabian Pedregosa, Gaël Varoquaux, Alexandre Gram-
fort, Vincent Michel, Bertrand Thirion, Olivier Grisel,
Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vin-
cent Dubourg, et al. 2011. Scikit-learn: Machine
learning in Python. The Journal of Machine Learning
Research, 12:2825–2830.

Siva Reddy, Mirella Lapata, and Mark Steedman. 2014.
Large-scale semantic parsing without question-answer
pairs. Transactions of the Association for Computa-
tional Linguistics, 2:377–392.

Xuchen Yao and Benjamin Van Durme. 2014. Informa-
tion extraction over structured data: Question answer-
ing with freebase. In Proceedings of ACL.

70

Proceedings of NAACL-HLT 2015, pages 71–75,
Denver, Colorado, May 31 – June 5, 2015. c©2015 Association for Computational Linguistics

A Web Application for Automated Dialect Analysis

Sravana Reddy
Neukom Institute

Dartmouth College
Hanover, NH.

sravana@cs.dartmouth.edu

James N. Stanford
Linguistics and Cognitive Science

Dartmouth College
Hanover, NH.

james.n.stanford@dartmouth.edu

Abstract

Sociolinguists are regularly faced with the
task of measuring phonetic features from
speech, which involves manually transcribing
audio recordings – a major bottleneck to an-
alyzing large collections of data. We harness
automatic speech recognition to build an on-
line end-to-end web application where users
upload untranscribed speech collections and
receive formant measurements of the vow-
els in their data. We demonstrate this tool
by using it to automatically analyze President
Barack Obama’s vowel pronunciations.

1 Introduction

There has been recent interest in technologies for the
automated analysis of web-scale corpora in sociolin-
guistics, the study of language usage and variation in
society. The subfield of sociophonetics is concerned
with how certain speech sounds are manifested, giv-
ing rise to distinctive speech accents. While there
have been computational tools developed for socio-
phoeticians in the last few years, they require that
the speech is manually transcribed at the word level,
which is painstaking for large corpora.

Our insight is that, for many types of record-
ings, transcriptions produced by current automatic
speech recognition (ASR) systems are not signifi-
cantly worse than manual transcriptions for the pur-
pose of measuring certain key phonetic character-
istics of speakers, such as their vowel formants –
which are essential to dialect research.

We have created an open-access website, DARLA

(short for Dartmouth Linguistic Automation)1,
where linguists and other researchers working on
speech dialects can upload their data, and receive
automatic transcriptions of the recordings as well as
measurements of the speakers’ vowels. We envision
this tool being used by linguists for a first-pass quali-
tative study of dialect features in speech data without
the effort of manual transcription.

We choose to implement the system online rather
than as a downloadable toolkit to eliminate the over-
head of program installation for users. Furthermore,
since this is an ongoing project, it is seamless to in-
corporate new features in a web application rather
than pushing updates to a desktop program. DARLA
currently supports English speech.

Details about our methods as well as studies using
sociolinguistic data appear in Reddy and Stanford
(2015). In this paper, we focus on describing the
interface and an overview of the system components.

2 Background

2.1 Vowel Formants

Every vowel sound is associated with a set of reso-
nance frequencies, or formants, characteristic to the
vowel as well as the speaker. Sociophoneticians typ-
ically study how the first two formants of stressed
vowels, denoted by F1 and F2, systematically dif-
fer across speakers of the language. For example, as
shown in Fig. 1, a speaker saying the vowel EY2 (the
first vowel in paper) with a Southern accent would

1http://darla.dartmouth.edu
2We use the standard CMU Arpabet phoneme set

(http://www.speech.cs.cmu.edu/cgi-bin/cmudict)

71

have a higher F1 and lower F2 than a Northern US
speaker for the same vowel.

Figure 1: Words and phonemes aligned to speech
(represented by its waveform and frequency spec-
trogram, visualized in Praat). The vowel formants
are the dark ‘bands’, or local frequency peaks.

Northern US Speaker

Southern US Speaker

2.2 Motivation
We observe that the stressed vowel error rate of our
automatic speech recognition system is about a third
of the word error rate for several different test cor-
pora. Unlike typical applications of ASR like dicta-
tion or command-and-control systems where accu-
rate word recognition is the primary objective, per-
fect transcription accuracy is not always necessary.
For many sociophonetic purposes, it is sufficient to
get the vowel correct. Errors like depend in place of
spend that retain the identity of the stressed vowel
account for many of the word errors. Furthermore,
with the opportunity to easily analyze speech con-
taining several examples of each vowel type, a few
errors will make little difference to the overall di-
alect analysis.

3 Existing Work

DARLA is inspired by two online tools used by the
phonetics and sociolinguistics communities:

1. FAVE (Rosenfelder et al., 2011), short for
Forced Alignment Vowel Extraction, takes as input a
speech file along with word-level manual transcrip-
tions. It performs Viterbi alignment of the phonemes
in the transcription to the speech using HMM-based

acoustic models. The locations of vowels are iden-
tified from the alignment, and the vowel formants
measured at the appropriate locations using Linear
Predictive Coding, which in turn is computed by the
Praat toolkit for phonetics (Boersma and Weenink,
2014).

Other programs for phoneme alignment include
the ProsodyLab Aligner (Gorman et al., 2011) and
WebMAUS (Kisler et al., 2012). Recently, Winkel-
mann and Raess (2014) developed a web tool for
spectral analysis and visualization of speech.

The key difference between our system and prior
work is that we do not require any transcriptions for
the input speech.

2. The NORM suite for vowel normalization and
plotting (Thomas and Kendall, 2007) lets users up-
load formant measurements, and generates scatter-
plots of the first two formants.

4 System Description

4.1 Input

Fig. 2 is a screenshot of the interface, which is im-
plemented in HTML and Javascript, and connected
to the server through CGI and Ajax. Users upload
their speech data and can optionally select param-
eters for the ASR decoder. The options consist of
a dialect-specific acoustic model, and the type of
speech: free speech or dictation, for which we use a
high language model scaling factor, or lists of words
– commonly used in sociophonetic research – for
which a lower scaling factor is appropriate. Once
the upload is complete, users are prompted to en-
ter a speaker ID and sex for each file (Fig. 3), used
as parameters for formant extraction. The inputs are
validated and sanitized on the client and server sides.

4.2 Back-End Computation

The system currently contains an HMM-based
speech recognizer built using the CMU Sphinx
toolkit3, with acoustic and language models that we
trained on a variety of American English speech
corpora (broadcast news and telephone conversa-
tions). We currently have one dialect-specific acous-
tic model for Southern speech, trained on portions
of the Switchboard corpus (Godfrey and Holliman,

3http://cmusphinx.sourceforge.net

72

Figure 2: Input interface for the completely automated vowel extraction system.

Figure 3: Speaker information prompt.
1993). The feature representation uses 13 MFCCs,
deltas, and delta-deltas sampled every 10ms.

Long audio files are split into smaller segments,
and down-sampled to 16 kHz (or 8 kHz if the orig-
inal sampling rate is below 16 kHz). We use Pock-
etSphinx for decoding, and HTK to force-align the
output transcriptions to produce phoneme-to-audio
alignments. The system then converts the align-
ments to TextGrid format4, and uses the formant ex-
traction portion of the FAVE code5 to measure the
formant values for all the vowel tokens in the tran-
scriptions. The processing is distributed over eight
CPUs so simultaneous jobs can be supported.

Since the transcriptions are likely to contain er-
rors, we filter out low-confidence vowel tokens
based on the acoustic likelihood of the word contain-
ing that token under the acoustic model. Previous
work on identifying potential errors in the transcrip-
tion suggests using models of duration in addition to
acoustic features (Das et al., 2010), which we plan

4Conversion was facilitated by the Python TextGrid library
available at http://github.com/kylebgorman/textgrid.py

5https://github.com/JoFrhwld/FAVE

73

to incorporate. We also filter out function words, un-
stressed vowel tokens, and tokens with high formant
bandwidths (indicating that the formant values may
not be reliable). Finally, we generate scatter plots of
the mean values of the first two formants for each
vowel type using the R vowels package6.

4.3 Output
The results are e-mailed to the user once the task
is completed. The e-mail includes scatter plots of
the first two vowel formants for each speaker, and
the complete raw formant data in a CSV file which
is adapted from the output of FAVE. This file con-
tains the raw formant measurements of every vowel,
including the unfiltered tokens, the formant band-
widths, the phonetic contexts, adjacent words, and
other relevant information.

Phonetic contexts are particularly important since
many vowel shift patterns are context-dependent.
We separate the phonetic contexts into place, man-
ner, and voicing features – for example, the sound
P would be represented as {place: bilabial, man-
ner: stop, and voicing: unvoiced}. Probabilities are
computed under the acoustic model for each of these
features. This allows researchers to discard low-
probability contexts, or incorporate the probabilities
as a gradient measure of the phonetic environment.

The e-mail also includes the filtered formant mea-
surements formatted in a tab-separated file for input
to the NORM plotting suite in case the user wants
more plotting options, and the aligned ASR tran-
scriptions as TextGrid files, which can be opened by
Praat and visualized as in Fig. 1. The user can then
check the transcriptions and alignments, make cor-
rections as needed, and re-run the formant extraction
step using FAVE for more accurate vowel measure-
ments if desired.

5 Case Study: Obama’s State of the Union

We ran the audio of US President Barack Obama’s
2015 State of the Union address7 through our sys-
tem. The audio of the address is reasonably clean,
but the speech is sometimes interrupted by clap-
ping sounds and background noise. The record-
ing is a just over an hour long, and contains 6793

6http://cran.r-project.org/web/packages/vowels
7The speech and transcripts are taken from

http://www.americanrhetoric.com/barackobamaspeeches.htm

words according to the manual transcript. The de-
coding, alignment, and formant extraction pipeline
takes about 90 minutes to complete.

The ASR transcriptions show a 42% word error
rate, and a total stressed vowel error rate of 13%. Of
the filtered tokens, the stressed vowel error rate is
even better at 9%.

The mean formants from the ASR transcriptions
are similar to the formants extracted from the man-
ual text (Fig. 4). The largest discrepancies are in
vowels like OY which occur less frequently.

Figure 4: Plot of formants averaged over filtered to-
kens of stressed vowels. This plot shows Obama’s
vowels as exhibited in the 2015 State of the Union,
analyzed using ASR as well as manual transcriptions
for comparison. This is the scatterplot that the user
receives in the e-mailed output (except that the man-
ual transcription results will not be included).

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

2000 1800 1600 1400 1200 1000

70
0

60
0

50
0

40
0

Vowel Space

F2

F
1

● Obama_Manual
Obama_Automated

IY

AY

EH

AA

IH

UW

AO

AH

OW
EY

AE

ER

OY

AW

UH

EH

AY

AA

IH

IY
UW

AO

AH

OW

EY

AE

UH

ER

AW

OY

Obama’s regional background is often described
as a mix of Hawai’i where he spent most of his child-
hood, Kansas (his mother’s home), and Chicago
where he worked for much of his professional life.
Sociolinguists have shown that children usually ac-
quire most of their dialect features from peers in the
local community, not their parents (Labov, 1991).
We therefore expect to find influences from Hawai’i

74

and Chicago, and perhaps also a politician’s ten-
dency to appeal to a wider audience: in this case,
a general northern US audience.

The results in Fig. 4 indicate that Obama has a
mix of conservative Northern US vowels with some
Midland and Southern influences, based on soci-
olinguistic dialect descriptions (Labov et al., 2006;
Labov, 2007; Eckert, 2008).

(1) In this data, Obama does not show an ad-
vanced stage of the Northern Cities Vowel Chain
Shift (NCS) prevalent in Chicago. The F1 of
Obama’s AE vowel is lower than average, which is
a prevalent pattern in Chicago, but also in other re-
gions of the US.

(2) He shows clear evidence of “fronting” (high
F2) of the vowels UW (boot) and UH (hood). This
pattern is common in the West and other regions,
and is spreading to the North.

(3) His AO and AA vowels are distinct, which is
common for Chicago and the Inland North and the
South, but interestingly, not the West and Hawai’i.

(4) Finally, his AW (bout) is somewhat fronted – a
feature of the Midland and South.

We also analyzed Obama’s previous State of the
Union addresses and found that his vowels have re-
mained remarkably stable since 2011.

6 Future Work

Since our system is an ongoing project, we will
be rolling out several new features in the upcom-
ing months. We are developing an interface to al-
low users to make corrections to the speech recog-
nition transcriptions (with low-confidence regions
highlighted), and receive updated formant measure-
ments. In the longer term, we hope to expand be-
yond vowel formants by developing phonetic fea-
ture classifiers for other dialect variables such as
rhoticity, nasality, and prosody. Finally, since the
speech recognizer is the most vital component of
the system, we are working on improving the ASR
error rate by incorporating state-of-the-art technolo-
gies that use deep neural nets.

Acknowledgments

We would like to thank Irene Feng for programming
assistance, and the developers of FAVE and NORM
for permission to use their formant measurement and

plotting code. We are grateful for the feedback re-
ceived from the sociolinguistics community at the
NWAV conference and during pilot testing of the
application. The first author was supported by a
Neukom Fellowship, and further development of the
tool is being supported by a Neukom CompX grant.

References
Paul Boersma and David Weenink. 2014. Praat: doing

phonetics by computer [computer program]. Available
at http://www.praat.org/.

Rajarshi Das, Jonathan Izak, Jiahong Yuan, and Mark
Liberman. 2010. Forced alignment under adverse
conditions. Unpublished manuscript.

Penelope Eckert. 2008. Where do ethnolects stop? In-
ternational Journal of Bilingualism, 12:25–42.

John Godfrey and Edward Holliman. 1993.
Switchboard-1 Release 2 LDC97S62. Linguistic
Data Consortium, Philadelphia.

Kyle Gorman, Jonathan Howell, and Michael Wagner.
2011. Prosodylab-aligner: A tool for forced alignment
of laboratory speech. Canadian Acoustics, 39(3):192–
93.

Thomas Kisler, Florian Schiel, and Han Sloetjes. 2012.
Signal processing via web services: the use case Web-
MAUS. In Proceedings of Digital Humanities.

William Labov, Sharon Ash, and Charles Boberg. 2006.
The Atlas of North American English (ANAE). Mou-
ton, Berlin.

William Labov. 1991. Sociolinguistic patterns. Univer-
sity of Pennsylvania Press, Philadelphia.

William Labov. 2007. Transmission and diffusion. Lan-
guage, 83(2):344–387.

Sravana Reddy and James N. Stanford. 2015. Toward
completely automated vowel extraction: Introducing
DARLA. Manuscript. Under review at Linguistics
Vanguard.

Ingrid Rosenfelder, Josef Fruehwald, Keelan Evanini,
Scott Seyfarth, Kyle Gorman, Hilary Prichard,
and Jiahong Yuan. 2011. FAVE (Forced Align-
ment and Vowel Extraction) Program Suite
v1.2 doi:10.5281/zenodo.12325. Available at
http://fave.ling.upenn.edu.

Erik Thomas and Tyler Kendall. 2007.
NORM: The vowel normalization and plot-
ting suite [online resource]. Available at
http://ncslaap.lib.ncsu.edu/tools/norm/.

Raphael Winkelmann and Georg Raess. 2014. Introduc-
ing a web application for labeling, visualizing speech
and correcting derived speech signals. In Proceedings
of LREC.

75

Proceedings of NAACL-HLT 2015, pages 76–80,
Denver, Colorado, May 31 – June 5, 2015. c©2015 Association for Computational Linguistics

An Open-source Framework for
Multi-level Semantic Similarity Measurement

Mohammad Taher Pilehvar and Roberto Navigli
Department of Computer Science

Sapienza University of Rome
{pilehvar,navigli}@di.uniroma1.it

Abstract

We present an open source, freely available
Java implementation of Align, Disambiguate,
and Walk (ADW), a state-of-the-art approach
for measuring semantic similarity based on
the Personalized PageRank algorithm. A
pair of linguistic items, such as phrases
or sentences, are first disambiguated using
an alignment-based disambiguation technique
and then modeled using random walks on the
WordNet graph. ADW provides three main
advantages: (1) it is applicable to all types
of linguistic items, from word senses to texts;
(2) it is all-in-one, i.e., it does not need any
additional resource, training or tuning; and
(3) it has proven to be highly reliable at dif-
ferent lexical levels and multiple evaluation
benchmarks. We are releasing the source code
at https://github.com/pilehvar/adw/. We also
provide at http://lcl.uniroma1.it/adw/ a Web
interface and a Java API that can be seam-
lessly integrated into other NLP systems re-
quiring semantic similarity measurement.

1 Introduction

Semantic similarity quantifies the extent of shared
semantics between two linguistics items, e.g., be-
tween deer and moose or cat and a feline mam-
mal. Lying at the core of many Natural Language
Processing systems, semantic similarity measure-
ment plays an important role in their overall per-
formance and effectiveness. Example applications
of semantic similarity include Information Retrieval
(Hliaoutakis et al., 2006), Word Sense Disambigua-
tion (Patwardhan et al., 2003), paraphrase recogni-

tion (Glickman and Dagan, 2003), lexical substi-
tution (McCarthy and Navigli, 2009) or simplifica-
tion (Biran et al., 2011), machine translation eval-
uation (Lavie and Denkowski, 2009), tweet search
(Sriram et al., 2010), question answering (Mohler et
al., 2011), and lexical resource alignment (Pilehvar
and Navigli, 2014).

Owing to its crucial importance a large body
of research has been dedicated to semantic sim-
ilarity. This has resulted in a diversity of simi-
larity measures, ranging from corpus-based meth-
ods that leverage the statistics obtained from mas-
sive corpora, to knowledge-based techniques that
exploit the knowledge encoded in various semantic
networks. Align, Disambiguate, and Walk (ADW)
is a knowledge-based semantic similarity approach
which was originally proposed by Pilehvar et al.
(2013). The measure is based on the Personal-
ized PageRank (PPR) algorithm (Haveliwala et al.,
2002) applied on the WordNet graph (Miller et al.,
1990), and can be used to compute the similarity
between arbitrary linguistic items, all the way from
word senses to texts. Pilehvar et al. (2013) reported
state-of-the-art performance on multiple evaluation
benchmarks belonging to different lexical levels:
senses, words, and sentences.

In this demonstration we present an open-source
implementation of our system together with a Java
API and a Web interface for online measurement of
semantic similarity. We also introduce a method for
offline calculation of the PPR stationary distribution
for multiple starting nodes. Moreover, we release
the compressed semantic signatures for all the 118K
synsets and 155K words of WordNet 3.0.

76

2 Align, Disambiguate, and Walk (ADW)

ADW uses a two-phase procedure to model a given
pair of linguistic items:

1. The pair is first disambiguated using an
alignment-based disambiguation technique.
Let a and b be two linguistic items to be com-
pared, and Sw be the set of senses of a word
w in the item a which is to be disambiguated.
The alignment-based disambiguation measures
the semantic similarity of each sense in Sw to
all the senses of all the words in the compared
item, i.e., b. The sense of w that produces
the maximal similarity is taken as its intended
sense. The procedure is repeated for all the
other words in a and also in the opposite
direction for all the words in b.

2. By using the PPR algorithm on the WordNet
network, the two disambiguated items are mod-
eled as high-dimensional vectors, called se-
mantic signatures. To this end, ADW initial-
izes the PPR algorithm from all the nodes in the
semantic network that correspond to the dis-
ambiguated senses of the linguistic item being
modeled. The resulting stationary distribution,
which has WordNet synsets as its individual di-
mensions, is taken as the semantic signature of
that item.

Finally, the similarity of the two linguistic items
is computed as the similarity of their corresponding
semantic signatures. We describe in Section 2.2 the
four different signature comparison techniques that
are implemented and offered in the package. Note
that the two phases of ADW are inter-connected,
as the alignment-based disambiguation in the first
phase requires the generation of the semantic signa-
tures for individual senses of each word in an item,
i.e., the second phase.

2.1 Pre-computed semantic signatures

For each measurement of the semantic similarity be-
tween two linguistic items, ADW requires the se-
mantic signatures for the two items to be calculated.
Moreover, the alignment-based disambiguation of a
pair of textual items requires the computation of all
the semantic signatures of all their content words.

Therefore, a comparison of two items which con-
tain an average of n words involves around n × p
times the calculation of the PPR, where p is the av-
erage polysemy of the n words. This can be time-
consuming and computationally expensive, partic-
ularly for larger textual items such as paragraphs.
In order to speed up ADW we pre-computed the
semantic signatures for individual WordNet synsets
and words. We also provide a procedure for offline
computation of semantic signatures for textual items
comprising of multiple words, i.e., corresponding to
multiple WordNet synsets, boosting the speed of sig-
nature generation for these items.

The WordNet graph is constructed by includ-
ing all types of WordNet relations, and further en-
riched by means of relations obtained from Prince-
ton Annotated Gloss Corpus1. The graph consists
of 117,522 nodes (WordNet synsets) which are con-
nected by means of more than half a million non-
directed edges.

Individual synsets. We used the UKB package2

to generate the semantic signatures for all the 118K
synsets in WordNet 3.0. Each signature is trun-
cated to the top 5000 most significant dimensions
and compressed for better space utilization.

Words. We also generated semantic signatures for
around 155K WordNet 3.0 words. To this end, for
each word we initialized the PPR algorithm from
all the synsets that contained its different senses.
The word signatures can be used for faster compu-
tation of similarity, if it is not intended to perform
alignment-based disambiguation on the items.

Other textual items. ADW computes the seman-
tic signature of a textual item by initializing the PPR
algorithm from all the nodes associated with its dis-
ambiguated content words. Given that it is simply
unfeasible to pre-compute semantic signatures for
all possible linguistic items, we put forward an ap-
proach which, given the pre-computed signatures for
all WordNet synsets, can generate the semantic sig-
nature for an arbitrary linguistic item without the
need to resort to the PPR algorithm. Let S be the set
of synsets s corresponding to all the disambiguated

1http://wordnet.princeton.edu/glosstag.shtml
2http://ixa2.si.ehu.es/ukb/

77

//the two linguistic items to be compared
String t1 = "fire#v#4";
ItemType t1Type = ItemType.WORD_SENSE;

String t2 = "terminating the employment of a worker";
ItemType t2Type = ItemType.SURFACE;

//method for comparing semantic signatures
SignatureComparison compMethod = new WeightedOverlap();

double similarity = ADW.getInstance().getPairSimilarity(t1, t2,
DisambiguationMethod.ALIGNMENT_BASED, compMethod, t1Type, t2Type);

System.out.println(similarity);

Figure 1: Sample ADW API usage for similarity measurement between a word sense and a phrase.

content words of a given linguistic item T . Consid-
ering each normalized semantic signature as a multi-
nomial distribution, the semantic signature of the
item T can be alternatively computed as the mean
multinomial distribution of the signatures for indi-
vidual synsets s ∈ S. It can be shown mathemati-
cally that the resulting mean distribution is equal to
the same stationary distribution obtained by initial-
izing the PPR algorithm from all the nodes corre-
sponding to synsets s ∈ S.

2.2 Signature comparison

Four different methods are included in the pack-
age for comparing pairs of semantic signatures:
Jensen-Shannon and Kullback-Leibler divergence,
cosine, and Weighted Overlap (Pilehvar et al., 2013).
Weighted Overlap is a rank similarity measure that
computes the similarity of a pair of ranked lists in
a harmonic manner, attributing more importance to
the top elements than to the bottom ones. Pilehvar et
al. (2013) reported improvements over the conven-
tional cosine measure when using Weighted Overlap
in multiple tasks and frameworks.

3 Availability

The Java source code can be obtained from ADW’s
github repository at https://github.com/pilehvar/adw/.
We also provide a Java API, an online demo and
the set of pre-computed semantic signatures for all
the synsets and words in WordNet 3.0 at http://lcl.
uniroma1.it/adw/.

4 Using ADW

Figure 1 shows a sample usage of the ADW
API. The getPairSimilarity method in
the ADW class receives six parameters: the
two linguistic items, the disambiguation method
(ALIGNMENT BASED or NONE), the signature
comparison method, and the types of the two inputs.
ADW supports five different types of input:3

• SURFACE: Raw text (e.g., A baby plays with a dog).

• SURFACE TAGGED: Lemmas with part of speech
tags (e.g., baby#n play#v dog#n). We support only
the four open-class parts of speech: nouns (n), verbs
(v), adjectives (a), and adverbs (r).

• SENSE KEYS: WordNet 3.0 sense keys (e.g.,
baby%1:18:00:: play%2:33:00:: dog%1:05:00::).

• SENSE OFFSETS: WordNet 3.0 synset offsets
(e.g., 09827683-n 01072949-v 02084071-n).

• WORD SENSE: Word senses in the form of
lemma[#.]tag[#.]sense number (e.g., baby#n#1
play#v#1 dog#n#1 or baby.n.1 play.v.1 dog.n.1).

Figure 2 provides a snapshot of ADW’s online
demo. Two items from two different linguistic lev-
els are being compared: the fourth sense of the verb
fire4 and the phrase “terminating the employment of
a worker.” The user can either choose the input type
for each item from the drop-down menu or leave it to
be automatically detected by the interface (the “de-
tect automatically” option). The online demo also

3All word senses, sense keys and offsets are defined accord-
ing to WordNet 3.0.

4Defined as “terminate the employment of; discharge from
an office or position.”

78

Figure 2: A screenshot of ADW Web interface.

provides users with the possibility to test similar-
ity measurement with no involvement of the disam-
biguation step.

5 Evaluation

We assessed the implementation of ADW on two
evaluation benchmarks: similarity judgement cor-
relation on the RG-65 dataset (Rubenstein and
Goodenough, 1965) and synonym recognition on
the TOEFL dataset (Landauer and Dumais, 1997).
Given a set of word pairs, the task in judgement cor-
relation is to automatically compute the similarity
between each pair and judgements are ideally ex-
pected to be as close as possible to those assigned
by humans. The closeness is usually measured in
terms of correlation statistics. In the synonym recog-
nition task, a target word is paired with a set of can-
didate words from which the most semantically sim-
ilar word (to the target word) is to be selected.

Table 1 shows the results according to the Spear-
man ρ and Pearson r correlations on RG-65 and ac-
curacy, i.e., the number of correctly identified syn-
onyms, on TOEFL. We show results for two sets
of vectors: full vectors of size 118K and truncated
vectors of size 5000 which are provided as a part of
the package. As can be seen, despite reducing the
space requirement by more than 15 times, our com-
pressed vectors obtain high performance on both the
datasets, matching those of the full vectors on the
TOEFL dataset and also the cosine measure.

Dataset Full vector Truncated (top 5000)

Cosine WO Cosine WO

RG-65 r 0.65 0.81 0.65 0.80
ρ 0.82 0.86 0.82 0.85

TOEFL % 96.3 95.0 96.3 95.0

Table 1: Performance of ADW on two different word
similarity datasets, i.e., RG-65 (according to Spearman
ρ and Pearson r correlations) and TOEFL (accuracy per-
centage), for two different vector comparison methods,
i.e., cosine and Weighted Overlap (WO). We show results
for two sets of vectors: full vectors with 118K dimensions
and truncated vectors of size 5000 which are provided as
a part of the package.

6 Related Work

As the de facto standard lexical database, Word-
Net has been used widely in measuring seman-
tic similarity. Budanitsky and Hirst (2006) pro-
vide an overview of WordNet-based similarity mea-
sures. WordNet::Similarity, a software developed by
Pedersen et al. (2004), provides a Perl implemen-
tation of a number of these WordNet-based mea-
sures. UMLS::Similarity is an adaptation of Word-
Net::Similarity to the Unified Medical Language
System (UMLS) which can be used for measur-
ing the similarity and relatedness of terms in the
biomedical domain (McInnes et al., 2009). Most
of these WordNet-based measures suffer from two
major drawbacks: (1) they usually exploit only the
subsumption relations in WordNet; and (2) they are
limited to measuring the semantic similarity of pairs
of synsets with the same part of speech. ADW im-
proves both issues by obtaining rich and unified rep-
resentations for individual synsets, enabling effec-
tive comparison of arbitrary word senses or con-
cepts, irrespective of their part of speech.

Distributional semantic similarity measures have
also attracted a considerable amount of research at-
tention. The S-Space Package (Jurgens and Stevens,
2010) is an evaluation benchmark and a develop-
ment framework for word space algorithms, such as
Latent Semantic Analysis (Landauer and Dumais,
1997). The package is integrated in DKProSim-
ilarity (Bär et al., 2013), a more recently devel-
oped package geared towards semantic similarity of

79

textual items. DKProSimilarity provides an open-
source implementation of several semantic simi-
larity techniques, from simple string-based mea-
sures such as character n-gram overlap, to more so-
phisticated vector-based measures such as Explicit
Semantic Analysis (Gabrilovich and Markovitch,
2007). ADW was shown to improve the perfor-
mance of DKProSimilarity (Pilehvar et al., 2013) on
the task of semantic textual similarity (Agirre et al.,
2012).

Acknowledgments

The authors gratefully acknowledge
the support of the ERC Starting Grant
MultiJEDI No. 259234.

References

Eneko Agirre, Daniel Cer, Mona Diab, and Aitor
Gonzalez-Agirre. 2012. SemEval-2012 task 6: A pi-
lot on semantic textual similarity. In Proceedings of
SemEval-2012, pages 385–393, Montreal, Canada.

Daniel Bär, Torsten Zesch, and Iryna Gurevych. 2013.
DKPro Similarity: An open source framework for text
similarity. In Proceedings of ACL: System Demonstra-
tions, pages 121–126, Sofia, Bulgaria.

Or Biran, Samuel Brody, and Noémie Elhadad. 2011.
Putting it simply: a context-aware approach to lexi-
cal simplification. In Proceedings of ACL, pages 496–
501, Portland, Oregon.

Alexander Budanitsky and Graeme Hirst. 2006. Eval-
uating WordNet-based measures of Lexical Semantic
Relatedness. Computational Linguistics, 32(1):13–47.

Evgeniy Gabrilovich and Shaul Markovitch. 2007. Com-
puting semantic relatedness using Wikipedia-based
explicit semantic analysis. In Proceedings of IJCAI,
pages 1606–1611, Hyderabad, India.

Oren Glickman and Ido Dagan. 2003. Acquiring lexical
paraphrases from a single corpus. In Proceedings of
RANLP, pages 81–90, Borovets, Bulgaria.

Taher Haveliwala, A. Gionis Dan Klein, and P. Indyk.
2002. Evaluating strategies for similarity search on
the web. In Proceedings of WWW, pages 432–442,
Honolulu, Hawaii.

Angelos Hliaoutakis, Giannis Varelas, Epimenidis Vout-
sakis, Euripides GM Petrakis, and Evangelos Milios.
2006. Information retrieval by semantic similarity. In-
ternational Journal on Semantic Web and Information
Systems, 2(3):55–73.

David Jurgens and Keith Stevens. 2010. The S-Space
package: An open source package for word space
models. In Proceedings of the ACL: System Demon-
strations, pages 30–35, Uppsala, Sweden.

Thomas K. Landauer and Susan T. Dumais. 1997. A so-
lution to Plato’s problem: The latent semantic analysis
theory of acquisition, induction, and representation of
knowledge. Psychological Review, 104(2):211.

Alon Lavie and Michael J. Denkowski. 2009. The Me-
teor metric for automatic evaluation of Machine Trans-
lation. Machine Translation, 23(2-3):105–115.

Diana McCarthy and Roberto Navigli. 2009. The En-
glish lexical substitution task. Language Resources
and Evaluation, 43(2):139–159.

Bridget T. McInnes, Pedersen Ted, and Serguei V.S.
Pakhomov. 2009. UMLS-interface and UMLS-
similarity: open source software for measuring paths
and semantic similarity. In Proceedings of AMIA,
pages 431–435, San Fransico, CA.

George A. Miller, R.T. Beckwith, Christiane D. Fell-
baum, D. Gross, and K. Miller. 1990. WordNet: an
online lexical database. International Journal of Lexi-
cography, 3(4):235–244.

Michael Mohler, Razvan Bunescu, and Rada Mihalcea.
2011. Learning to grade short answer questions using
semantic similarity measures and dependency graph
alignments. In Proceedings of ACL, pages 752–762,
Portland, Oregon.

Siddharth Patwardhan, Satanjeev Banerjee, and Ted Ped-
ersen. 2003. Using measures of semantic relatedness
for Word Sense Disambiguation. In Proceedings of
CICLing, pages 241–257.

Ted Pedersen, Siddharth Patwardhan, and Jason Miche-
lizzi. 2004. WordNet::Similarity: Measuring the re-
latedness of concepts. In Proceedings of HLT-NAACL
2004: Demonstration Papers, pages 38–41, Boston,
Massachusetts.

Mohammad Taher Pilehvar and Roberto Navigli. 2014.
A robust approach to aligning heterogeneous lexical
resources. In Proceedings of ACL, pages 468–478,
Baltimore, USA.

Mohammad Taher Pilehvar, David Jurgens, and Roberto
Navigli. 2013. Align, Disambiguate and Walk: a
Unified Approach for Measuring Semantic Similarity.
In Proceedings of ACL, pages 1341–1351, Sofia, Bul-
garia.

Herbert Rubenstein and John B. Goodenough. 1965.
Contextual correlates of synonymy. Communications
of the ACM, 8(10):627–633.

Bharath Sriram, Dave Fuhry, Engin Demir, Hakan Fer-
hatosmanoglu, and Murat Demirbas. 2010. Short text
classification in Twitter to improve information filter-
ing. In Proceedings of ACM SIGIR, pages 841–842,
Geneva, Switzerland.

80

Proceedings of NAACL-HLT 2015, pages 81–85,
Denver, Colorado, May 31 – June 5, 2015. c©2015 Association for Computational Linguistics

Brahmi-Net: A transliteration and script conversion system for languages of
the Indian subcontinent

Anoop Kunchukuttan ∗

IIT Bombay
anoopk@cse.iitb.ac.in

Ratish Puduppully ∗†

IIIT Hyderabad
ratish.surendran

@research.iiit.ac.in

Pushpak Bhattacharyya
IIT Bombay

pb@cse.iitb.ac.in

Abstract

We present Brahmi-Net - an online system for
transliteration and script conversion for all ma-
jor Indian language pairs (306 pairs). The sys-
tem covers 13 Indo-Aryan languages, 4 Dra-
vidian languages and English. For training
the transliteration systems, we mined paral-
lel transliteration corpora from parallel trans-
lation corpora using an unsupervised method
and trained statistical transliteration systems
using the mined corpora. Languages which
do not have parallel corpora are supported
by transliteration through a bridge language.
Our script conversion system supports con-
version between all Brahmi-derived scripts as
well as ITRANS romanization scheme. For
this, we leverage co-ordinated Unicode ranges
between Indic scripts and use an extended
ITRANS encoding for transliterating between
English and Indic scripts. The system also pro-
vides top-k transliterations and simultaneous
transliteration into multiple output languages.
We provide a Python as well as REST API to
access these services. The API and the mined
transliteration corpus are made available for
research use under an open source license.

1 Introduction

The Indian subcontinent is home to some of the most
widely spoken languages of the world. It is unique
in terms of the large number of scripts used for writ-
ing these languages. Most of the these are abugida
scripts derived from the Brahmi script. Brahmi is

∗These authors contributed equally to this project
†Work done while the author was at IIT Bombay

one of the oldest writing systems of the Indian sub-
continent which can be dated to at least the 3rd cen-
tury B.C.E. In addition, Arabic-derived and Roman
scripts are also used for some languages. Given the
diversity of languages and scripts, transliteration and
script conversion are extremely important to enable
effective communication.
The goal of script conversion is to represent the

source script accurately in the target script, without
loss of phonetic information. It is useful for exactly
reading manuscripts, signboards, etc. It can serve
as a useful tool for linguists, NLP researchers, etc.
whose research is multilingual in nature. Script con-
version enables reading text written in foreign scripts
accurately in a user's native script. On the other
hand, transliteration aims to conform to the phonol-
ogy of the target language, while being close to the
source language phonetics. Transliteration is needed
for phonetic input systems, cross-lingual informa-
tion retrieval, question-answering, machine transla-
tion and other cross-lingual applications.

Brahmi-Net is a general purpose transliteration
and script conversion system that aims to provide so-
lutions for South Asian scripts and languages. While
transliteration and script conversion are challenging
given the scale and diversity, we leverage the com-
monality in the phonetics and the scriptural systems
of these languages. The major features of Brahmi-
Net are:

1. It supports 18 languages and 306 language
pairs for statistical transliteration. The sup-
ported languages cover 13 Indo-Aryan lan-
guage (Assamese, Bengali, Gujarati, Hindi,
Konkani, Marathi, Nepali, Odia, Punjabi, San-
skrit, Sindhi, Sinhala, Urdu) , 4 Dravidian lan-

81

guages (Kannada, Malayalam, Tamil, Telugu)
and English. To the best of our knowledge,
no other system covers as many languages and
scripts.

2. It supports script conversion among the fol-
lowing 10 scripts used by major Indo-Aryan
and Dravidian languages: Bengali, Gujarati,
Kannada, Malayalam, Odia, Punjabi, Devana-
gari, Sinhala, Tamil and Telugu. Some of these
scripts are used for writing multiple languages.
Devanagari is used for writing Hindi, Sanskrit,
Marathi, Nepali, Konkani and Sindhi. The Ben-
gali script is also used for writing Assamese.
Also, Sanskrit has historically been written in
many of the above mentioned scripts.

3. The system also supports an extended ITRANS
transliteration scheme for romanization of the
Indic scripts.

4. The transliteration and script conversion sys-
tems are accessible via an online portal. Some
additional features include the ability to simul-
taneously view transliterations to all available
languages and the top-k best transliterations.

5. AnApplication Programming Interface (API) is
available as a Python package and a REST in-
terface for easy integration of the transliteration
and script conversion systems into other appli-
cations requiring transliteration services.

6. As part of the project, parallel transliteration
corpora has been mined for transliteration be-
tween 110 languages pairs for the following 11
languages: Bengali, Gujarati, Hindi, Konkani,
Marathi, Punjabi, Urdu, Malayalam, Tamil,
Telugu and English. The parallel translitera-
tion corpora is comprised of 1,694,576 word
pairs across all language pairs, which is roughly
15,000 mined pairs per language pair.

2 Script Conversion

Our script conversion engine contains two rule-
based systems: one for script conversion amongst
scripts of the Brahmi family, and the other for ro-
manization of Brahmi scripts.

2.1 Among scripts of the Brahmi family
Each Brahmi-derived Indian language script has
been allocated a distinct codepoint range in the Uni-
code standard. These scripts have a similar char-
acter inventory, but different glyphs. Hence, the
first 85 characters in each Unicode block are in the
same order and position, on a script by script basis.
Our script conversion method simply maps the code-
points between the two scripts.
The Tamil script is different from other scripts

since it uses the characters for unvoiced, unaspi-
rated plosives for representing voiced and/or aspi-
rated plosives. When converting into the Tamil
script, we substitute all voiced and/or aspirated plo-
sives by the corresponding unvoiced, unaspirated
plosive in the Tamil script. For Sinhala, we do an ex-
plicit mapping between the characters since the Uni-
code ranges are not coordinated.
This simple script conversion scheme accounts for

a vast majority of the characters. However, there
are some characters which do not have equivalents
in other scripts, an issue we have not addressed so
far. For instance, the Dravidian scripts do not have
the nukta character.

2.2 Between a Roman transliteration scheme
and scripts from the Brahmi family

We chose ITRANS1 as our transliteration scheme
since: (i) it can be entered using Roman keyboard
characters, (ii) the Roman character mappings map
to Indic script characters in a phonetically intuitive
fashion. The official ITRANS specification is lim-
ited to the Devanagari script. We have added a few
extensions to account for some characters not found
in non-Devanagari scripts. Our extended encoding
is backward compatible with ITRANS. We convert
Devanagari to ITRANS using Alan Little's python
module2. For romanization of other scripts, we use
Devanagari as a pivot script and use the inter-Brahmi
script converter mentioned in Section 2.1.

3 Transliteration

Though Indian language scripts are phonetic and
largely unambiguous, script conversion is not a sub-

1http://www.aczoom.com/itrans/
2http://www.alanlittle.org/projects/

transliterator/transliterator.html

82

stitute for transliteration which needs to account for
the target language phonology and orthographic con-
ventions. The main challenges that machine translit-
eration systems encounter are: script specifications,
missing sounds, transliteration variants, language of
origin, etc. (Karimi et al., 2011). A summary of the
challenges specific to Indian languages is described
by Antony, P. J. and Soman, K.P. (2011).

3.1 Transliteration Mining
Statistical transliteration can address these chal-
lenges by learning transliteration divergences from a
parallel transliteration corpus. For most Indian lan-
guage pairs, parallel transliteration corpora are not
publicly available. Hence, we mine transliteration
corpora for 110 language pairs from the ILCI corpus,
a parallel translation corpora of 11 Indian languages
(Jha, 2012). Transliteration pairs are mined using
the unsupervised approach proposed by Sajjad et al.
(2012) and implemented in the Moses SMT system
(Durrani et al., 2014). Their approach models paral-
lel translation corpus generation as a generative pro-
cess comprising an interpolation of a transliteration
and a non-transliteration process. The parameters of
the generative process are learnt using the EM proce-
dure, followed by extraction of transliteration pairs
from the parallel corpora.
Table 1 shows the statistics of mined pairs. We

mined a total of 1.69 million word pairs for 110 lan-
guage pairs. We observed disparity in the counts of
mined transliteration pairs across languages. Lan-
guage pairs of the Indo-Aryan family from geo-
graphically contiguous regions have more number
of mined pairs. For instance, the hin-pan, hin-
guj, mar-guj, kok-mar pairs have high number of
mined transliterations averaging more than 30,000
entries. The mined pairs are diverse, containing
spelling variations, orthographic variations, sound
shifts, cognates and loan words.

3.2 Training transliteration systems
We model the transliteration problem as a phrase
based translation problem, a common approach
which learns mappings from character sequences in
the source language to the target language. The sys-
tems were trained on the mined transliteration par-
allel corpus using Moses. The mined pairs are first
segmented and a phrase-based machine translation

system is trained on them.
We used a hybrid approach for transliteration in-

volving languages for which we could not mine
a parallel transliteration corpus. Source languages
which cannot be statistically transliterated are first
transliterated into a phonetically close language
(bridge language) using the above-mentioned rule-
based system. The bridge language is then transliter-
ated into the target language using statistical translit-
eration. Similarly, for target languages which cannot
be statistically transliterated, the source is first sta-
tistically transliterated into a phonetically close lan-
guage, followed by rule-based transliteration into the
target language.

4 Brahmi-Net Interface

Brahmi-Net is accessible via a web interface as well
an API. We describe these interfaces in this section.

4.1 Web Interface

The purpose of the Web interface is to allow users
quick access to transliteration and script conversion
services. They can also choose to see the translitera-
tion/script conversion output in all target languages,
making comparison easier. Alternative choices of
transliteration can also be studied by requesting the
top-5 transliterations for each input. A snapshot of
the interface is shown in Figure 1. The web interface
is accessible at:
http://www.cfilt.iitb.ac.in/brahminet/

4.2 REST API

We provide a REST interface to access the transliter-
ation and script conversion services. Simultaneous
transliterations/script conversion into all languages
and top-k transliterations are also available. The
REST endpoints have an intuitive signature. For in-
stance, to fetch the transliteration for a word from
English (en) to Hindi (hi), the REST endpoint is:

http://www.cfilt.iitb.ac.in/indicnlpweb/

indicnlpws/transliterate/en/hi/<input>/statistical

The API returns a serialized JSON object containing
a dictionary of target language to top-k translitera-
tions. The detailed API reference is available on the
website.

83

hin urd pan ben guj mar kok tam tel mal eng
hin - 21185 40456 26880 29554 13694 16608 9410 17607 10519 10518
urd 21184 - 23205 11379 14939 9433 9811 4102 5603 3653 5664
pan 40459 23247 - 25242 29434 21495 21077 7628 15484 8324 8754
ben 26853 11436 25156 - 33125 26947 26694 10418 18303 11293 7543
guj 29550 15019 29434 33166 - 39633 35747 12085 22181 11195 6550
mar 13677 9523 21490 27004 39653 - 31557 10164 18378 9758 4878
kok 16613 9865 21065 26748 35768 31556 - 9849 17599 9287 5560
tam 9421 4132 7668 10471 12107 10148 9838 - 12138 10931 3500
tel 17649 5680 15598 18375 22227 18382 17409 12146 - 12314 4433

mal 10584 3727 8406 11375 11249 9788 9333 10926 12369 - 3070
eng 10513 5609 8751 7567 6537 4857 5521 3549 4371 3039 -

Table 1: Mined Pairs Statistics (ISO-639-2 language codes are shown)

Figure 1: Brahmi-Net Web Interface

5 Evaluation

5.1 Transliteration Accuracy

We evaluated the top-1 and top-5 transliteration ac-
curacy for a sample set of language pairs. For this
evaluation, we used an internally available, manu-
ally created corpus of 1000 transliteration pairs for
each language pair. These transliterations were man-
ually curated from synsets in IndoWordNet3 Though
this corpus does not reflect the diversity in the mined
transliterations, evaluation on this corpus could be a
pointer to utility of the transliteration corpus. We
compare the accuracy of match for transliteration

3http://www.cfilt.iitb.ac.in/indowordnet

Lang Pair Rule Statistical
top-1 top-5

ben-mar 64.6 68.3 87.1
mal-tam 27.9 30.9 66.0
mar-ben 68.0 67.3 85.2
tel-mar 68.2 70.9 87.5

Table 2: Transliteration Accuracy (%)

against the rule based script conversion output for
some language pairs. Table 2 shows the accu-
racy values. top-1 indicates exact match for the
first transliteration output returned by our system,
whereas top-5 indicates match in the top 5 translit-
erations returned by the system.

5.2 Case Study: Improving SMT output

Our work in developing the transliteration systems
was initially motivated by the need for transliterating
the untranslated words in SMT output. To evaluate
the transliteration systems in the context of machine
translation, we post-edited the phrase based system
(PB-SMT) outputs of Indian language pairs provided
by Kunchukuttan et al. (2014) using our translitera-
tion systems. Each untranslated word was replaced
by each of its top-1000 transliterations and the re-
sulting candidate sentences were re-ranked using a
language model. We observe a significant improve-
ment in translation quality across language pairs, as
measured by the BLEU evaluation metric. Due to
space constraints, we present results for only 8 lan-
guage pairs in Table 3. We observed that though
the system's best transliteration is not always correct,
the sentence context and the language model select
the right transliteration from the top-k transliteration

84

Lang PB-SMT PB-SMT
Pair +translit

urd-eng 21.0 21.59
tel-eng 12.09 12.34
kok-ben 24.61 27.69
pan-hin 71.26 75.25
mar-pan 34.75 36.92
tel-mal 6.58 7.54
guj-tel 16.57 18.61
tal-urd 15.65 16.22

Table 3: Results of PB-SMT output + transliteration of
OOVs (%BLEU)

candidates. The top-k transliterations can thus be
disambiguated by SMT or other downstream appli-
cations.

6 Conclusion

Brahmi-Net is an effort to provide a comprehen-
sive transliteration and script conversion solution
for all languages of the Indian subcontinent. Un-
supervised transliteration mining and leveraging the
phonetic and scriptural similarities between the lan-
guages have been the key ingredients in scaling the
system to a large number of languages. Even the
simple phrase based SMT model of transliteration
has proved useful for transliterating the output of
MT systems. A natural extension would be to em-
ploy richer transliteration models. There is scope
for improvement in the hybrid models of transliter-
ation used in the system. Some of the finer details
regarding script conversions have to be ironed out.
Finally, a long term goal is to support other major
languages from South Asia, which differ phoneti-
cally from the Indo-Aryan and Dravidian languages
or use non-Brahmi scripts.

Acknowledgments

We would like to thank Arjun Atreya for making
available parallel transliterations from IndoWordNet
for evaluation of our system.

References
Antony, P. J. and Soman, K.P. 2011. Machine Transliter-

ation for Indian Languages: A Literature Survey. In-

ternational Journal of Scientific and Engineering Re-
search.

Nadir Durrani, Hieu Hoang, Philipp Koehn, and Hassan
Sajjad. 2014. Integrating anUnsupervised Translitera-
tionModel into Statistical Machine Translation. EACL
2014.

Girish Nath Jha. 2012. The TDIL program and the Indian
Language Corpora Initiative. In Language Resources
and Evaluation Conference.

Sarvnaz Karimi, Falk Scholer, and Andrew Turpin. 2011.
Machine transliteration survey. ACM Computing Sur-
veys.

Anoop Kunchukuttan, Abhijit Mishra, Rajen Chatterjee,
Ritesh Shah, and Pushpak Bhattacharyya. 2014. Sata-
Anuvadak: Tackling Multiway Translation of Indian
Languages. In Language Resources and Evaluation
Conference.

Hassan Sajjad, Alexander Fraser, and Helmut Schmid.
2012. A statistical model for unsupervised and semi-
supervised transliteration mining. In Proceedings of
the 50th Annual Meeting of the Association for Com-
putational Linguistics.

85

Proceedings of NAACL-HLT 2015, pages 86–90,
Denver, Colorado, May 31 – June 5, 2015. c©2015 Association for Computational Linguistics

A Concrete Chinese NLP Pipeline

Nanyun Peng, Francis Ferraro, Mo Yu, Nicholas Andrews,
Jay DeYoung, Max Thomas, Matthew R. Gormley, Travis Wolfe,

Craig Harman, Benjamin Van Durme, Mark Dredze
Human Language Technology Center of Excellence

Johns Hopkins University, Baltimore, Maryland USA

Abstract

Natural language processing research increas-
ingly relies on the output of a variety of syn-
tactic and semantic analytics. Yet integrating
output from multiple analytics into a single
framework can be time consuming and slow
research progress. We present a CONCRETE
Chinese NLP Pipeline: an NLP stack built
using a series of open source systems inte-
grated based on the CONCRETE data schema.
Our pipeline includes data ingest, word seg-
mentation, part of speech tagging, parsing,
named entity recognition, relation extraction
and cross document coreference resolution.
Additionally, we integrate a tool for visualiz-
ing these annotations as well as allowing for
the manual annotation of new data. We release
our pipeline to the research community to fa-
cilitate work on Chinese language tasks that
require rich linguistic annotations.

1 Introduction

Over the past few years, the natural language pro-
cessing community has shifted its attention towards
the Chinese language, with numerous papers cover-
ing a range of NLP tasks for Chinese. Last year’s
EMNLP and ACL alone featured two dozen papers
focused primarily on Chinese data1, not including
many others that considered Chinese language data
within a broader context. The large number of Chi-
nese speakers, coupled with the unique challenges
of Chinese compared to well studied Romance and

1Excluding the Chinese Restaurant Process.

Germanic languages, have driven these research ef-
forts. This focus has given rise to new NLP sys-
tems that enable the automated processing of Chi-
nese data. While some pipelines cover multiple
tasks, such as Stanford CoreNLP (Manning et al.,
2014), other tasks such as relation extraction are not
included.

Modern NLP research, including research fo-
cused on Chinese, often relies on automatically pro-
duced analytics, or annotations, from multiple stages
of linguistic analysis. Downstream systems, such as
sentiment analysis and question answering, assume
that data has been pre-processed by a variety of syn-
tactic and semantic analytics. Consider the task of
knowledge base population (KBP), in which infor-
mation is extracted from text corpora for inclusion
in a knowledge base. Associated information ex-
traction systems rely on various NLP analytics run
on the data of interest, such as relation extractors
that require the identification of named entities and
syntactically parsed text. Similarly, entity linking
typically assumes the presence of within document
coreference resolution, named entity identification
and relation extraction. These analytics themselves
rely on other core NLP systems, such as part of
speech tagging and syntactic parsing.

While each of these tasks have received exten-
sive attention and have associated research software
for producing annotations, the output of these com-
ponents must be integrated into a single cohesive
framework for use in a downstream task. This inte-
gration faces a wide variety of challenges resulting
from the simple fact that most research systems are
designed to produce good performance on an eval-

86

uation metric, but are not designed for integration
in a pipeline. Beyond the production of integrated
NLP pipelines, research groups often produce re-
sources of corpora annotated by multiple systems,
such as the Annotated Gigaword Corpus (Napoles
et al., 2012). Effective sharing of these corpora re-
quires a common standard.

These factors lead to the recent development of
CONCRETE, a data schema that represents numerous
types of linguistic annotations produced by a variety
of NLP systems (Ferraro et al., 2014). CONCRETE

enables interoperability between NLP systems, fa-
cilitates the development of large scale research sys-
tems, and aids sharing of richly annotated corpora.

This paper describes a Chinese NLP pipeline that
ingests Chinese text to produce richly annotated
data. The pipeline relies on existing Chinese NLP
systems that encompass a variety of syntactic and
semantic tasks. Our pipeline is built on the CON-
CRETE data schema to produce output in a struc-
tured, coherent and shareable format. To be clear,
our goal is not the development of new methods or
research systems. Rather, our focus is the integra-
tion of multiple tools into a single pipeline. The ad-
vantages of this newly integrated pipeline lie in the
fact that the components of the pipeline communi-
cate through a unified data schema: CONCRETE. By
doing so, we can

• easily switch each component of the pipeline to
any state-of-the-art model;

• keep several annotations of the same type gen-
erated by different tools; and

• easily share the annotated corpora.

Furthermore, we integrate a visualization tool for
viewing and editing the annotated corpora. We posit
all the above benefits as the contributions of this pa-
per and hope the efforts can facilitate ongoing Chi-
nese focused research and aid in the construction
and distribution of annotated corpora. Our code is
available at http://hltcoe.github.io.

2 The CONCRETE Data Schema

We use CONCRETE, a recently introduced data
schema designed to capture and layer many differ-

ent types of NLP output (Ferraro et al., 2014).2 A
primary purpose of CONCRETE is to ease analytic
pipelining. Based on Apache Thrift (Slee et al.,
2007), it captures NLP output via a number of inter-
working structs, which are translated automatically
into in-memory representations for many common
programming languages, including Java, C++ and
Python. In addition to being, in practice, language-
agnostic, CONCRETE and Thrift try to limit pro-
grammer error: Thrift generates I/O libraries, mak-
ing it easy for analytics to read and write CON-
CRETE files; with this common format and I/O li-
braries, developers can more easily share NLP out-
put. Unlike XML or JSON, Thrift’s automatic val-
idation of strongly typed annotations help ensure
legitimate annotations: developers cannot acciden-
tally populate a field with the wrong type of object,
nor must they manually cast values.

CONCRETE allows both within-document and
cross-document annotations. The former includes
standard tagging tasks (e.g., NER or POS), syn-
tactic parses, relation extraction and entity corefer-
ence, though Ferraro et al. (2014) show how CON-
CRETE can capture deeper semantics, such as frame
semantic parses and semantic roles. These within-
document annotations, such as entity coref, can form
the basis of cross-document annotations.

We chose CONCRETE as our data schema to sup-
port as many NLP analytics as possible. In the
future, we plan to add additional analytics to our
pipeline, and we expect other research groups to in-
tegrate their own tools. A flexible and well docu-
mented data schema is critical for these goals. Fur-
thermore, the release of multiple corpora in CON-
CRETE (Ferraro et al., 2014) support our goal of
facilitating the construction and distribution of new
Chinese corpora.

3 Analytic Pipeline

We describe each stage of our pipeline with a brief
description of the associated tool and relevant details
of its integration into the pipeline.

2CONCRETE, language interfaces, and utility libraries are
open-source projects (https://hltcoe.github.io/).

87

(a) The basic visualization of a Communication.
Each line is a tokenized sentence, with options to view
the part of speech, constituency and dependency parse,
and entity relation information.

(b) Multiple types of annotations can be viewed simul-
taneously. Here, entity information is laid atop a depen-
dency parse. A particular mention-of-interest is shown
in yellow, with all other mentions in pink.

Figure 1: CONCRETE Communication containing Chinese text displayed in Quicklime (section 3.7).

3.1 Data Ingest

The first stage of our pipeline requires in-
gesting existing Chinese text into CONCRETE

Communication objects, the core document rep-
resentation of CONCRETE. The existing CONCRETE

Java and Python utilities support ingesting raw text
files. Part of this process requires not only ingesting
the raw text, but identifying section (paragraph) and
sentence boundaries.

Not all corpora contain raw text, as many corpora
come with existing manual (or automatic) linguis-
tic annotations. We provide code to support two
data formats of existing Chinese corpora: the Chi-
nese ACE 2005 relation extraction dataset (Walker
et al., 2006) and the new Chinese Entities, Rela-
tions, and Events (ERE) dataset (Consortium, 2013).
Both data sets include annotations for entities and
a variety of relations (Aguilar et al., 2014). The
labeled entities and relations are represented by
CONCRETE EntityMentions and stored in a
EntityMentionSetList. Additional annota-
tions that are typically utilized by relation extraction
systems, such as syntactic parses, are provided auto-
matically by the pipeline.

3.2 Word Segmentation

Chinese text processing requires the identification of
word boundaries, which are not indicated in writ-
ten Chinese as they are in most other languages.
Our word segmentation is provided by the Stan-
ford CoreNLP3 (Manning et al., 2014) Chinese
word segmentation tool, which is a conditional ran-
dom field (CRF) model with character based fea-
tures and lexicon features according to Chang et al.
(2008). Word segmentations decisions are repre-
sented by CONCRETE Token objects and stored in
the TokenList. We follow the Chinese Penn Tree-
bank segmentation standard (Xue et al., 2005). Our
system tracks token offsets so that segmentation is
robust to unexpected spaces or line breaks within a
Chinese word.

3.3 Syntax

Part of speech tagging and syntactic parsing are also
provided by Stanford CoreNLP. The part of speech
tagger is based on Toutanova et al. (2003) adapted
for Chinese, which is a log-linear model under-
neath. Integration with CONCRETE was facilitated
by the concrete-stanford library 4, though support-
ing Chinese required significant modifications to the

3
http://nlp.stanford.edu/software/corenlp.shtml

4
https://github.com/hltcoe/concrete-stanford

88

library. Resulting tags are stored in a CONCRETE

TokenTaggingList.
Syntactic constituency parsing is based on the

model of Klein and Manning (2003) adapted
for Chinese. We obtained dependency parses
from the CoreNLP dependency converter. We
store the constituency parses as a CONCRETE

Parse, and the dependency analyses as CON-
CRETE DependencyParses.

3.4 Named Entity Recognition

We support the two most common named entity an-
notation standards: the CoNLL standard (four types:
person, organization, location and miscellaneous),
and the ACE standard, which includes the additional
types of geo-political entity, facility, weapon and ve-
hicle. The ACE standard also includes support for
nested entities. We used the Stanford CoreNLP NER
toolkit which is a CRF model based on the method
in Finkel et al. (2005), plus features based on Brown
clustering. For the CoNLL standard annotations, we
use one CRF model to label all the four types of en-
tities. For the ACE standard annotations, in order
to deal with the nested cases, we build one tagger
for each entity type. Each entity is stored in a CON-
CRETE EntityMention.

3.5 Relation Extraction

Relations are extracted for every pair of entity men-
tions. We use a log-linear model with both tra-
ditional hand-crafted features and word embedding
features. The hand-crafted features include all the
baseline features of Zhou et al. (2005) (excluding the
Country gazeteer and WordNet features), plus sev-
eral additional carefully-chosen features that have
been highly tuned for ACE-style relation extrac-
tion over years of research (Sun et al., 2011). The
embedding-based features are from Yu et al. (2014),
which represent each word as the outer product be-
tween its word embedding and a list of its asso-
ciated non-lexical features. The non-lexical fea-
tures indicate the word’s relative positions compar-
ing to the target entities (whether the word is the
head of any target entity, in-between the two enti-
ties, or on the dependency path between entities),
which improve the expressive strength of word em-
beddings. We store the extracted relations in CON-
CRETE SituationMentions. See Figure 2 for

Figure 2: ACE entity relations viewed through
Quicklime (Section 3.7).

an example visualization.

3.6 Cross Document Coreference Resolution

Cross document coreference resolution is performed
via the phylogenetic entity clustering model of
Andrews et al. (2014).5 Since the method is
fully unsupervised we did not require a Chinese
specific model. We use this system to cluster
EntityMentions and store the clustering in top
level CONCRETE Clustering objects.

3.7 Creating Manual Annotations

Quicklime6 is a browser-based tool for viewing and
editing NLP annotations stored in a CONCRETE

document. Quicklime supports a wide array of ana-
lytics, including parse trees, token taggings, entities,
mentions, and “situations” (e.g. relations.) Quick-
lime uses the visualization layer of BRAT (Stenetorp
et al., 2012) to display some annotations but does not
use the BRAT annotation editing layer. BRAT anno-
tations are stored in a standoff file format, whereas
Quicklime reads and writes CONCRETE objects us-
ing the Thrift JavaScript APIs. Figure 1 shows
Quicklime displaying annotations on Chinese data.
In particular, Quicklime can combine and overlay
multiple annotations, such as entity extraction and
dependency parses, as in Figure 1b. Figure 2 shows
entity relation annotations.

Acknowledgments

We would like to thank the reviewers for their help-
ful comments and perspectives. A National Science
Foundation Graduate Research Fellowship, under

5
https://bitbucket.org/noandrews/phyloinf

6
https://github.com/hltcoe/quicklime

89

Grant No. DGE-1232825, supported the second au-
thor. Any opinions expressed in this work are those
of the authors.

References
Jacqueline Aguilar, Charley Beller, Paul McNamee, and

Benjamin Van Durme. 2014. A comparison of
the events and relations across ace, ere, tac-kbp, and
framenet annotation standards. ACL 2014, page 45.

Nicholas Andrews, Jason Eisner, and Mark Dredze.
2014. Robust entity clustering via phylogenetic infer-
ence. In Association for Computational Linguistics.

Pi-Chuan Chang, Michel Galley, and Christopher D Man-
ning. 2008. Optimizing chinese word segmentation
for machine translation performance. In Third Work-
shop on Statistical Machine Translation.

Linguistic Data Consortium. 2013. DEFT ERE annota-
tion guidelines: Events v1.1.

Francis Ferraro, Max Thomas, Matthew R. Gormley,
Travis Wolfe, Craig Harman, and Benjamin Van
Durme. 2014. Concretely Annotated Corpora. In
AKBC Workshop at NIPS.

Jenny Rose Finkel, Trond Grenager, and Christopher
Manning. 2005. Incorporating non-local information
into information extraction systems by gibbs sampling.
In ACL.

Dan Klein and Christopher D Manning. 2003. Accurate
unlexicalized parsing. In ACL.

Christopher D. Manning, Mihai Surdeanu, John Bauer,
Jenny Finkel, Steven J. Bethard, and David McClosky.
2014. The Stanford CoreNLP natural language pro-
cessing toolkit. In ACL: Demos.

Courtney Napoles, Matthew Gormley, and Benjamin Van
Durme. 2012. Annotated gigaword. In AKBC-
WEKEX Workshop at NAACL 2012.

Mark Slee, Aditya Agarwal, and Marc Kwiatkowski.
2007. Thrift: Scalable cross-language services imple-
mentation. Facebook White Paper.

Pontus Stenetorp, Sampo Pyysalo, Goran Topić, Sophia
Ananiadou, and Akiko Aizawa. 2012. Normalisation
with the brat rapid annotation tool. In International
Symposium on Semantic Mining in Biomedicine.

Ang Sun, Ralph Grishman, and Satoshi Sekine. 2011.
Semi-supervised relation extraction with large-scale
word clustering. In ACL.

Kristina Toutanova, Dan Klein, Christopher D Manning,
and Yoram Singer. 2003. Feature-rich part-of-speech
tagging with a cyclic dependency network. In NAACL.

Christopher Walker, Stephanie Strassel, Julie Medero,
and Kazuaki Maeda. 2006. Ace 2005 multilingual
training corpus ldc2006t06. Linguistic Data Consor-
tium.

Naiwen Xue, Fei Xia, Fu-Dong Chiou, and Marta Palmer.
2005. The penn chinese treebank: Phrase structure an-
notation of a large corpus. Natural language engineer-
ing, 11(02):207–238.

Mo Yu, Matthew Gormley, and Mark Dredze. 2014.
Factor-based compositional embedding models. In
NIPS Workshop on Learning Semantics.

GuoDong Zhou, Jian Su, Jie Zhang, and Min Zhang.
2005. Exploring various knowledge in relation extrac-
tion. In ACL, pages 427–434.

90

Proceedings of NAACL-HLT 2015, pages 91–95,
Denver, Colorado, May 31 – June 5, 2015. c©2015 Association for Computational Linguistics

CroVeWA: Crosslingual Vector-Based Writing Assistance

Hubert Soyer1∗, Goran Topić1, Pontus Stenetorp2†and Akiko Aizawa1

1 National Institute of Informatics, 2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo, Japan
2 University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan

{soyer,goran topic,aizawa}@nii.ac.jp pontus@stenetorp.se

Abstract

We present an interactive web-based writ-
ing assistance system that is based on recent
advances in crosslingual compositional dis-
tributed semantics. Given queries in Japanese
or English, our system can retrieve semanti-
cally related sentences from high quality En-
glish corpora. By employing crosslingually
constrained vector space models to represent
phrases, our system naturally sidesteps sev-
eral difficulties that would arise from direct
word-to-text matching, and is able to provide
novel functionality like the visualization of se-
mantic relationships between phrases interlin-
gually and intralingually.

1 Introduction

Writing high quality texts in a foreign language re-
quires years of study and a deep comprehension of
the language. With a society that is becoming more
and more international, the ability to express ideas
in English has become the basis of fruitful commu-
nication and collaboration.

In this work, we propose a tool to provide non-
native speakers of English with help in their transla-
tion or writing process. Instead of relying on man-
ually created dictionaries, many existing tools lever-
age parallel bilingual corpora, using a concordancer
to provide translation suggestions together with their
contexts. Notable examples relevant to this demon-
stration are linguee.com and tradooit.com.
Given a word or a phrase in a foreign language,

∗Currently at Google DeepMind.
†Currently at University College London.

these systems present example sentences contain-
ing the query in the source language as well as the
target language, showing the correct usage of the
word/phrase, and at the same time providing trans-
lation candidates.

Many applications rely on direct word-to-text
matching and are therefore prone to missing seman-
tically similar contexts that, although similar and
relevant, do not share any words with the query. In-
stead of matching words directly, we propose a sys-
tem that employs crosslingually constrained vector
representations (embeddings) of words and phrases
to retrieve English sentences that are similar to a
given phrase or word in a different language (query).
These vector representations not only allow for effi-
cient crosslingual lookups in databases consisting of
millions of sentences, but can also be employed to
visualize intralingual and interlingual semantic rela-
tionships between phrases.

2 Related Work

Various types of neural network models have been
proposed to induce distributed word representations
and leveraging these word embeddings as features
has proven viable in achieving state-of-the-art re-
sults for a variety of tasks (Baroni et al., 2014; Col-
lobert and Weston, 2008).

Recently, methods that attempt to compose em-
beddings not only of words but of whole phrases (Le
and Mikolov, 2014; Socher et al., 2011) have en-
abled vector representations to be applied for tasks
that are defined over phrases, sentences, or even doc-
uments. The most relevant work for this paper are
recent approaches that allow for the induction of

91

word and phrase embeddings not only from mono-
lingual text but using bilingual resources to con-
strain vector representations crosslingually. (Soyer
et al., 2015; Hermann and Blunsom, 2014; Cho et
al., 2014; Chandar A P et al., 2014). Embeddings
learned using these methods not only possess mean-
ingful properties within a language, but also inter-
lingually.

3 Crosslingual Vector-Based Writing
Assistance (CroVeWA)

Our system harnesses crosslingually constrained
word and phrase representations to retrieve and vi-
sualize sentences related to given queries, using dis-
tances in the word/phrase vector space as a measure
of semantic relatedness. Currently, our system sup-
ports the lookup of Japanese and English queries in
English text.

Our system encourages refining retrieved results
and viewing relations in different contexts by sup-
porting multiple queries. All queries and their cor-
responding results are visualized together to aid a
better understanding of their relationships. To il-
lustrate the differences to phrase vector-based sen-
tence retrieval, we also offer a retrieval option
based on direct word-to-text matching using the
EDICT Japanese-English dictionary (Breen, 2004)
and Apache Lucene1 for sentence retrieval.

To the best of our knowledge, our system is the
first to provide writing assistance using vector rep-
resentations of words and phrases.

3.1 Inducing Crosslingually Constrained Word
Representations

We employ the approach presented in Soyer et al.
(2015) to learn bilingually constrained representa-
tions of Japanese and English words. The method
draws from sentence-parallel bilingual text to con-
strain word vectors crosslingually, handles text on
a phrase level ensuring the compositionality of the
induced word embeddings, and is agnostic to how
phrase representations are assembled from word rep-
resentations. In addition, unlike previously pro-
posed models, the model can draw not only from
bilingual sentence aligned data but also from arbi-
trary monolingual data in either language. Figure 1

1https://lucene.apache.org/core/

depicts an overview over the method.

The method optimizes the vectors that represent
each word in subject to a bilingual and a monolin-
gual objective. These objectives operate on a phrase
level, where each phrase is represented by a single
vector. Composing a single vector of a given phrase
means looking up the word vector for each word
in a lookup table shared among all sentences of the
phrase-language, and applying a composition func-
tion to collapse all word vectors of a phrase into a
single phrase vector. The composition function used
in this work is the arithmetic mean.

The bilingual objective ensures that vectors of
Japanese sentences are close to the vectors of their
English translations present in the sentence-parallel
corpus. It minimizes the squared euclidean distance
between the sentence vector of a Japanese sentence
and the vector of its English translation. With the
arithmetic mean as the sentence composition func-
tion, this notion of translational closeness is directly
propagated back into the embeddings of the indi-
vidual words that appear in each sentence. If a
Japanese and an English word consistently co-occur
in the translation pairs of the sentence-parallel cor-
pus, their vectors will be moved close to each other,
capturing that they are likely to be related in mean-
ing.

The monolingual objective exploits the insight
that sub-phrases generally tend to be closer in mean-
ing to the phrases they are contained in, than to
most other arbitrary phrases. It punishes a large eu-
clidean distance between the vector representation
of a phrase and its sub-phrase, and at the same time
rewards a large distance between the vector of the
phrase and the embedding of another phrase chosen
at random.

Both the monolingual objective and the bilingual
objective are combined to leverage monolingual and
bilingual resources at the same time. Using the
arithmetic mean to compose phrase vectors discards
word-order as well as sentence-length information,
and allows our system to handle even single words
or ungrammatical sequences of words.

Currently we use Japanese and English resources
to learn word embeddings, but plan to add more lan-
guages in the future. The bilingual sentence-parallel

92

Figure 1: Overview of the method that was used to induce crosslingually constrained word representations. The
method can draw from bilingual sentence-parallel data as well as monolingual data.

resource used is the ASPEC corpus2, which fea-
tures sentence-aligned text from scientific paper ab-
stracts. For monolingual data, we use subsets of the
Japanese and English Wikipedia.

3.2 Finding Related English Sentences for a
Japanese Query

Inducing crosslingually constrained word represen-
tations leaves us with two sets of vectors, one cor-
responding to Japanese words and one to English
words. Given a query in Japanese, we look up the
vectors for each individual query word, compose
them into a single query vector and find the near-
est neighbors in a set of pre-computed vectors of
English sentences. Since the word and phrase vec-
tors are crosslingually constrained, we expect the re-
trieved English nearest neighbors to be semantically
related to the Japanese query. In contrast to conven-
tional word matching techniques, our vector-based
approach does not require Japanese translations of
the English sentences we consider during the search,
nor does it require a Japanese-English dictionary.

Another difference to word matching techniques
follows from the way word vectors are arranged
within the same language. Generally, words that

2http://orchid.kuee.kyoto-u.ac.jp/ASPEC/

appear in similar contexts will be placed close to
each other in the vector space, and so the differ-
ence between choosing a word over a closely re-
lated neighbor will be relatively small when com-
posing a phrase vector. Interchangeability of syn-
onyms or semantically similar words is therefore au-
tomatically supported as a property of the word rep-
resentations, and the system can retrieve sentences
similar in meaning regardless of the exact choice of
words.

Following Mikolov et al. (2013) we use the co-
sine similarity as a measure of similarity between
embeddings. For nearest neighbor retrieval we em-
ploy the FLANN Python module (Muja and Lowe,
2009) which exploits the clustered nature of vector
representations to efficiently find an approximate set
of nearest neighbors.

3.3 Visualization

In contrast to direct word matching, vector-
representation-based matching retrieves not only a
list of related sentences, but also a semantic vector
space position for each query and result. In order to
visualize the high-dimensional output vectors of the
search we reduce their dimensionality to two.

Generally, reducing dimensionality involves dis-

93

carding information. Commonly employed methods
for this task such as, Principal Component Analy-
sis or t-SNE (Van der Maaten and Hinton, 2008),
failed to provide satisfactory results for our pur-
poses. Instead, we apply a novel variant of multi-
dimensional scaling (Kruskal, 1964) where we pri-
oritize the preservation of query-to-result distances
over the preservation of result-to-result distances.
This yields a visually more interpretable output,
with queries being the points of orientation.

An interactive plot of the resulting 2D points, il-
lustrates the relationships between the different sen-
tences, puts the retrieved results into context and
aids the user’s understanding of the meaning and re-
latedness of sentences. Being able to visualize these
relationships is another aspect that sets our system
apart from previously proposed word-to-text match-
ing approaches.

3.4 Demonstration System
We will guide the audience through the features
of our application using a set of example queries
that highlight the merits and drawbacks of vector-
based crosslingual sentence retrieval. Based on
these query examples we will introduce novel func-
tionality, such as our system’s visualization of se-
mantic relationships or its feature for query auto-
generation. The interactive nature of our tool al-
lows us to incorporate requests and comments into
the demonstration, helping to clarify questions and
to explain properties of our system.

Our system is built as a web application and there-
fore only requires the user to have a modern browser
and an Internet connection. Figure 2 shows a screen-
shot of the user interface, which consists of the
query input bar at the top of the screen, a result list
on the left and a visualization panel on the right. For
clarity, we have annotated the screenshot: annota-
tions with white background show results and their
positions in the visualization, while the ones with
red background provide translations of the Japanese
queries.

In the query input bar users can customize the
search through a variety of options. Via the query
input field a user can submit Japanese queries which
can be a single word, a phrase or any sequence of
words. Pushing the Auto-Generate button will split
the entered text into semantically related groups of

words and submit these groups as separate queries
to visualize the relatedness of different parts of the
entered text. Since not every potential user might be
familiar with Japanese we provide an English sim-
ulation mode to input English queries and retrieve
English results. We refer to this mode as simula-
tion because the lookup from English to English is
not crosslingual. For comparison, and as an ex-
tension to the vector-based sentence retrieval, we
also provide a dictionary-based word-to-text match-
ing search mode using the Japanese-English EDICT
dictionary. Clicking the Samples button invokes a
dialog that presents example queries to choose from.
We currently provide three corpora to search, where
each corpus covers a different domain. The ASPEC
corpus consists of Japanese and English scientific
paper abstracts related to natural sciences and en-
gineering, the Wikipedia corpus comprises 10 mil-
lion randomly selected sentences from the English
Wikipedia, and the PubMed corpus features 5 mil-
lion sentences from the PubMed Central collection
of medical paper abstracts.

Queries make up the first entries in the result list,
with fully colored backgrounds. In the visualization
panel queries are represented by larger points. If two
or more queries have been submitted we additionally
provide a Query Average to retrieve results that are
related to all submitted queries. Every result entry
that follows the queries is colored according to the
closest query from those that retrieved it. The fill
level of the background of each result item indicates
its similarity to the Query Average. Hovering the
cursor over a list entry will highlight its correspond-
ing point and vice versa. Clicking on a list entry
will auto-generate queries from its text, clustering
related words together to provide a visualization of
the different topics the text consists of.

The annotations in Figure 2 illustrate how the sys-
tem’s visualization can aid a user in understanding
the meaning of a sentence. The distance between
a result and a query indicates their semantic close-
ness. Sentences located close to a query point are
strongly related to the query (canal and river or sub-
way station and railway station), phrases in between
the queries feature aspects of both submitted queries
(flooding, subway and city).

94

Figure 2: Annotated screenshot of CroVeWA.

Acknowledgements
This work was supported by the Data Centric Science
Research Commons Project at the Research Organiza-
tion of Information and Systems and by the Japan Society
for the Promotion of Science KAKENHI Grant Number
13F03041.

References

Marco Baroni, Georgiana Dinu, and Germán Kruszewski.
2014. Don’t count, predict! A systematic compari-
son of context-counting vs. context-predicting seman-
tic vectors. In Proceedings of the 52nd ACL, pages
238–247.

James Breen. 2004. JMDict: a Japanese-multilingual
dictionary. In Proceedings of the Workshop on Multi-
lingual Linguistic Ressources, pages 71–79. ACL.

Sarath Chandar A P, Stanislas Lauly, Hugo Larochelle,
Mitesh Khapra, Balaraman Ravindran, Vikas C
Raykar, and Amrita Saha. 2014. An autoencoder
approach to learning bilingual word representations.
In Z. Ghahramani, M. Welling, C. Cortes, N.D.
Lawrence, and K.Q. Weinberger, editors, Advances
in Neural Information Processing Systems 27, pages
1853–1861. Curran Associates, Inc.

Kyunghyun Cho, Bart van Merrienboer, Caglar Gulcehre,
Dzmitry Bahdanau, Fethi Bougares, Holger Schwenk,
and Yoshua Bengio. 2014. Learning phrase repre-
sentations using RNN encoder–decoder for statistical
machine translation. In Proceedings of EMNLP 2014,
pages 1724–1734.

Ronan Collobert and Jason Weston. 2008. A unified ar-
chitecture for natural language processing: Deep neu-
ral networks with multitask learning. In Proceedings
of the 25th ICML, pages 160–167. ACM.

Karl Moritz Hermann and Phil Blunsom. 2014. Multilin-
gual models for compositional distributed semantics.
In Proceedings of the 52nd ACL, pages 58–68.

Joseph B Kruskal. 1964. Multidimensional scaling by
optimizing goodness of fit to a nonmetric hypothesis.
Psychometrika, 29(1):1–27.

Quoc Le and Tomas Mikolov. 2014. Distributed repre-
sentations of sentences and documents. In Proceed-
ings of The 31st ICML, pages 1188–1196.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey
Dean. 2013. Efficient estimation of word represen-
tations in vector space. In Proceedings of Workshop at
ICLR.

Marius Muja and David G. Lowe. 2009. Fast approxi-
mate nearest neighbors with automatic algorithm con-
figuration. In International Conference on Computer
Vision Theory and Application VISSAPP’09), pages
331–340. INSTICC Press.

Richard Socher, Jeffrey Pennington, Eric H Huang, An-
drew Y Ng, and Christopher D Manning. 2011. Semi-
supervised recursive autoencoders for predicting sen-
timent distributions. In Proceedings of EMNLP, pages
151–161. Association for Computational Linguistics.

Hubert Soyer, Pontus Stenetorp, and Aizawa Akiko.
2015. Leveraging monolingual data for crosslingual
compositional word representations. In Proceedings
of ICLR. to appear.

Laurens Van der Maaten and Geoffrey Hinton. 2008. Vi-
sualizing data using t-SNE. JMLR, 9(2579-2605):85.

95

Proceedings of NAACL-HLT 2015, pages 96–100,
Denver, Colorado, May 31 – June 5, 2015. c©2015 Association for Computational Linguistics

Online Readability and Text Complexity Analysis with TextEvaluator

Diane Napolitano, Kathleen M. Sheehan, and Robert Mundkowsky
Educational Testing Service

660 Rosedale Road, 12R
Princeton, NJ 08541, USA

{dnapolitano,ksheehan,rmundkowsky}@ets.org

Abstract

We have developed the TextEvaluator system
for providing text complexity and Common
Core-aligned readability information. De-
tailed text complexity information is provided
by eight component scores, presented in such
a way as to aid in the user’s understanding of
the overall readability metric, which is pro-
vided as a holistic score on a scale of 100
to 2000. The user may select a targeted US
grade level and receive additional analysis rel-
ative to it. This and other capabilities are ac-
cessible via a feature-rich front-end, located at
http://texteval-pilot.ets.org/TextEvaluator/.

1 Introduction

Written communication is only effective to the ex-
tent that it can be understood by its intended audi-
ence. A metric of readability, along with detailed in-
formation about aspects of the text which contribute
its complexity, can be an indispensable aid to any
content developer, teacher, or even reader. ETS’s
TextEvaluator1 stands apart from similar systems
(e.g.: Coh-Metrix (Graesser et al., 2011), Reading
Maturity (Landauer, 2011), ATOS (Milone, 2008),
Lexile (Stenner et al., 2006), and, perhaps most fa-
mously, Flesch-Kincaid (Kincaid et al., 1975)) in
that it not only provides a single, holistic score of
overall complexity, but also additional complexity
information in the form of eight contributing compo-
nents. The other systems known to us only provide
one of these types of analysis. In addition to this,

1TextEvaluator was previously known as SourceRater.

TextEvaluator will also provide the user with infor-
mation on how its overall score and each of its com-
ponent scores correspond to ideal values relative to
a user-specified targeted grade level. All of this in-
formation is aligned with the current set of US grade
school (K–12) text complexity standards outlined by
the Common Core (CCSSI, 2010).

TextEvaluator’s overall complexity scores are
highly correlated with human grade level classifica-
tions, as shown in (Nelson et al., 2012). This study
compared six systems as part of the Gates Founda-
tion’s Race to the Top initiative. Of these systems,
the overall complexity scores computed by Text-
Evaluator were shown to have the highest Spear-
man rank correlation (0.756) between human grade
level classifications on a set of 168 Common Core
exemplar texts. TextEvaluator differs from these
systems in that the computation of its overall com-
plexity score relies on its set of eight component
scores, each of which is a linear combination of four
to ten fine-grained features. Most of these features
are derived from information provided by part-of-
speech tags and syntactic parses, unlike many com-
peting systems which tend to only incorporate two
or three basic features, such as average sentence
length and average word frequency. Also unlike
other systems, TextEvaluator differentiates between
the two primary genres proposed by the Common
Core: Informational texts, and their more challeng-
ing counter-parts, Literary texts. Internally, Text-
Evaluator makes use of either a model of Informa-
tional or Literary text complexity, in order to pro-
duce its final, overall score of complexity.

In this paper, we provide an overview

96

of how one can obtain and interpret Text-
Evaluator analyses received via the web.
We provide a pilot version of our system at
http://texteval-pilot.ets.org/TextEvaluator/.

Additional information on the overall complexity
score and the component scores, as well as validity
information, can be found in Sheehan et al. (2014)
and Sheehan et al. (2013). Much of this information
is also provided on the website’s About TextEvalu-
ator page.

1.1 Limitations

At this time, text submitted to TextEvaluator for
analysis must be plain ASCII or UTF-8 text, free of
images and tables. Many of TextEvaluator’s features
make use of paragraphs, so it is recommended that at
least one hard return is inserted between each para-
graph. Manual word-wrapping will be corrected,
and bulleted or numbered lists will be converted into
one sentence per item.

TextEvaluator was designed for short reading pas-
sages, such as news articles or short stories, the sort
of material one might expect to see during an exam
or classroom assignment. We are currently investi-
gating its use with longer (greater than 5-6 pages in
length) texts. It is currently not suitable for poetry,
plays, or texts that contain fewer than than 2-3 sen-
tences.

TextEvaluator was designed for use with materi-
als that are publication-ready. Student assignments,
such as essays, and transcripts of free-response
monologues or dialogues, are not appropriate for
TextEvaluator. TextEvaluator simply may not be
able to analyze such transcripts or noisy text such
as casual, online exchanges, due to its reliance on a
syntactic parser (?). If the input contains at least one
sentence that the parser cannot find a valid parse for,
TextEvaluator cannot proceed with the analysis and
will reject the text.

At this time, there is no programmatic API to
TextEvaluator that is available to the public. How-
ever, batch-mode processing may be possible by
contacting ETS via the information provided on the
website.

2 Submitting a Text for Analysis

Upon visiting the TextEvaluator website, the user is
asked to provide up to two pieces of information: a
valid e-mail address and a client code. We first val-
idate the provided e-mail address by sending an e-
mail containing a link to the page described in Sec-
tion 3.2 Then, rather than have the user wait for their
results to be computed, TextEvaluator will notify the
user via e-mail when their results are ready.

An e-mail address is mandatory but a client code
is not; specifying a valid client code gives the user
access to some additional analyses. A client code
can be obtained by purchasing a license for commer-
cial use from ETS. However, this paper will focus
primarily on the version of the website that is freely
accessible for research and academic use.

Research and academic use is limited to texts that
are 1600 words or less in length, and it is the re-
sponsibility of the user to truncate their texts. With
a client code, the length of the text is not con-
strained. The user may either upload a plain text
file or copy and paste such text into the larger input
box. The user is then encouraged to provide a ti-
tle for their submission, should they potentially have
several TextEvaluator analyses on their screen at one
time.

TextEvaluator will provide an additional set of
analyses relative to a specified targeted grade level
which ranges from US grades 2 to 12. At this time,
the user is required to select a targeted grade. If a
client code was entered, the user will be able to se-
lect additional targeted grades on the page contain-
ing their results.

3 The Results Page

The user will receive a link to their results via e-mail
as soon as TextEvaluator has completed its analy-
sis. Without the use of a client code, this web page
will look similar to the one presented in Figure 1.
Above the “Summary” tab, one can see the optional
title they provided, or a title provided by TextEvalu-
ator, along with two large boxes. The leftmost one
will state whether or not the overall complexity of
the submitted text is above, within, or below the ex-
pected range of complexity for your targeted grade

2This initial step is slated to be removed in a future version
of the website.

97

Figure 1: The results page one will see without the use of a client code. In this example, a targeted grade level of 4
was selected.

level. This information is also presented towards the
bottom of the Summary tab, and will be explained
later in this section. The rightmost box displays the
text’s overall complexity score on a scale of 100 (ap-
propriate for first-grade students) to 2000 (appropri-
ate for high-proficiency college graduates). As with
the above/within/below analysis, this information is
also presented towards the bottom of the Summary
tab.

The box in the lefthand column of the Summary
tab provides information regarding the contents of
your text as discovered by TextEvaluator. If any of
this information appears incorrect to the user, they
are encouraged to reformat their text and submit it
again. We also provide the Flesch-Kincaid grade
level (Kincaid et al., 1975) of the text, should the
user be interested in comparing their Common Core-
aligned complexity score to one aligned to a previ-
ous standard.

TextEvaluator’s analysis of the submitted text can
be found in a table in the righthand column of the
page. The scores of the eight components are pre-
sented, each on a scale of 0 to 100, with information
regarding whether or not a higher value for that com-

ponent leads to a more complex or less complex text.
This information is communicated via the arrows
in the second column of this table. Each compo-
nent score is the scaled result of a Principal Compo-
nents Analysis which combines at least four but no
more than ten distinct features per score. Provided
is a brief description of each component; however,
for more information, the reader is again referred to
Sheehan et al. (2014), Sheehan et al. (2013), and the
website’s About TextEvaluator page.

3.1 Sentence Structure

Currently, the only component in this category, Syn-
tactic Complexity, encapsulates all information re-
garding how complex the sentences are within the
submitted text. It relies on information from syntac-
tic parse trees3 (Manning et al, 2014) and part-of-
speech tags (Toutanova et al., 2003), as well as basic
measures such as the number of extremely long sen-
tences and the size of the longest paragraph.4 As de-

3As provided by Stanford’s shift-reduce parser, version
3.5.1: http://nlp.stanford.edu/software/srparser.shtml

4We make use of both a syntactic parser and a tagger in order
to differentiate between possessives and the contractive form of
“is”. “’s” forms tagged as POS by the tagger are re-attached to

98

scribed in section 1.1, should the parser fail to find a
valid parse for any sentence in the text, TextEvalu-
ator will be unable to calculate the features nec-
essary to compute the text’s Syntactic Complexity
score, and thus, unable to compute its overall com-
plexity score.

3.2 Vocabulary Difficulty
This category’s components measure the amount of:

• Academic Vocabulary, words that are more
characteristic of academic writing than that of
fiction or conversation;

• Rare words, as determined by consulting two
different word frequency indices and encap-
sulated in the Word Unfamiliarity component;
and

• Concreteness, which describes the abstractness
or difficulty one might have imagining the
words within the text.

The two word frequency indices were created
from one containing more than 17 million word to-
kens focused on primary school (K–12) reading ma-
terials, and one containing more than 400 million
word tokens spanning primary and post-graduate
school. Features in the Concreteness component are
based on values of the perceived concreteness and
imageability of each content word in the text as pro-
vided by the MRC Psycholinguistic Database (Colt-
heart, 1981).

3.3 Connections Across Ideas
The components within this category indicate the
amount of difficulty the reader may have following
the concepts presented throughout the text. Lexical
Cohesion combines several features which are com-
puted based on the number of overlapping lemmas
between pairs of sentences in each paragraph. In-
teractive/Conversational Style is concerned with the
use of verbs, contractions, and casual, spoken-style
discourse, common to Literary texts. By compar-
ison, the Level of Argumentation component pro-
vides a measurement of more formal, argumenta-
tive discourse, much more common in Informa-
tional texts. This component encapsulates words

the preceding noun and this modified tag structure is provided
as input to the parser.

and phrases that are commonly found in argumen-
tative discourse, such as subordinating concessive
phrases (“although”, “however”, “on the contrary”),
synthetic negations (“nor”, “neither”), “negative”
adverbs (“seldom”, “hardly”, “barely”), and causal
conjunctive phrases (“as a result”, “for this reason”,
“under the circumstances”).

3.4 Organization

This category also only has one component, the De-
gree of Narrativity. This component differs from In-
teractive/Conversational Style in that it makes use of
the number of words found within quotation marks,
referential pronouns, and past-tense verbs, all of
which are primary features of any written narrative.

3.5 The Overall Complexity Score

The determination of TextEvaluator’s overall com-
plexity score is genre-dependent, relying on the idea
that some features of text complexity will func-
tion differently for Informational and Literary texts.
Thus, TextEvaluator will actually compute a differ-
ent overall complexity score for each genre, each
trained as a linear regression model of the compo-
nent scores. Should the text actually be a combina-
tion of the two, a weighted average of the two scores
is presented as the overall complexity score. The
decision of which score to present to the user as the
final, overall complexity score is determined by cal-
culating the probability that the text is Informational.
If that value is within a certain range, the text is said
to be Informational, Literary, or Mixed. Regardless
of the text’s genre, the complexity score’s relativity
to the targeted grade level is determined the same
way.

The notion of a text being above, within, or below
the expected range of complexity relative to the tar-
geted grade level is described further by the presen-
tation of these ranges in Table 1. A text is “above”
the allowable range of complexity if, for the cho-
sen targeted grade, its complexity score is greater
than the Max value, “below” if it is less than the
Min value, or “within” if it is equal to, or between,
the Min and Max values. The method used to estab-
lish this alignment between TextEvaluator complex-
ity scores and the Common Core text complexity
scale is described in (Sheehan, 2015). There, three
evaluations of the proposed ranges are presented:

99

Target GL Min Max
2 100 525
3 310 590
4 405 655
5 480 720
6 550 790
7 615 860
8 685 940
9 750 1025
10 820 1125
11 890 1245
12 970 1360

Table 1: The TextEvaluator/Common Core alignment ta-
ble, showing the expected ranges of complexity relative
to a targeted grade level. Although complexity scores
can be as high as 2000, only the ones presented in the
ranges here have been externally validated by the Com-
mon Core (Sheehan, 2015).

one based on the 168 exemplar texts listed in Ap-
pendix B of (CCSSI, 2010); one based on a set of
ten texts intended for readers who are career-ready;
and one based on a set of 59 texts selected from text-
books assigned in typical college courses. In each
case, results confirmed that TextEvaluator’s classifi-
cations of texts being above, within, or below each
range of complexity are aligned with classifications
provided by reading experts.

At this stage, users who provided a client code
at the start of their analysis will be able to select
and see analysis for a different targeted grade level.
They will also receive an additional piece of infor-
mation in the form of color-coding on each compo-
nent score, relative to the selected targeted grade.
Each score will be highlighted in red, yellow, or
green, should the value for that component be either
too high, a bit too high, or within or below the ideal
range for a text in the same genre as the input text
and at that targeted grade.

4 Conclusion

In this paper we have presented TextEvaluator, a
tool capable of analyzing almost any written text,
for which it provides in-depth information into the
text’s readability and complexity. This information
is further summarized with a holistic score with both
a high correlation to human judgement (Nelson et

al., 2012) and external validity. (Sheehan, 2015) It
is these characteristics that lead us to believe that
TextEvaluator is a useful tool for educators, content-
developers, researchers, and readers alike.

References
Coltheart, M. 1981. The MRC psycholinguistic database. The

Quarterly Journal of Experimental Psychology Section A,
33(4): 497 – 505.

Common Core State Standards Initiative. (2010, June). Com-
mon Core State Standards for English language arts and lit-
eracy in history/social studies, science and technical sub-
jects. Washington, DC: CCSSO and National Governors As-
sociation.

Graesser, A.C., McNamara, D.S, and Kulikowich, J.M. 2011.
Coh-Metrix: Providing multilevel analyses of text character-
istics. Educational Researcher, 40(5): 223 – 234.

Kincaid, J.P., Fishburne, R.P., Rogers, R.L., and Chissom, B.S.
1975. Derivation of new readability formulas (automated
readability index, Fog count and Flesch reading ease for-
mula) for Navy enlisted personnel. (Research Branch Report
No. 8-75), NavalAir Station, Memphis, TN.

Landauer, T. 2011. Pearson’s text complexity measure. White
Paper, Pearson.

Manning, C.D., Surdeanu, M., Bauer, J, Finkel, J, Bethard, S.J.,
and McClosky, D. 2014. The Stanford CoreNLP Natural
Language Processing Toolkit. In Proceedings of 52nd An-
nual Meeting of the Association for Computational Linguis-
tics: System Demonstrations, Baltimore, MD.

Milone, M. 2008. The development of ATOS: The Renaissance
readability formula. Wisconsin Rapids, WI: Renaissance
Learning.

Nelson, J., Perfetti, C., Liben, D. and Liben, M. 2012. Mea-
sures of text difficulty: Testing their predictive value for
grade levels and student performance. Technical Report,
Washington, DC: Council of Chief State School Officers.

Sheehan, K.M. 2015. Aligning TextEvaluator scores with the
accelerated text complexity guidelines specified in the Com-
mon Core State Standards. ETS Research Report. Princeton,
NJ: Educational Testing Service.

Sheehan, K.M, Flor, M., and Napolitano, D. 2013. A two-stage
approach for generating unbiased estimates of text complex-
ity. In Proceedings of the 2nd Workshop on Natural Lan-
guage Processing for Improving Textual Accessibility, At-
lanta, GA.

Sheehan, K.M, Kostin, I., Napolitano, D., and Flor, M. 2014.
The TextEvaluator Tool: Helping teachers and test develop-
ers select texts for use in instruction and assessment. The
Elementary School Journal, 115(2): 184–209.

Stenner, A.J., Burdick, H., Sanford, E., and Burdick, D. 2006.
How accurate are Lexile text measures? Journal of Applied
Measurement, 7(3): 307 – 322.

Toutanova, K, Klein, D., and Manning, C. 2003. Feature-Rich
Part-of-Speech Tagging with a Cyclic Dependency Network.
In Proceedings of the North American Association for Com-
putational Linguistics, Edmonton, AB, Canada.

100

Proceedings of NAACL-HLT 2015, pages 101–105,
Denver, Colorado, May 31 – June 5, 2015. c©2015 Association for Computational Linguistics

Natural Language Question Answering and Analytics for Diverse and
Interlinked Datasets

Dezhao Song Frank Schilder Charese Smiley
Research and Development, Thomson Reuters

610 Opperman Drive
Eagan, MN 55123, USA

Chris Brew
Research and Development, Thomson Reuters

1 Mark Square
London, UK

{dezhao.song, frank.schilder, charese.smiley, chris.brew}@thomsonreuters.com

Abstract

Previous systems for natural language ques-
tions over complex linked datasets require
the user to enter a complete and well-formed
question, and present the answers as raw lists
of entities. Using a feature-based grammar
with a full formal semantics, we have devel-
oped a system that is able to support rich auto-
suggest, and to deliver dynamically generated
analytics for each result that it returns.

1 Introduction

In order to retrieve data from a knowledge base
(KB), knowledge workers, such as physicians or fi-
nancial analysts, often face the challenge of hav-
ing to learn specific query languages (e.g., SQL
and SPARQL1). However, the fast pace of chang-
ing query languages to different types of KBs (e.g.,
Relational Databases, Triple Stores, NoSQL stores,
etc.) makes it difficult for users to keep up with
the latest developments of such query languages that
allow them to access the data they need for their
work. This situation prevents users without exten-
sive computer training from effectively utilizing the
available information in the KB. Developing user-
friendly natural language interfaces will make it eas-
ier for non-technical users to access the information
in the KB in an intuitive way.

In this paper, we present a Natural Language In-
terface that allows users to query the underlying KBs
with natural language questions. Unlike previous
approaches, instead of asking the users to provide

1http://www.w3.org/TR/rdf-sparql-query/

the entire question on their own, our system makes
suggestions to help the users to complete their ques-
tions. Given a complete question, our system parses
it to its First Order Logic (FOL) representation using
a grammar derived from interlinked datasets; differ-
ent translators are developed to further translate the
FOL of a query into executable queries, including
both SQL and SPARQL. Finally, our system gener-
ates dynamic analytics for the result sets in order to
help users to gain a better understanding of the data.

2 Related Work

Keyword-based search (Ding et al., 2004; Tum-
marello et al., 2007; d’Aquin and Motta, 2011) and
faceted search (Zhang et al., 2013; Zhang et al.,
2014) have been frequently adopted for retrieving
information from KBs. However, users have to fig-
ure out the most effective queries in order to retrieve
relevant information. Furthermore, without appro-
priate ranking methods, users may be overwhelmed
by the information available in the search results.

Early Natural Language Interfaces (NLIs) re-
quired a handcrafted interface solution for each
database thereby restricting its portability (Green et
al., 1961; Hendrix et al., 1978; Woods, 1973). Re-
cent research has focused more on developing open
domain systems (Kwiatkowski et al., 2013; Yao and
Durme, 2014; Bordes et al., 2014), but there remains
a need for specialized NLIs (Minock, 2005). One
unique feature of our system is to help users to build
a complete question by providing suggestions ac-
cording to a partial question and a grammar.

Much of prior work translates a natural language
question into SPARQL and retrieves answers from a

101

triple store (Lopez et al., 2005; Unger et al., 2012;
Lehmann et al., 2012; Yahya et al., 2013; He et al.,
2014); however, SPARQL queries have been criti-
cized to have unsatisfying query response time. In
this work, we maintain flexibility by first parsing
a question into First Order Logic, which is further
translated into both SQL and SPARQL. This enables
us to easily adapt to new query languages and allows
us to choose the most appropriate query language
technology for a given use case.

Finally, to the best of our knowledge, none of ex-
isting NLIs provide dynamic analytics for the re-
sults. Our system performs descriptive analytics and
comparisons on various dimensions of the data, con-
ducts sentiment analysis, and analyzes trends over
time in the data. Such analytics would enable users
to better conduct further analyses and derive insights
from the data. This feature of our system is a clear
advantage over other NLI systems that only retrieve
a simple result list of documents/entities.

3 Overall Architecture

Figure 1 shows the overall architecture of our pro-
posed NLI system. Users can input their questions

Figure 1: System Architecture

on the Web Interface and our Auto-suggestion com-
ponent will guide the users in completing their ques-
tions. A complete question is then sent to the Ques-
tion Understanding module again to be parsed into
its first order logic representation with the grammar.
As the next step, the FOL of a query is translated
into an executable query with the Query Translation
module. A translated query is then executed against

an underlying knowledge base/graph for retrieving
answers and generating corresponding analytics.

Our system currently focuses on the following do-
mains: Drugs, Organizations, Patents, People, Fi-
nance and News. The underlying knowledge base
contains about 1 million entities and 12 million rela-
tionships.

4 Question Understanding

Our system utilizes a feature-based context-free
grammar (FCFG) that consists of grammar rules
on non-terminal nodes and lexical rules on leaf
nodes. Grammatical entries on non-terminal syntac-
tic nodes are largely domain-independent, thus en-
abling our grammar to be easily adaptable to new
domains. Each lexical entry to the grammar contains
domain-specific features which are used to constrain
the number of parses computed by the parser prefer-
ably to a single, unambiguous parse.

The following are two rules in our grammar.

1. N[TYPE=drug, NUM=pl, SEM=<λx.drug(x)>]→ ’drugs’

2. V[TYPE=[org,drug],SEM=λXx.X(λy.develop org drug(x,y))>,
TNS=prog, NUM=?n]→ ’developing’

Rule 1 shows a lexical entry for the word drugs, in-
dicating that its TYPE is drug, is plural, and has the
following semantic: λx.drug(x). Rule 2 specifies
the verb develop, describing its tense (TNS) and indi-
cating that it connects an organization and a drug via
the TYPE feature. By utilizing the type constraints,
we can then license the query companies develop-
ing drugs while rejecting nonsensical queries like
rabbits develop drugs on the basis of the mismatch
in semantic type. Furthermore, our grammar also
covers wh-questions, e.g., what, which, how many,
where, and nominal phrases and imperatives.

Disambiguation relies on the presence of features
on non-terminal syntactic nodes. We mark prepo-
sitional phrases (PPs) with features that determine
their attachment preference. E.g., the PP for pain in
how many companies develop drugs for pain? must
attach to an NP rather than a VP; thus, it must attach
to drugs rather than develop. Together with other
features, we filter out many of the logically possible
but undesired PP-attachments in queries with many
modifiers. E.g., our approach is able to generate a
single parse for companies headquartered in Ger-
many developing drugs for pain or cancer.

102

5 Auto-suggestion

Our NLI provides suggestions to help users to com-
plete their questions. Unlike Google’s query auto-
completion that is based on query logs (Cornea and
Weininger, 2014), our auto-suggestion utilizes the
linguistic constraints encoded in the grammar.

Our auto-suggestion is based on the idea of left-
corner parsing. Given a query segment qs (e.g.,
drugs, developed by, etc.), we find all grammar rules
whose left corner fe on the right side matches the
left side of the lexical entry of qs. We then find all
leaf nodes in the grammar that can be reached by us-
ing the adjacent element of fe. For all reachable leaf
nodes (i.e., lexical entries in our grammar), if a lex-
ical entry also satisfies all the linguistic constraints,
we then treat it as a valid suggestion.

Specifically, for the query segment Drugs, ac-
cording to our grammar, we could be looking for a
verb as the next part of the question. In our lexicon,
we may have many verbs, e.g., drive and developed
by. Here, developed by is a valid suggestion because
its semantic constraints match that of drugs. We con-
tinue our suggestions to the end of the user-entered
query string, and never try to interpolate material ei-
ther before or inside the string.

In our current system, the automatically generated
suggestions are ranked by considering their popular-
ity. We associate each lexical entry with a node in
a knowledge graph. This graph contains nodes for
the entities corresponding to the lexical entries, fur-
ther nodes for generic types such as Drug, Company
and Technology, and yet further nodes for predicates
such as developed by and granted to.The edges of
the graph represent relations such as developed by
and filed by. For ranking, the degree of a node is
as a proxy for its quality. For example, if the node
“Google” filed 10 patents and is also involved in 20
lawsuits, then its popularity will be 30.

6 Query Translation and Execution

The interpreted FOL (Section 4) of a question is fur-
ther analyzed by another parser (implemented with
ANTLR (Bovet and Parr, 2008)) that parses FOL
expressions. Figure 3 shows the parse tree of the
FOL for the query Drugs developed by Merck. We
then traverse this parse tree, and put all the atomic
logical conditions and the logical connectors into a

Figure 3: Parse Tree for the First Order Logic Represen-
tation of the Query “Drugs developed by Merck”

stack. When we finish traversing the entire tree, we
pop the conditions out of the stack to build the query
constraints; predicates in the FOL are also mapped
to their corresponding attribute names (SQL) or on-
tology properties (SPARQL).

The following summarizes the translation from a
natural language question to a SQL and SPARQL
query via a FOL representation:

Natural Language: ‘‘Drugs developed by Merck’’

First Order Logic (FOL) Representation: all x.(drug(x) →
(develop(id042,x) & type(id042,Company) &
label(id042,Merck)))

SQL Query: select drug.* from drug
where drug.originator company = ’Merck’

SPARQL Query (prefixes for RDF and RDFS omitted):
PREFIX example: <http://www.example.com#>
select ?x ?id123 ?id042
where {
?id042 rdfs:label ’Merck’.
?id042 rdf:type example:Company .
?x rdf:type example:Drug .
?id042 example:develops ?x . }

We execute the SQL queries using Apache Spark
(Zaharia et al., 2010), a distributed computing en-
vironment, thus providing us the potential to handle
large-scale datasets. We run SPARQL queries with
Jena (Carroll et al., 2004). If a question cannot be
parsed into FOL or translated to SQL or SPARQL,
we then treat it as a keyword query and retrieve the
results from an inverted index built out of our data.

7 Analytics

Instead of only retrieving a list of entities, our sys-
tem provides several different types of analytics for
different result sets. In many situations, the result
is a set of records rather than one single entry. This

103

Figure 2: System Screenshot

provides us the opportunity to perform and provide
further analyses of the result set for the users.

Our system provides several types of analytics.
Descriptive analytics summarize the facts in the re-
sult set. For instance, for the question “show me all
drugs targeting pain”, our system shows the distri-
bution of all technologies used for such drugs in the
result set. We also compare the drugs in the result
set on different dimensions (e.g., diseases). More-
over, we compute trends via exponential smoothing
for entities that have a temporal dimension.

By linking entities from our KB to entity men-
tions in a large news corpus (14 million articles and
147 million sentences), we are able to perform ad-
ditional analytics based on named entity recognition
and sentiment analysis techniques. We adopted the
Stanford CoreNLP toolkit (Manning et al., 2014)
for recognizing person, organization, and location
from the news corpus. Given an entity, we show its
frequency count and how its sentiment may change
over time. This information may provide further in-
sights to users in order to support their own analysis.

8 Demonstration Script Outline

Figure 2 shows the beginning of the sample query:
companies developing drugs having an indication of
. . . ? While the user is typing, a variety of possible
extensions to the query are offered, and the user se-

lects Hypertension (1). Our system shows a pie chart
of each company’s market share for hypertension
drugs (2); we also show news mentions and senti-
ment analysis for the most discussed companies (3).

For the demo, we will first motivate the use of nat-
ural language question answering for extracting in-
formation from complex, interlinked datasets. Next,
we will demonstrate how the user can compose a
variety of questions with auto-suggestion. Finally,
we will walk through the generated analytics and
various visualizations for different natural language
questions in order to show how it allows the user to
gain deeper insights into the data.

9 Conclusion and Future Work

In this paper, we presented a Natural Language In-
terface for answering complex questions over linked
data. Our system parses natural language questions
to an intermediate logical representation based on a
grammar derived from multiple interlinked datasets.
Different translators are developed to translate a
question from its FOL representation to SQL and
SPARQL queries, which are then executed against
an underlying knowledge graph/base for retrieving
the answers and generating corresponding analytics.
In future work, we intend to cover more domains
and provide more complex analytics. We will also
perform a thorough evaluation of our system.

104

References
Antoine Bordes, Sumit Chopra, and Jason Weston. 2014.

Question answering with subgraph embeddings. In
Proceedings of the 2014 Conference on Empirical
Methods in Natural Language Processing, pages 615–
620.

Jean Bovet and Terence Parr. 2008. Antlrworks: an
ANTLR grammar development environment. Soft-
ware: Practice and Experience, 38(12):1305–1332.

Jeremy J. Carroll, Ian Dickinson, Chris Dollin, Dave
Reynolds, Andy Seaborne, and Kevin Wilkinson.
2004. Jena: implementing the semantic web recom-
mendations. In Proceedings of the 13th international
conference on World Wide Web - Alternate Track Pa-
pers & Posters, pages 74–83.

Radu C Cornea and Nicholas B Weininger. 2014. Pro-
viding autocomplete suggestions, February 4. US
Patent 8,645,825.

Mathieu d’Aquin and Enrico Motta. 2011. Watson, more
than a semantic web search engine. Semantic Web
Journal, 2(1):55–63.

Li Ding, Timothy W. Finin, Anupam Joshi, Rong Pan,
R. Scott Cost, Yun Peng, Pavan Reddivari, Vishal
Doshi, and Joel Sachs. 2004. Swoogle: a search and
metadata engine for the semantic web. In Proceedings
of the 2004 ACM International Conference on Infor-
mation and Knowledge Management, pages 652–659.

Bert F. Green, Jr., Alice K. Wolf, Carol Chomsky, and
Kenneth Laughery. 1961. Baseball: An automatic
question-answerer. In Papers Presented at the Western
Joint IRE-AIEE-ACM Computer Conference, pages
219–224.

Shizhu He, Kang Liu, Yuanzhe Zhang, Liheng Xu, and
Jun Zhao. 2014. Question answering over linked data
using first-order logic. In Proceedings of the 2014
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 1092–1103.

Gary G. Hendrix, Earl D. Sacerdoti, Daniel Sagalowicz,
and Jonathan Slocum. 1978. Developing a natural lan-
guage interface to complex data. ACM Transactions
on Database Systems, 3(2):105–147.

Tom Kwiatkowski, Eunsol Choi, Yoav Artzi, and Luke S.
Zettlemoyer. 2013. Scaling semantic parsers with on-
the-fly ontology matching. In Proceedings of the Con-
ference on Empirical Methods in Natural Language
Processing, pages 1545–1556.

Jens Lehmann, Tim Furche, Giovanni Grasso, Axel-
Cyrille Ngonga Ngomo, Christian Schallhart, An-
drew Jon Sellers, Christina Unger, Lorenz Bühmann,
Daniel Gerber, Konrad Höffner, David Liu, and Sören
Auer. 2012. DEQA: Deep web extraction for ques-
tion answering. In 11th International Semantic Web
Conference, pages 131–147.

Vanessa Lopez, Michele Pasin, and Enrico Motta. 2005.
Aqualog: An ontology-portable question answering
system for the semantic web. In The Semantic Web:
Research and Applications, Second European Seman-
tic Web Conference, pages 546–562.

Christopher D. Manning, Mihai Surdeanu, John Bauer,
Jenny Rose Finkel, Steven Bethard, and David Mc-
Closky. 2014. The stanford corenlp natural language
processing toolkit. In Proceedings of the 52nd Annual
Meeting of the Association for Computational Linguis-
tics, pages 55–60.

Michael Minock. 2005. Where are the killer applications
of restricted domain question answering. In Proceed-
ings of the IJCAI Workshop on Knowledge Reasoning
in Question Answering, page 4.

Giovanni Tummarello, Renaud Delbru, and Eyal Oren.
2007. Sindice.com: Weaving the open linked data.
In The Semantic Web, 6th International Semantic Web
Conference, 2nd Asian Semantic Web Conference,
pages 552–565.

Christina Unger, Lorenz Bühmann, Jens Lehmann, Axel-
Cyrille Ngonga Ngomo, Daniel Gerber, and Philipp
Cimiano. 2012. Template-based question answering
over RDF data. In Proceedings of the 21st World Wide
Web Conference, pages 639–648.

William A. Woods. 1973. Progress in natural language
understanding: an application to lunar geology. In
American Federation of Information Processing So-
cieties: 1973 National Computer Conference, vol-
ume 42, pages 441–450.

Mohamed Yahya, Klaus Berberich, Shady Elbassuoni,
and Gerhard Weikum. 2013. Robust question answer-
ing over the web of linked data. In 22nd ACM Inter-
national Conference on Information and Knowledge
Management, pages 1107–1116.

Xuchen Yao and Benjamin Van Durme. 2014. Informa-
tion extraction over structured data: Question answer-
ing with freebase. In Proceedings of the 52nd Annual
Meeting of the Association for Computational Linguis-
tics, pages 956–966.

Matei Zaharia, Mosharaf Chowdhury, Michael J.
Franklin, Scott Shenker, and Ion Stoica. 2010. Spark:
Cluster computing with working sets. In 2nd USENIX
Workshop on Hot Topics in Cloud Computing, pages
1–10.

Xingjian Zhang, Dezhao Song, Sambhawa Priya, and Jeff
Heflin. 2013. Infrastructure for efficient exploration
of large scale linked data via contextual tag clouds.
In 12th International Semantic Web Conference, pages
687–702.

Xingjian Zhang, Dezhao Song, Sambhawa Priya,
Zachary Daniels, Kelly Reynolds, and Jeff Heflin.
2014. Exploring linked data with contextual tag
clouds. Journal of Web Semantics, 24:33–39.

105

Proceedings of NAACL-HLT 2015, pages 106–110,
Denver, Colorado, May 31 – June 5, 2015. c©2015 Association for Computational Linguistics

WriteAhead2: Mining Lexical Grammar Patterns for Assisted Writing

Jim Chang
Department of Computer Science,

National Tsing Hua University
101, Kuangfu Road,

Hsinchu, 300, Taiwan
jim.chang.nthu@gmail.com

Jason S. Chang
Department of Computer Science,

National Tsing Hua University
101, Kuangfu Road,

Hsinchu, 300, Taiwan
jason.jschang@gmail.com

Abstract

This paper describes WriteAhead2, an inter-
active writing environment that provides lex-
ical and grammatical suggestions for sec-
ond language learners, and helps them write
fluently and avoid common writing errors.
The method involves learning phrase tem-
plates from dictionary examples, and extract-
ing grammar patterns with example phrases
from an academic corpus. At run-time, as the
user types word after word, the actions trig-
ger a list after list of suggestions. Each suc-
cessive list contains grammar patterns and ex-
amples, most relevant to the half-baked sen-
tence. WriteAhead2 facilitates steady, timely,
and spot-on interactions between learner writ-
ers and relevant information for effective as-
sisted writing. Preliminary experiments show
that WriteAhead2 has the potential to induce
better writing and improve writing skills.

1 Introduction

More and more non-native speakers are writing
in English as a second language for global com-
munication, especially in academia. Unavoidably,
these L2 writers encounter many problems: in
form and content, in grammar, style, and discourse.
Much work has been done on developing computer-
assisted language reference tools to improve L2
learners’ writing skills. Furthermore, many re-
searchers have worked on providing corrective feed-
back and grades, by automatically detecting and cor-
recting grammatical errors in learner writings.

Computer assisted language learning (CALL)
systems typically help the users before and after

writing. For example, NetSpeak (www.netspeak.
org) uses Google Web 1T Corpus to retrieve com-
mon phrases relevant to a user query, while Marking
Mate (www.readingandwritingtools.com) ac-
cepts an user essay and offers a grade with correc-
tive feedback. However, learner writers sorely need
concrete writing suggestions, right in the context of
writing. Learners could be more effectively assisted,
if CALL tools provide such suggestions as learners
write away.

Consider an online writer who is composing a
sentence starting with ”We propose a method ...”
The best way the system can help is probably not
just dictionary-lookup, but rather in-page sugges-
tions tailor-made for this very context of continuing
the unfinished sentence. Furthermore, fixed-length
ngrams such as (1) method for automatic evalua-
tion and (2) method for determining the is not good
enough, or general enough, for all writers address-
ing diverse issues.

Appropriate suggestions should contains general,
long grammar patterns such as: (1) method for do-
ing something: method for finding a solution (2)
method for something: method for grammatical er-
ror detection. Intuitively, by extracting and display-
ing such patterns and examples, distilled from a very
large corpus, we can guide the user towards writing
fluently, and free of grammatical errors.

We present a new system, WriteAhead2, that
proactively provides just-in-time writing sugges-
tions to assist student writers, while they type
away. WriteAhead2 is a continuation of the work
of WriteAhead (Liou, Yang, Chang 2012). Example
WriteAhead2 suggestions for ”We propose a method

106

Figure 1: Example WriteAhead2 session.

...” are shown in Figure 1. WriteAhead2 has deter-
mined the best patterns and examples extracted from
the underlying corpus. WriteAhead2 learns these
patterns and examples automatically during training
by analyzing annotated dictionary examples and au-
tomatically tagged sentences in a corpus. As will be
described in Section 4, we used the information on
collocation and syntax (ICS) for example sentences
from online Macmillan English Dictionary, as well
as in the Citeseer x corpus, to develop WriteAhead2.

At run-time, WriteAhead2 activate itself as the
user types in yet another word (e.g., ”method” in the
prefix ”We propose a method ...”). WriteAhead2 then
retrieves patterns related to the last word. WriteA-
head2 goes one step further and re-ranks the sug-
gestions, in an attempt to move most relevant sug-
gestions to the top. WriteAhead2 can be accessed at
http://writeahead.nlpweb.org.

In our prototype, WriteAhead2 returns the sug-
gestions to the user directly (see Figure 1); alterna-
tively, the suggestions returned by WriteAhead2 can
be used as input to an automatic grammar checker or
an essay rater.

2 Related Work

Using dictionaries for language learning has a long
and honorable history. However, Sinclair (1991)
pointed out dictionaries are limited by their narrow
focus on meaning, lack in pragmatics, and insuffi-
cient genre/discipline-specific information. There-
fore, Sinclair advocated corpus linguistics, corpus-
based lexicography, and using a concordance in lan-
guage teaching.

In the area of corpus-based language learning,
Weber (2001) illustrated how combining learner
writing and a concordance helped law students in
writing better legal essays. Sun (2007) proposed
a web-based Scholarly Writing Template (SWT)
system for graduate students based on a small,
manually-annotated corpus. In contrast, we focus
on grammar, the most problematic area for learners.

In the area of automated essay rating, Crite-
rion (Burstein, Chodorow and Leacock, 2003) uses
statistical models to evaluate student writing and
provides corrective feedback. Criterion has been
used for rating 4 to 12th graders’ writings, and
TOFEL/GRE composition tests. Criterion handles
essay writing, while WriteAhead2 concentrates on
helping learner with the genre of research articles.

Autocompletion has been widely used in many
language production tasks (e.g., search query and
translation). Examples include Google Suggest and
TransType, which pioneered the interactive user in-
terface for statistical machine translation (Langlais,
Foster and Lapalme, 2002).

In contrast to the previous research in developing
computer assisted writing environment, we present
a system that automatically learns grammar patterns
and examples from an academic written corpus, with
the goal of providing relevant, in-context sugges-
tions.

3 Method

Often, it is not sufficient to use dictionaries or lexi-
cal autocompletion to assist learner in writing. Un-
fortunately, very few Language tools offer compre-

107

—————————————————————————
Procedure ExtractPatterns(Sent, Keywords, Corpus)

(1) Learning phrase templates for grammar patterns of con-
tent words (Section 3.1.1)

(2) Extracting patterns for all keywords in the given corpus
based on phrase templates (Section 3.1.2)

(3) Extracting exemplary instances for all patterns of all key-
words (Section 3.1.3)

—————————————————————————
Figure 2: Outline of the pattern extraction process

hensive writing suggestions during writing. In this
section, we address such a problem. Given a corpus
in a specific genre/domain (e.g., Citeseer x), and an
unfinished sentence, we intend to assist the user by
retrieving and displaying a set of suggestions based
on the corpus. For this, we extract grammar patterns
with exemplary instances from the corpus. We de-
scribe the stages of our solution to this problem in
the subsections that followed.

3.1 Extracting Grammar Patterns

We attempt to extract characteristic grammar pat-
terns for keywords in a given corpus to provide writ-
ing suggestions, for L2 learners in an online writing
session. The set of keywords (as will be described
in Section 4) include the words academic writers use
most frequently for rhetoric purposes, including stat-
ing a topic, hypothesizing, contrasting, exemplify-
ing, explaining, evaluating and other functions. Our
extraction process is shown in Figure 2.

3.1.1 Learning Templates of Grammar Patterns
In the first stage of the extraction process (Step (1) in
Figure 2), we generate a set of phrase templates for
identifying grammar patterns. For example, a dictio-
nary example with ICS—have difficulty/problem
(in) doing something: Six months after the acci-
dent, he still has difficulty walking, implies that this
pattern (i.e. have difficulty in doing something)
can realize in a phrase sequences, ”VP NP prep. VP
NP”. With such a template, we can identify poten-
tial patterns for verbs and nouns (e.g., differ or diffi-
culty). We expand the parentheticals (e.g., (in)) and
alternatives (e.g., difficulty/problem) in ICS, and
keep only the most frequent templates. Finally, each
of these templates is converted into a regular expres-
sion for a RegExp chunk parser.

3.1.2 Extracting Patterns In the second stage

of the extraction process (Step (2) in Figure 2), we
identify instances of potential pattern for all key-
words. These instance are generated for each tagged
and chunked sentence in the given corpus and for
each chunk templates obtained in the previous stage.

We adopt the MapReduce framework to extract
characteristic patterns. In Step (1) of the Map pro-
cedure, we perform part of speech and base phrase
tagging on the sentences. We then find all pattern
instances anchoring at a keyword and matching tem-
plates obtained in the first stage. Note that matching
is done on the sequence of BIO phrase labels (denot-
ing Beginning, Inside, and Outside of base NP, VP,
PP, and ADJP). Then from each matched instance,
we extract a tuple of keyword, POS, grammar pat-
tern, collocates (of the keyword), and ngram (word
sequence) in Steps (4a) through (4c). Finally, we
emit all tuples extracted from the tagged sentence
(Step (5)).

The Reduce procedure receives a batch of hashed
and locally sorted tuples, grouped by the head word
and POS. In Step (1) of the Reduce procedure, we
further group the tuples by pattern. Then we count
the number of tuples of each pattern (in Step (2)) as
well as within-group average and standard deviation
(in Step (3)). Finally, With these statistics, we filter
and identify patterns more frequent than average by
K standard deviation, K = 1 (in Step (4)), following
Smadja (1993).

3.1.3 Extracting Exemplary Phrases In the third
and final stage of extraction, we generate exemplary
phrases for all patterns of all keywords of interest.
The procedure is essentially the same as the Reduce
procedure in the second stage (Section 3.1.2).

3.2 Retrieving and Ranking Suggestions
Once the patterns and examples are automatically
extracted for each keyword in the given corpus, they
are stored as suggestions for the last word the user
types in. WriteAhead2 constantly probes and gets
the last written word from the writing area. With the
last word as a query, WriteAhead2 retrieves patterns
and examples, and re-ranks the results to move the
most relevant information toward the top.

Currently, we re-rank patterns by using word
overlap between the last written sentence and the re-
trieved examples. When there is no word overlap,
we fall back to frequency-based ranking. An exam-

108

————————————————————–
Procedure Map(Sent, AKL, Template)

(1) TaggedSent = TagAndChunkParse(Sent)

For each Word ∈ AKL at position i in TaggedSent
(2) Match = RegExpChunkParse(TaggedSent, Template, i)

If Match is found

(3) ChunkedPhr = CutChunk(TaggedSent, i, Match)

(4a) Pat = ExtractPattern(ChunkedPhr)
(4b) Col = ExtractCollocation(ChunkedPhr)
(4c) Ng = ExtractNgram(ChunkedPhr)

(5) Emit Tuple = (Word, Pat, Col, Ng)

Procedure Reduce(Tuples for a word)

(1) Pats, PatTuples = GroupTuplesByPat(Tuple)

(2) Pats, Counts = Counter(Pats, PatTuples)

(3) Avg, STD = CalStatatics(Pats, Counts)

For each Pat, Count pair in (Pats, Counts)

If Count > Avg + K × STD

(4) Emit Tuple = (Word, Pat, PatTuples)
————————————————————–
Fig. 3. Outline of the process used to extract CPs.

ple session is shown in Figure 1.

4 Experiments and Results

For training, we used a collection of approxi-
mately 3,000 examples for 700 headwords obtained
from online Macmillan English Dictionary (Rundel
2007), to develop the templates of patterns. The
headwords include nouns, verbs, adjectives, and ad-
verbs. We then proceeded to generate writing sug-
gestions from the Citeseer x corpus. First, we used
Tsujii POS Tagger (Tsuruoka and Tsujii 2005) to
generate tagged sentences. We applied the proposed
method to generate suggestions for each of the 700
content keywords in Academic Keyword List.

4.1 Technical Architecture

WriteAhead2 was implemented in Python and Flask
Web framework. We stored the suggestions in JSON
format using PostgreSQL for faster access. WriteA-
head2 server obtains client input from a popular
browser (Safari, Chrome, or Firefox) dynamically
with AJAX techniques. For uninterrupted service
and ease of scaling up, we chose to host WriteA-
head2 on Heroku, a cloud-platform-as-a-service
(PaaS) site.

Table 1: Human evaluation of WriteAhead2

Suggestion Count Percent Recall

1st suggestion 141 .53 .43
2nd suggestion 50 .19 .15
3rd suggestion 38 .14 .12
Top 3 suggestions 229 .85 .70
Not in Top 3 38 — .12
No suggestions 62 — .19
Not applicable 71 — —

4.2 Evaluating WriteAhead2

To evaluate the performance of WriteAhead2, we
randomly sampled sentences from conference pa-
pers. For simplicity, we tested if our system can
provide proper grammar patterns for the first noun
or verb in theses sentence. We randomly selected
400 sentences from ACL-2014 long papers. For
each sentence, we pasted the sentence prefix up to
the the first (noun or verb) keyword to the input box
of WriteAhead2. The reason for targeting verbs and
nouns is that they are considered as exhibiting reg-
ularity in local syntax (Hunston and Francis 2000)
and common source of learners’ writing errors (De
Cock, Gilquin, Granger, Lefer, Paquot, and Ricketts
2007). Finally, we manually determined the appro-
priateness of suggestions for continuing part of the
sentence based on the precision of the Top-3 sugges-
tions. For example, we took a sentence:

There is some prior work on the related task of hi-
erarchical clustering, or grouping together of se-
mantically related words ...

and identified the first noun or verb (e.g., work) as
the anchor, and run WriteAhead2 on the prefix end-
ing at the anchor (e.g, ”There is some prior work”).
The Top 3 suggestions displayed by WriteAhead2
were than examined by a human judge to evaluate
for correctness in predicting what follow the prefix.
For instance, if the first suggestion is:

work on something of something 1332: VoiSe is designed

to work on a symbolic representation of a music score

Then the judge would determine it is a correct pre-
diction of work on the related task of hierarchical
clustering and record that the first suggestion is cor-
rect. Evaluation of WriteAhead2 showed a Top 1
precision rate of 53% and recall rate of 70% when
considering the Top 3 suggestions.

109

5 Demo Script

In this demo, we will present a new writing assis-
tance system, WriteAhead2, which makes it easy to
obtain writing tips as you type away. WriteAhead2
does two things really well. First, it examines the
unfinished sentence you just typed in and then auto-
matically gives you tips in the form of grammar pat-
terns (accompanied with examples similar to those
found in a good dictionary) for continuing your
sentence. Second, WriteAhead2 automatically ranks
suggestions relevant to your writing, so you spend
less time looking at tips, and focus more on writing
your piece.

You might type in This paper presents a method
and are not sure about how to continue. You will in-
stantly receive tips on grammar as well as content as
shown in Figure 1. At a quick glance, you might find
a relevant pattern, method for doing something
with examples such as This paper presents/describes
a method for generating solutions. That could tip
you off as to change the sentence into This paper
presents a method, thus getting rid of tense and arti-
cle errors, and help you continue to write something
like method for extracting information.

Using WriteAhead2 this way, you could at once
speed up writing and avoid making common writing
errors. This writing and tip-taking process repeats
until you finish writing a sentence. And as you start
writing a new, the process starts all over again.

Most autocompletion systems such as Google
Suggest and TransType offer word-level sugges-
tions, while WriteAhead2 organizes, summarizes,
and ranks suggestions, so you can, at a glance, grasp
complex linguistic information and make quick de-
cision. Our philosophy is that it is important to show
information from general to specific to reduce the
cognitive load, so while minding the form, you can
still focus on the content of writing.

6 Conclusion

Many avenues exist for future research and improve-
ment of WriteAhead2. For example, corpora for dif-
ferent language levels, genres (e.g., emails, news)
could be used to make the suggestions more rele-
vant to users with diverse proficiency levels and in-
terests. NLP, IR, and machine learning techniques
could be used to provide more relevant ranking, to

pin-point grammatical errors, or to generate finer-
grained semantic patterns (e.g., assist someone in
something or attend activity/institution) Addition-
ally, an interesting direction is identifying grammar
patterns using a CRF sequence labeller. Yet another
direction of research would be to extract and dis-
play backward-looking suggestions to complement
the current forward-looking suggestions.

In summary, in an attempt to assist learner writers,
we have proposed a method for providing writing
suggestion as a user is typewriting. The method in-
volves extracting, retrieving, and ranking grammar
patterns and examples. We have implemented and
evaluated the proposed method as applied to a schol-
arly corpus with promising results.

References
Jill Burstein, Martin Chodorow, and Claudia Leacock.

2003. Criterion: Online Essay Evaluation–An Appli-
cation for Automated Evaluation of Student Essays. In
Proceedings of the Fifteenth Annual Conference on In-
novative Applications of Artificial Intelligence. Aca-
pulco, Mexico.

Cornelia Caragea, Jian Wu, Alina Ciobanu, Kyle
Williams, Juan Fernndez-Ramrez, Hung-Hsuan Chen,
Zhaohui Wu, and Lee Giles. CiteSeer x: A Schol-
arly Big Dataset. Advances in Information Retrieval.
Springer International Publishing, 2014. 311-322.

Sylvie De Cock, Gatanelle Gilquin, Sylviane Granger,
Marie-Aude Lefer, Magali Paquot, and Suzanne Rick-
etts. 2007. Improve Your Writing Skills. In Rundell
(2007).

Philippe Langlais, George Foster, and Guy Lapalme.
2000. TransType: A Computer-Aided Translation Typ-
ing System. In Workshop on Embedded Machine
Translation Systems.

Hien-Chin Liou, PingChe. Yang, and Jason S. Chang.
Language supports for journal abstract writing across
disciplines. Journal of Computer Assisted Learning
28.4 (2012): 322-335.

Michael Rundell (Ed.). 2007. Macmillan English Dic-
tionary for Advanced Learners. Oxford, Macmillan,
2002.

John Sinclair. 1991. Corpus, Concordance, Collocation.
Oxford University Press, Hong Kong.

Yu-Chih Sun. 2007. Learner Perceptions of a Concor-
dancing Tool for Academic Writing. Computer As-
sisted Language Learning 20, 323343.

Jean-Jacques Weber. 2001. A Concordance- and Genre-
informed Approach to ESP Essay Editing. ELT Jour-
nal 55, 1420.

110

Proceedings of NAACL-HLT 2015, pages 111–115,
Denver, Colorado, May 31 – June 5, 2015. c©2015 Association for Computational Linguistics

Question Answering System using Multiple Information Source and

Open Type Answer Merge

Seonyeong Park, Soonchoul Kwon, Byungsoo Kim, Sangdo Han,

Hyosup Shim, Gary Geunbae Lee
Pohang University of Science and Technology, Pohang, Republic of Korea

{sypark322, theincluder, bsmail90, hansd, hyosupshim, gblee} @postech.ac.kr

Abstract

This paper presents a multi-strategy and multi-

source question answering (QA) system that

can use multiple strategies to both answer natu-

ral language (NL) questions and respond to

keywords. We use multiple information

sources including curated knowledge base, raw

text, auto-generated triples, and NL processing

results. We develop open semantic answer type

detector for answer merging and improve pre-

vious developed single QA modules such as

knowledge base based QA, information re-

trieval based QA.

1 Introduction

Several massive knowledge bases such as DBpedia

(Auer et al., 2007) and Freebase (Bollacker et al.,

2008) have been released. To utilize these re-

sources, various approaches to question answering

(QA) on linked data have been proposed (He et al.,

2014; Berant et al., 2013). QA on linked data or on

a knowledge base (KB) can give very high preci-

sion, but because KBs consist of fragmentary

knowledge with no contextual information and is

powered by community effort, they cannot cover

all information needs of users. Furthermore, QA

systems achieve low precision when disambiguat-

ing question sentences in to KB concepts; this flaw

reduces QAs’ performance (Yih et al., 2014).

 A QA system can understand a natural language

(NL) question and return the answer. In some

ways, perfection of QA systems is the final goal of

information retrieval (IR). Early QA systems were

IR-based QAs (IRQAs). However, as large KBs

such as DBpedia and Freebase have been con-

structed, KB-based QA (KBQA) has become in-

creasingly important (Lehmann et al., 2015; Unger

et al., 2012).

 These two kinds of QA systems use heterogene-

ous data; IRQA systems search raw text, whereas

KBQA systems search KB. KBQA systems give

accurate answers because they search from KBs

curated by humans. However, they cannot utilize

any contextual information of the answers. The

answers of IRQA are relatively less accurate than

those of KBQA, but IRQA systems utilize the con-

textual information of the answers.

 We assert that a successful QA system will re-

quire appropriate cooperation between a KBQA

and an IRQA. We propose a method to merge the

KBQA and the IRQA systems and to exploit the

information in KB ontology-based open semantic

answer type to merge the answers from the two

systems, unlike previous systems that use a pre-

determined answer type. We improve our previous

system (Park et al., 2015).

 Also we can answer not only complete NL sen-

tence questions, and questions composed of only

keywords, which are frequently asked in real life.

We suggest strategies and methods (Figure 1) to

integrate KBQA, IRQA, and keyword QA.

2 System Architecture

2.1 KB-based QA

A KBQA system takes an NL question sentence as

the input and retrieves its answers from the KBs.

Because the KBs (i.e., the information sources),

are highly structured, the KBQA system can pro-

duce very pin-pointed answer sets.

111

 We combined two approaches to make this sys-

tem possible. The first approach is based on se-

mantic parsing (Berant et al., 2013), and the

second is based on lexico-semantic pattern match-

ing (Shim et al., 2014).

 In the semantic parsing approach, the system

first generates candidate segments of the question

sentence and tries to match KB vocabularies to the

segments by combining use of string-similarity

based methods and an automatically generated dic-

tionary that consists of pairs of NL phrase and KB

predicate (Berant et al., 2013). Finally the system

generates query candidates by applying the seg-

ments to a small set of hand-crafted grammar rules

to generate a single formal meaning representation

(Berant et al., 2013).

 In the lexico-semantic pattern approach, we use

simple patterns paired with a formal query tem-

plate. The patterns consist of regular expression

pattern that describes lexical, part-of-speech (PoS),

and chunk-type patterns of a question sentence

(Shim et al., 2014). Then the templates paired with

these patterns are equipped with methods to extract

information from the sentence and to fill the in-

formation into the template.

 KBQA can assess the answers even when it has

little or no additional contextual information,

whereas other systems like IRQA systems can rely

on the context from which it is retrieved (Schlaefer

et al., 2007). Instead, type information and its hier-

archy defined in the KB are good sources of con-

textual information that the KBQA can exploit.

However, not all the entities defined in the KB

have specific type information; therefore, relying

only on the type information can reduce precision

(Krishnamurthy and Mitchell, 2014).

 When KBQA systems fail, it is usually due to

incorrect disambiguation of entities, or to incorrect

disambiguation of predicate. Both types of failures

result in production of answers of the wrong types.

For example, for a question sentence "What sport

does the Toronto Maple Leafs play?" evoke an-

swers about the arena in which the team plays, in-

stead of the sport that the team plays, when the

KBQA system fails in disambiguation.

2.2 IR-based QA

The system uses a multi-source tagged text data-

base which is a combination of raw text, auto-

generated triples, co-reference results, named enti-

ty disambiguation results, the types of named enti-

ties, and syntactic and semantic NLP results

including semantic role label, dependency parser

results, PoS tag. The system uses clearNLP1 for

syntactic and semantic NLP, Stanford Co-reference

tool2 for co-reference tagging, Spotlight (Mendes

et al., 2011) for disambiguated named entity tag-

ging, and SPARQL queries (e.g. “SELECT

1 http://clearnlp.wikispaces.com/
2 http://nlp.stanford.edu/

Figure 1. Proposed System Architecture

112

DISTINCT ?uri WHERE { res:Nicole_Kidman

rdf:type ?uri. }”) for tagging DBpedia ontology

class types that correspond to entities, and triples

that correspond to the sentence. As a result, from a

sentence “Kim was born in 1990 in Bucheon,

Gyeonggi, and moved to Gunpo when she was six

years old”, the system tags several triples such as

< Kim; was born in; 1990 >, < Kim; was born in;

Bucheon >, < Kim; was born in; Gyeonggi >, and

< Kim; moved to; Gunpo >.

 Our IRQA system consists of five parts similar

to the architecture of our previous system (Park et

al., 2015): the first part detects the semantic answer

type of the question and analyzes the question; the

second part generates the queries; the third part

retrieves passages related to the user question; the

fourth part extracts answer candidates using type

checking and semantic similarity; and the last part

ranks the answer candidates. The system analyzes

questions from diverse aspects: PoS tagger, de-

pendency parser, semantic role labeler, our pro-

posed open Information extractor, and our

semantic answer type detector. The system ex-

pands query using resources such as Wordnet3 and

dictionary.

 The system uses Lucene4 to generate an index

and search from multi-source tagged text database.

This is an efficient method to search triples and

their corresponding sentences, instead of searching

the raw text. Using Lucene, the system searches

raw sentences and the auto-generated triples at the

same time, but may find different sentences due to

information loss during extraction of triples. These

sentences are scored by measuring semantic simi-

larity to the user query. From these sentences, the

system extracts the named entities and compares

the semantic answer type of the question to the

types of these named entities (Figure 2.). Along-

side the answer type, the system uses contextual

information of the corresponding sentences of the

answer candidates. By combining these two meth-

ods, the system selects answer candidates.

2.3 Keyword QA

Keyword QA takes a keyword sequence as the in-

put and returns a NL report as the answer. The sys-

tem extracts answer triples from the KB from the

user input keyword sequences. The system uses

3 http://sourceforge.net/projects/jwordnet/
4 http://lucene.apache.org/core/

previously generated NL templates to generate an

NL report (Han et al., 2015).

2.4 Open Information Extraction

Despite their enormous data capacity, KBs have

limitation in the amount of knowledge compared to

the information on the web. To remedy this defi-

ciency, we construct a repository of triples extract-

ed from the web text. We apply the technique to

the English Wikipedia5 for the demo, but the tech-

nique is scalable to a web corpus such as Clue-

Web 6 . Each triple is composed of the form <

argument1; relation; argument2 >, where the ar-

guments are entities in the input sentence and the

relation represents the relationship between the

arguments.

 The system integrates both dependency parse

tree pattern and semantic role labeler (SRL) results

of each input sentence when extracting the triples.

The dependency parse tree patterns are used to

generalize NL sentences to abstract sentence struc-

tures because the system can find unimportant

word tokens can be ignored in the input sentence.

We define how triples should be extracted for each

dependency pattern. If a certain dependency pat-

tern is satisfied, the word tokens in the pattern con-

stitute the head word of each relation and argument

s in the triple. We call these patterns ‘extraction

templates’. Since manual construction of extraction

templates costs too much, we automatically con-

struct them by bootstrapping with seed triples ex-

tracted from simple PoS tag patterns.

For each sentence, the SRL annotates the predi-

cate and the arguments of the predicate with their

specific roles in the sentence. The predicate is re-

garded as relation and the arguments are regarded

as argument1 and argument2, according to their

roles. We manually define conversion rules for

each SRL result.

3 Methods for Integration

3.1 Detecting Keywords and Sentence

Our system disambiguates whether the user input

query is a sentence or a keyword sequence. To dis-

ambiguate a sentence, the system uses bi-gram PoS

5 http://dumps.wikimedia.org/backup-index.html
6 http://www.lemurproject.org/clueweb12.php/

113

tag features and a maximum entropy algorithm.

Our dataset includes 670 keyword sequences and

4521 sentences. Based on five-fold cross validation,

our system correctly detected 96.27 % of the key-

word sequences and 98.12 % of the sentences.

 When the user query is a sentence, the query is

sent to the KBQA/IRQA system. Otherwise the

query is sent to the keyword QA system.

3.2 Open Semantic Answer Type detector

The proposed system integrates the answers from

the KB and the multi-source tagged text database

including the auto-generated triple database.

Therefore the KBQA and the IRQA must share an

answer-type taxonomy. A previous answer type

classification task used UIUC answer type includ-

ing six coarse-grained answer types and 50 fine-

grained answer types (Li et al., 2002). Instead, we

use the DBpedia class type hierarchy as the open

semantic answer type set. The proposed semantic

answer type detector involves three steps.

1. Feature Extraction: The proposed system uses

the dependency parser and PoS tagger to ex-

tract the main verb and the focus. If the ques-

tion is “Who invented Macintosh computer?,”

the main verb is ‘invented’ and the focus is

‘who’. The answer sentence is constructed by

replacing the focus with the answer candidate

and changing to declarative sentence with pe-

riod, when the focus is substituted with the an-

swer. The system can detect also whether the

focus is the subject or the object of the main

verb.

2. Mapping property: The system measures the

semantic similarity between ‘invented’ and

DBpedia properties. The system determines

that the most similar DBpedia property to ‘in-

vented’ is ‘patent’.

3. Finding semantic answer type: The system can

get the type of the subject and the object of the

DBpedia property ‘patent’. If the focus is

the object of the property, the semantic answer

type is the type of the object of the property;

otherwise it is the type of the subject of the

property.

If the system cannot find the answer type by these

steps, the system uses an answer type classifier as

in Ephyra (Schlaefer et al, 2007) and uses a trans-

formation table to map their answer type classes in

the UIUC answer type (Li et al., 2002) taxonomy

to DBpedia class ontology.

3.3 Answer Merging and Re-ranking

This integrated system gets the answer candidates

from both the KBQA and the IRQA. The system

Figure 2. Semantic answer type detector used to merging answer candidates

114

extracts n-best sentences including the answer can-

didates from the KBQA and the keywords from the

user query.

 The DBpedia types of the answer candidates

from both the KBQA and the IRQA can be detect-

ed and compared to the semantic answer type (Fig-

ure 2.).

 Finally, the system selects the final answer list

by checking the answer types of the user query and

the semantic relatedness among the answer sen-

tence substituted focus with the answer candidates,

and the retrieved sentences.

4 Conclusion

We have presented a QA system that uses multiple

strategies and multiple sources. The system can

answer both complete sentences and sequences of

keywords. To find answers, we used both a KB

and multi-source tagged text data. This is our base-

line system; we are currently using textual entail-

ment technology to improve merging accuracy.

Acknowledgments

This work was supported by the ICT R&D pro-

gram of MSIP/IITP [R0101-15-0176, Develop-

ment of Core Technology for Human-like Self-

taught Learning based on a Symbolic Approach].

References

Sören Auer, Christian Bizer, Georgi Kobilarov, Jens

Lehmann, Richard Cyganiak, and Zachary Ives.

2007. Dbpedia: A nucleus for a web of open data.

Proceedings of the Sixth international The semantic

web and Second Asian conference on Asian semantic

web conference (pp. 722-735).

Jonathan Berant, Andrew Chou, Roy Frostig, and Percy

Liang. 2013. Semantic Parsing on Freebase from

Question-Answer Pairs. Proceedings of the 2013

Conference on Empirical Methods in Natural Lan-

guage Processing. 1533-1544.

Kurt Bollacker, Colin Evans, Praveen Paritosh, Tim

Sturge, and Jamie Taylor. 2008. Freebase: a collabo-

ratively created graph database for structuring hu-

man knowledge. Proceedings of the 2008 SIGMOD

international conference on Management of data.

1247-1250.

Sangdo Han, Hyosup Shim, Byungsoo Kim, Seonyeong

Park, Seonghan Ryu, and Gary Geunbae Lee. 2015.

Keyword Question Answering System with Report

Generation for Linked Data. Proceedings of the Sec-

ond International Conference on Big Data and Smart

Computing.

Shizhu He, Kang Liu, Yuanzhe Zhang, Liheng Xu, and

Jun Zhao. 2014. Question Answering over Linked

Data Using First-order Logic. Proceedings of the

2014 Conference on Empirical Methods in Natural

Language Processing. 1092-1103.

Jayant Krishnamurthy and Tom M. Mitchell. 2014.

Joint Syntactic and Semantic Parsing with Combina-

tory Categorial Grammar. Proceedings of

52nd Annual Meeting of the Association for Compu-

tational Linguistics. 1188-1198.

Jens Lehmann, Robert Isele, Max Jakob, Anja Jentzsch,

Dimitris Kontokostas, Pablo N. Mendes, Sebastian

Hellmann, Mohamed Morsey, Patrick van Kleef,

Sören Auer, and Christian Bizer. 2015. DBpedia – A

large-scale, multilingual knowledge base extracted

from Wikipedia. Semantic Web: 6(2). 167-195.

Xin Li, Dan Roth, Learning question classifiers. 2002.

Proceedings of the 19th international conference on

Computational linguistics-Volume 1. 1-7.

Pablo N. Mendes, Max Jakob, Andrés García-Silva ,

and Christian Bizer. 2011. DBpedia Spotlight: Shed-

ding Light on the Web of Documents. Proceedings of

the 7th International Conference on Semantic Sys-

tems. 1-8.

Seonyeong Park, Hyosup Shim, Sangdo Han, Byungsoo

Kim, and Gary Geunbae Lee. 2015. Multi-source hy-

brid Question Answering system. Proceeding of The

Sixth International Workshop on Spoken Dialog Sys-

tem

Nico Schlaefer, Jeongwoo Ko, Justin Betteridge, Guido

Sautter, Manas Pathak, and Eric Nyberg. 2007. Se-

mantic Extensions of the Ephyra QA System for

TREC 2007. Proceedings of the Sixteenth Text RE-

trieval Conference.

Hyosup Shim, Seonyeong Park, and Gary Geunbae Lee.

2014. Assisting semantic parsing-based QA system

with lexico-semantic pattern query template. Pro-

ceedings of Human and Cognitive Language Tech-

nology. 255-258.

Christina Unger, Lorenz Bühmann, Jens Lehmann, Ax-

el-Cyrille Ngonga Ngomo, Daniel Gerber, and

Philipp Cimiano. 2012. Template-based question an-

swering over RDF data. Proceedings of the 21st in-

ternational conference on World Wide Web. 639-648.

Wen-tau Yih, Xiaodong He, and Christopher Meek.

2014. Semantic parsing for single-relation question

answering. Proceedings of the 52nd Annual Meeting

of the Association for Computational Linguistics.

643-648.

115

Proceedings of NAACL-HLT 2015, pages 116–120,
Denver, Colorado, May 31 – June 5, 2015. c©2015 Association for Computational Linguistics

Using Word Semantics To Assist English as a Second Language Learners

Mahmoud Azab
University of Michigan

mazab@umich.edu

Chris Hokamp
Dublin City University

chokamp@computing.dcu.ie

Rada Mihalcea
University of Michigan
mihalcea@umich.edu

Abstract
We introduce an interactive interface that
aims to help English as a Second Language
(ESL) students overcome language related
hindrances while reading a text. The interface
allows the user to find supplementary infor-
mation on selected difficult words. The inter-
face is empowered by our lexical substitution
engine that provides context-based synonyms
for difficult words. We also provide a prac-
tical solution for a real-world usage scenario.
We demonstrate using the lexical substitution
engine – as a browser extension that can anno-
tate and disambiguate difficult words on any
webpage.

1 Introduction

According to the U.S. Department of Education,
about 11% of all the students in public schools in
the United States receive or have received English
language learning services. The largest numbers of
ESL students are in California (26% of all the stu-
dents) and Texas (16%). About 70% of these stu-
dents are Spanish speakers (Dep, 2004). Moreover,
there is a large number of non-English speaking
countries that have programs for learning English,
with as many as 750 million English as a Foreign
Language students in the world (Crystal, 1997).

The goal of a number of computer-based language
learning tools developed to date is to provide as-
sistance to those with limited language abilities, in-
cluding students learning a second or a foreign lan-
guage or people suffering from disabilities such as
aphasia. These tools draw on research in educa-
tion, which found that text adaptation can improve

the reading comprehension skills for learners of En-
glish (Yano et al., 1994; Carlo et al., 2004). The lan-
guage learning technology often consists of methods
for text simplification and adaptation, which is per-
formed either at syntactic (Carroll et al., 1999; Sid-
dharthan et al., 2004) or lexical level (Carroll et al.,
1998; Devlin et al., 2000; Canning and Tait, 1999;
Burstein et al., 2007). Work has also been carried
out on the prediction and simplification of difficult
technical text (Elhadad, 2006a; Elhadad, 2006b) and
on the use of syntactic constraints for translations in
context (Grefenstette and Segond, 2003).

In this paper, we describe an interface developed
with the goal of assisting ESL students in their En-
glish reading activities. The interface builds upon a
lexical substitution system that we developed, which
provides synonyms and definitions for target words
in context. We first give a brief overview of the lex-
ical substitution task, and then present our system
SALSA (Sinha and Mihalcea, 2014) and (Sinha and
Mihalcea, 2012). We then describe the functionality
of the interface, and the interaction that a user can
have with this interface.

2 Lexical Substitution

Lexical substitution, also known as contextual syn-
onym expansion (McCarthy and Navigli, 2007), in-
volves replacing a certain word in a given con-
text with another, suitable word, such that the over-
all meaning of the word and the sentence are un-
changed. As an example, see the four sentences in
Table 1, drawn from the development data from the
SEMEVAL-2007 lexical substitution task. In the first
sentence, for instance, assuming we choose bright as

116

the target word, a suitable substitute could be bril-
liant, which would both maintain the meaning of the
target word and at the same time fit the context.

Sentence Target Synonym
The sun was bright. bright brilliant
He was bright and independent. bright intelligent
His feature film debut won awards. film movie
The market is tight right now. tight pressured

Table 1: Examples of synonym expansion in context

We perform contextual synonym expansion in two
steps: candidate synonym collection, followed by
context-based synonym fitness scoring.

Candidate synonym collection is the first step of
our system, and refers to the sub task of collecting a
set of potential synonym candidates for a given tar-
get word, starting with various resources. Note that
this step does not disambiguate the meaning of the
target word. Rather, all the possible synonyms are
selected, and these synonyms can be further refined
in the later step. For example, if we consider all
the possible meanings of the word bright, it can be
potentially replaced by brilliant, smart, intelligent,
vivid, luminous. SALSA uses five lexical resources,
as listed in Table 2, to ensure a good collection of
candidate synonyms.

The second step is context-based synonym fitness
scoring, which refers to picking the best candidates
out of the several potential ones obtained as a re-
sult of the previous step. There are several ways in
which fitness scoring can be performed, for example
by accounting for the semantic similarity between
the context and a candidate synonym, or for the sub-
stitutability of the synonym in the given context. We
experimented with several unsupervised and super-
vised methods, and the method that was found to
work best uses a set of features consisting of counts
obtained from Google N-grams (Brants and Franz,
2006) for several N-grams centered around the can-
didate synonym when replaced in context.

The synonym selection process inside SALSA
was evaluated under two different settings. The
first evaluation setting consists of the lexical sample
dataset made available during SEMEVAL 2007 (Mc-
Carthy and Navigli, 2007) - a set of 1,700 annotated
examples for 170 open-class words. On this dataset,
SALSA is able to find the synonym agreed upon by

several human annotators as its best guess in 21.3%
cases, and this synonym is in the top 10 candidates
returned by our system in 64.7% cases. These results
compare favorably with the best results reported dur-
ing SEMEVAL 2007 task on Lexical Substitution.

The second evaluation setting is a dataset consist-
ing of 550 open-class words in running text. On this
set of words, SALSA finds the best manually as-
signed synonym in 29.9% of the cases, and this syn-
onym is in our top ten candidates in 73.7% of the
cases.

Overall, we believe SALSA is able to identify
good candidate synonyms for a target word in con-
text, and therefore can form the basis for an interface
to assist English learners.

3 An Interface for English as a Second
Language Learners

Our goal is to leverage lexical substitution tech-
niques in an interface that can provide support to
ESL and EFL students in their reading activities. It
is often the case that students who are not proficient
in English have difficulty with understanding certain
words. This in turn has implications for their com-
prehension of the text, and consequently can neg-
atively impact their learning and knowledge acqui-
sition process. By having inline access to an ex-
planation of the words they have difficulty with, we
believe these students will have easier access to the
knowledge in the texts that they read.

In order to support various devices and platforms,
we implemented the prototype interface as a web ap-
plication. Given a text, the interface allows readers
to click on selected vocabulary words, and view sup-
plementary information in a side panel. This sup-
plementary information includes a list of in-context
synonyms, as provided by our system. In addition,
we also include example sentences obtained from
WordNet, corresponding to the target word meaning
dictated by the top synonym selected by SALSA.

The interface also includes the possibility for the
user to provide feedback by upvoting or downvoting
supplementary information. The goal of this com-
ponent is to allow the user to indicate whether they
found the information provided useful or not. In ad-
dition to providing direct feedback on the quality of
the interface, this user input will also indirectly con-

117

Table 2: Subsets of the candidates provided by different lexical resources for the adjective bright

Resource Candidates
Roget (RG) ablaze aglow alight argent auroral beaming blazing brilliant
WordNet (WN) burnished sunny shiny lustrous undimmed sunshiny brilliant
TransGraph (TG) nimble ringing fine aglow keen glad light picturesque
Lin (LN) red yellow orange pink blue brilliant green white dark
Encarta (EN) clear optimistic smart vivid dazzling brainy lively

tribute to the construction of a “gold standard” that
we can use to further improve the tool.

We evaluated an earlier static version of this inter-
face with ESL students who read two articles from
the BBC’s English learning website. We manually
selected difficult words from the text, and for these
words provided a list of in-context synonyms and
clear examples. After each reading, the students
took a post-reading quiz to evaluate their reading
comprehension. We then evaluated the extent to
which we could predict a student’s performance on
the post-quiz using features of their interaction with
the tool.

We also used this interface with English middle
school students whose primary language is English.
The students had to read short excerpts of a book
that was a part of their curriculum. Students were
allowed to click on only one highlighted word per
excerpt. In this experiment, supplementary informa-
tion was provided from WordNet. There was a post-
reading quiz to evaluate the students understanding
of the words. By training a regression model on the
interaction features collected during the reading ex-
ercises, we were able to accurately predict students’
performance on the post-quiz (Hokamp et al., 2014).

We have now enabled the SALSA interface to
provide feedback on arbitrary English content from
the web. By implementing the tool as a browser ex-
tension, we are able to show inline additional infor-
mation about text on any web page, even when the
content is dynamically generated.

The interface also collects both explicit and im-
plicit feedback. The explicit feedback is collected
via upvotes and downvotes on feedback items. The
implicit feedback is based on the user interactions
with the system while they are reading. Currently,
we collect several kinds of interactions. These in-
teractions include the clicked words, counts of user

clicks on a given word, the difficulty of the word as
measured by the inverse document frequency, and
the number of syllables it contains. In the future,
this data will help us to adapt the tool to individual
users.

4 Demonstration

During the demonstration, we will present the use
of the interface. We will allow participants to freely
browse the web with our tool enabled, to view feed-
back on lexical items, and to provide their own
feedback on the quality of the results. The system
will automatically identify and highlight the diffi-
cult words during browsing, and users can then click
these highlighted words to receive supplementary
information, consisting of synonyms and definitions,
which should assist them in reading and compre-
hending the content.

By hovering or clicking on an annotated word,
users can access a small popup window that includes
supplementary information. This supplementary in-
formation includes a list of in-context synonyms, as
provided by our system, and a clear example of the
word in-context. Figure 1 shows an example of the
current extension interface when a user hovers over
the word film.

Although the reading activity + quiz format de-
scribed above is necessary for the empirical evalua-
tion of our tool, it does not demonstrate a real-world
usage scenario. Therefore, we designed a browser
extension to show a realistic use case for the lexi-
cal substitution engine as the backend for a flexible
graphical component that can add additional infor-
mation to any content. We anticipate that the exten-
sion will prove useful to English language learners
as they navigate the Web, especially when they en-
counter difficult English content.

118

Figure 1: Example of supplementary information that the extension provides the user with when a user hovers over
the word film.

Acknowledgments

This work was partially funded by the National Sci-
ence Foundation (CAREER award #1361274) and
by DARPA (DEFT grant #12475008). Any opin-
ions, findings, and conclusions or recommendations
expressed in this material are those of the authors
and do not necessarily reflect the views of the Na-
tional Science Foundation, DARPA, or the other
sources of support.

References

T. Brants and A. Franz. 2006. Web 1T 5-gram version 1.
Linguistic Data Consortium.

J. Burstein, J. Shore, J. Sabatini, and Y. Lee. 2007. De-
veloping a reading support tool for English language
learners. In Demo proceedings of the the annual con-
ference of the North American chapter of the Asso-
ciation for Computational Linguistics (NAACL-HLT
2007), Rochester, NY.

Y. Canning and J. Tait. 1999. Syntactic simplification of
newspaper text for aphasic readers. In Proceedings of
the ACM SIGIR’99 Workshop on Customised Informa-
tion Delivery, Berkeley, California.

M.S. Carlo, D. August, B. McLaughlin, C.E. Snow,
C. Dressler, D. Lippman, T. Lively, and C. White.
2004. Closing the gap: Addressing the vocabulary
needs of english language learners in bilingual and
mainstream classrooms. Reading Research Quarterly,
39(2).

J. Carroll, G. Minnen, Y. Canning, S. Devlin, and J. Tait.
1998. Practical simplification of English newspaper
text to assist aphasic readers. In Proceedings of the
AAAI-98 Workshop on Integrating Artificial Intelli-
gence and Assistive Technology, Madison, Wisconsin.

J. Carroll, G. Minnen, D. Pearce, Y. Canning, S. Devlin,
and J. Tait. 1999. Simplifying text for language-
impaired readers. In Proceedings of the Conference
of the European Chapter of the ACL (EACL 1999),
Bergen, Norway.

D. Crystal. 1997. English as a global language. Cam-
bridge University Press.

2004. http://nces.ed.gov/fastfacts/display.asp?id=96.
S. Devlin, J. Tait, J. Carroll, G. Minnen, and D. Pearce.

2000. Making accessible international communication
for people with language comprehension difficulties.
In Proceedings of the Conference of Computers Help-
ing People with Special Needs.

N. Elhadad. 2006a. Comprehending technical texts: Pre-
dicting and defining unfamiliar terms. In Proceedings
of the Annual Symposium of the American Medical In-
formatics Association, Washington.

N. Elhadad. 2006b. User-Sensitive Text Summariza-
tion: Application to the Medical Domain. Ph.D. the-
sis, Columbia University.

G. Grefenstette and F. Segond, 2003. Multilingual On-
Line Natural Language Processing, chapter 38.

C. Hokamp, R. Mihalcea, and P. Schuelke. 2014. Mod-
eling language proficiency using implicit feedback.
In Proceedings of the Conference on Language Re-
sources and Evaluations (LREC 2014), Reykjavik,
Iceland, May.

119

D. McCarthy and R. Navigli. 2007. The semeval English
lexical substitution task. In Proceedings of the ACL
Semeval workshop.

A. Siddharthan, A. Nenkova, and K. McKeown. 2004.
Syntactic simplification for improving content selec-
tion in multi-document summarization. In Proceed-
ings of the 20th international conference on Computa-
tional Linguistics.

R. Sinha and R. Mihalcea. 2012. Explorations in lexical-
sample and all-words lexical substitution. Journal of
Natural Language Engineering.

Ravi Som Sinha and Rada Mihalcea. 2014. Explorations
in lexical sample and all-words lexical substitution.
Natural Language Engineering, 20(1):99–129.

Y. Yano, M. Long, and S. Ross. 1994. The effects of sim-
plified and elaborated texts on foreign language tool’s
utility and effectiveness in terms of students’ reading
comprehension. Language Learning, 44.

120

Author Index

Aizawa, Akiko, 91
Andrews, Nicholas, 86
Azab, Mahmoud, 116

Ballesteros, Miguel, 56
Bhattacharyya, Pushpak, 81
Bohnet, Bernd, 56
Brew, Chris, 101

Chang, Jason, 106
Chang, Jim, 106

DeYoung, Jay, 86
Dredze, Mark, 86
Dreyer, Markus, 11

Fan, Xiangmin, 16
Ferraro, Francis, 86

Ginter, Filip, 51
Göckel, Thierry, 6
Gormley, Matthew R., 86
Graehl, Jonathan, 11
Grishman, Ralph, 31

Han, Sangdo, 111
Harman, Craig, 86
He, Yifan, 31
Hewitt, Luke, 61
Hicks, Tom, 1
Hladka, Barbora, 21
Hokamp, Chris, 116

Kanerva, Jenna, 51
Kim, Byungsoo, 111
Kríž, Vincent, 21
Kunchukuttan, Anoop, 81
Kwon, Soonchoul, 111

Lee, Gary Geunbae, 111

Litman, Diane, 16
Lopez, Adam, 36
Luo, Wencan, 16
Luotolahti, Juhani, 51

Martschat, Sebastian, 6
Mélanie, Fréderique, 46
Menekse, Muhsin, 16
Menezes, Arul, 26
Mihalcea, Rada, 116
Mille, Simon, 56
Mundkowsky, Robert, 96

Nakamura, Satoshi, 41
Napolitano, Diane, 96
Naradowsky, Jason, 61
Navigli, Roberto, 76
Neubig, Graham, 41

Oda, Yusuke, 41

Park, Seonyeong, 111
Peng, Nanyun, 86
Pilehvar, Mohammad Taher, 76
Poibeau, Thierry, 46
Puduppully, Ratish, 81
Pyysalo, Sampo, 51

Quirk, Chris, 26

Reddy, Sravana, 71
Riedel, Sebastian, 61
Rocktäschel, Tim, 61
Ruiz, Pablo, 46

Sakti, Sakriani, 41
Saphra, Naomi, 36
Schilder, Frank, 101
Sheehan, Kathleen, 96
Shim, Hyosup, 111

121

Singh, Sameer, 61
Smiley, Charese, 101
Soler-Company, Juan, 56
Song, Dezhao, 101
Soyer, Hubert, 91
Stanford, James, 71
Stenetorp, Pontus, 91
Strube, Michael, 6
Surdeanu, Mihai, 1

Thomas, Max, 86
Toda, Tomoki, 41
Topić, Goran, 91

Valenzuela-Escarcega, Marco Antonio, 1
Van Durme, Benjamin, 86
Vanderwende, Lucy, 26

Wang, Jingtao, 16
Wanner, Leo, 56
Wolfe, Travis, 86

Yao, Xuchen, 66
Yu, Mo, 86

	Program
	Two Practical Rhetorical Structure Theory Parsers
	Analyzing and Visualizing Coreference Resolution Errors
	hyp: A Toolkit for Representing, Manipulating, and Optimizing Hypergraphs
	Enhancing Instructor-Student and Student-Student Interactions with Mobile Interfaces and Summarization
	RExtractor: a Robust Information Extractor
	An AMR parser for English, French, German, Spanish and Japanese and a new AMR-annotated corpus
	ICE: Rapid Information Extraction Customization for NLP Novices
	AMRICA: an AMR Inspector for Cross-language Alignments
	Ckylark: A More Robust PCFG-LA Parser
	ELCO3: Entity Linking with Corpus Coherence Combining Open Source Annotators
	SETS: Scalable and Efficient Tree Search in Dependency Graphs
	Visualizing Deep-Syntactic Parser Output
	WOLFE: An NLP-friendly Declarative Machine Learning Stack
	Lean Question Answering over Freebase from Scratch
	A Web Application for Automated Dialect Analysis
	An Open-source Framework for Multi-level Semantic Similarity Measurement
	Brahmi-Net: A transliteration and script conversion system for languages of the Indian subcontinent
	A Concrete Chinese NLP Pipeline
	CroVeWA: Crosslingual Vector-Based Writing Assistance
	Online Readability and Text Complexity Analysis with TextEvaluator
	Natural Language Question Answering and Analytics for Diverse and Interlinked Datasets
	WriteAhead2: Mining Lexical Grammar Patterns for Assisted Writing
	Question Answering System using Multiple Information Source and Open Type Answer Merge
	Using Word Semantics To Assist English as a Second Language Learners

