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Abstract

We present an unsupervised model for induc-
ing signed social networks from the content
exchanged across network edges. Inference
in this model solves three problems simulta-
neously: (1) identifying the sign of each edge;
(2) characterizing the distribution over content
for each edge type; (3) estimating weights for
triadic features that map to theoretical mod-
els such as structural balance. We apply this
model to the problem of inducing the social
function of address terms, such as Madame,
comrade, and dude. On a dataset of movie
scripts, our system obtains a coherent cluster-
ing of address terms, while at the same time
making intuitively plausible judgments of the
formality of social relations in each film. As
an additional contribution, we provide a boot-
strapping technique for identifying and tag-
ging address terms in dialogue.1

1 Introduction

One of the core communicative functions of lan-
guage is to modulate and reproduce social dynam-
ics, such as friendship, familiarity, formality, and
power (Hymes, 1972). However, large-scale em-
pirical work on understanding this communicative
function has been stymied by a lack of labeled data:
it is not clear what to annotate, let alone whether
and how such annotations can be produced reliably.
Computational linguistics has made great progress
in modeling language’s informational dimension,

1Code and data for this paper is available at https://
github.com/vinodhkris/signed-social.

but — with a few notable exceptions — computa-
tion has had little to contribute to our understanding
of language’s social dimension.

Yet there is a rich theoretical literature on social
structures and dynamics. In this paper, we focus
on one such structure: signed social networks, in
which edges between individuals are annotated with
information about the nature of the relationship. For
example, the individuals in a dyad may be friends
or foes; they may be on formal or informal terms;
or they may be in an asymmetric power relation-
ship. Several theories characterize signed social net-
works: in structural balance theory, edge signs in-
dicate friendship and enmity, with some triads of
signed edges being stable, and others being unsta-
ble (Cartwright and Harary, 1956); conversely, in
status theory (Leskovec et al., 2010b), edges indicate
status differentials, and triads should obey transitiv-
ity. But these theoretical models can only be applied
when the sign of each social network connection is
known, and they do not answer the sociolinguistic
question of how the sign of a social tie relates to the
language that is exchanged across it.

We present a unified statistical model that incor-
porates both network structure and linguistic con-
tent. The model connects signed social networks
with address terms (Brown and Ford, 1961), which
include names, titles, and “placeholder names,” such
as dude. The choice of address terms is an indica-
tor of the level of formality between the two parties:
for example, in contemporary North American En-
glish, a formal relationship is signaled by the use
of titles such as Ms and Mr, while an informal re-
lationship is signaled by the use of first names and
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placeholder names. These tendencies can be cap-
tured with a multinomial distribution over address
terms, conditioned on the nature of the relationship.
However, the linguistic signal is not the only indi-
cator of formality: network structural properties can
also come into play. For example, if two individ-
uals share a mutual friend, with which both are on
informal terms, then they too are more likely to have
an informal relationship. With a log-linear prior dis-
tribution over network structures, it is possible to in-
corporate such triadic features, which relate to struc-
tural balance and status theory.

Given a dataset of unlabeled network structures
and linguistic content, inference in this model simul-
taneously induces three quantities of interest:

• a clustering of network edges into types;

• a probabilistic model of the address terms that
are used across each edge type, thus revealing
the social meaning of these address terms;

• weights for triadic features of signed networks,
which can then be compared with the predic-
tions of existing social theories.

Such inferences can be viewed as a form of so-
ciolinguistic structure induction, permitting social
meanings to be drawn from linguistic data. In addi-
tion to the model and the associated inference pro-
cedure, we also present an approach for inducing
a lexicon of address terms, and for tagging them
in dialogues. We apply this procedure to a dataset
of movie scripts (Danescu-Niculescu-Mizil and Lee,
2011). Quantitative evaluation against human rat-
ings shows that the induced clusters of address terms
correspond to intuitive perceptions of formality, and
that the network structural features improve pre-
dictive likelihood over a purely text-based model.
Qualitative evaluation shows that the model makes
reasonable predictions of the level of formality of
social network ties in well-known movies.

We first describe our model for linking network
structure and linguistic content in general terms, as
it can be used for many types of linguistic con-
tent and edge labels. Next we describe a procedure
which semi-automatically induces a lexicon of ad-
dress terms, and then automatically labels them in
text. We then describe the application of this proce-

dure to a dataset of movie dialogues, including quan-
titative and qualitative evaluations.

2 Joint model of signed social networks
and textual content

We now present a probabilistic model for linking
network structure with content exchanged over the
network. In this section, the model is presented in
general terms, so that it can be applied to any type of
event counts, with any form of discrete edge labels.
The application of the model to forms of address is
described in Sections 4 and 5.

We observe a dataset of undirected graphs G(t) =
{i, j}, with a total ordering on nodes such that i < j
in all edges. For each edge 〈i, j〉, we observe di-
rected content vectors xi→j and xi←j , which may
represent counts of words or other discrete events,
such as up-votes and down-votes for comments in
a forum thread. We hypothesize a latent edge label
yij ∈ Y , so that xi→j and xi←j are conditioned on
yij . In this paper we focus on binary labels (e.g.,
Y = {+,−}), but the approach generalizes to larger
finite discrete sets, such as directed binary labels
(e.g., Y = {++,+−,−+,−−}) and comparative
status labels (e.g., Y = {<,>,≈}).

We model the likelihood of the observations con-
ditioned on the edge labels as multinomial,

xi→j | yij ∼Multinomial(θ→yij
) (1)

xi←j | yij ∼Multinomial(θ←yij
). (2)

Parameter tying can be employed to handle spe-
cial cases. For example, if the edge labels are undi-
rected, then we add the constraint θ→y = θ←y ,∀y.
If the edge labels reflect relative status, then we
would instead add the constraints (θ→< = θ←> ),
(θ→> = θ←< ), and (θ→≈ = θ←≈ ).

The distribution over edge labelings P (y) is mod-
eled in a log-linear framework, with features that can
consider network structure and signed triads:

P (y;G,η,β) =
1

Z(η,β;G)

× exp
∑
〈i,j〉∈G

η>f(yij , i, j, G)

× exp
∑

〈i,j,k〉∈T (G)

βyij ,yjk,yik
, (3)
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where T (G) is the set of triads in the graph G.
The first term of Equation 3 represents a normal-
izing constant. The second term includes weights
η, which apply to network features f(yij , i, j, G).
This can include features like the number of mu-
tual friends between nodes i and j, or any number
of more elaborate structural features (Liben-Nowell
and Kleinberg, 2007). For example, the feature
weights η could ensure that the edge label Yij = +
is especially likely when nodes i and j have many
mutual friends in G. However, these features cannot
consider any edge labels besides yij .

In the third line of Equation 3, each weight
βyij ,yjk,yik

corresponds to a signed triad type, invari-
ant to rotation. In a binary signed network, struc-
tural balance theory would suggest positive weights
for β+++ (all friends) and β+−− (two friends and
a mutual enemy), and negative weights for β++−
(two enemies and a mutual friend) and β−−− (all
enemies). In contrast, a status-based network theory
would penalize non-transitive triads such as β>><.
Thus, in an unsupervised model, we can examine the
weights to learn about the semantics of the induced
edge types, and to see which theory best describes
the signed network configurations that follow from
the linguistic signal. This is a natural next step from
prior work that computes the frequency of triads in
explicitly-labeled signed social networks (Leskovec
et al., 2010b).

3 Inference and estimation

Our goal is to estimate the parameters θ, β, and η,
given observations of network structures G(t) and
linguistic content x(t), for t ∈ {1, . . . , T}. Eliding
the sum over instances t, we seek to maximize the
variational lower bound on the expected likelihood,

LQ =EQ[logP (y,x;β,θ, G)]− EQ[logQ(y)]
=EQ[logP (x | y;θ)] + EQ[logP (y;G,β,η)]
− EQ[logQ(y)]. (4)

The first and third terms factor across edges,

EQ[logP (x | y;θ)] =
∑
〈i,j〉∈G

∑
y′∈Y

qij(y′)x>i→j log θ→y′

+qij(y′)x>i←j log θ←y′

EQ[logQ(y)] =
∑
〈i,j〉∈G

∑
y′∈Y

qij(y′) log q(y′).

The expected log-prior EQ[logP (y)] is com-
puted from the prior distribution defined in Equa-
tion 3, and therefore involves triads of edge labels,

EQ[logP (y;η,β)] = − logZ(η,β;G)

+
∑
〈i,j〉∈G

∑
y′
qij(y′)η>f(y′, i, j, G)

+
∑

〈i,j,k〉∈T (G)

∑
y,y′,y′′

qij(y)qjk(y′)qik(y′′)βy,y′,y′′ .

We can reach a local maximum of the
variational bound by applying expectation-
maximization (Dempster et al., 1977), iterating
between updates to Q(y), and updates to the
parameters θ,β,η. This procedure is summarized
in Table 1, and described in more detail below.

3.1 E-step
In the E-step, we sequentially update each qij , taking
the derivative of Equation 4:

∂LQ

∂qij(y)
= logP (xi→j | Yij = y;θ→)

+ logP (xi←j | Yij = y;θ←)
+ EQ(y−(ij))

[logP (y | Yij = y;β,η)]

− log qij(y)− 1. (5)

After adding a Lagrange multiplier to ensure that∑
y qij(y) = 1, we obtain a closed-form solution

for each qij(y). These iterative updates to qij can
be viewed as a form of mean field inference (Wain-
wright and Jordan, 2008).

3.2 M-step
In the general case, the maximum expected likeli-
hood solution for the content parameter θ is given
by the expected counts,

θ→y ∝
∑
〈i,j〉∈G

qij(y)xi→j (6)

θ←y ∝
∑
〈i,j〉∈G

qij(y)xi←j . (7)

As noted above, we are often interested in special
cases that require parameter tying, such as θ→y =
θ←y ,∀y. This can be handled by simply computing
expected counts across the tied parameters.
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1. Initialize Q(Y (t)) for each t ∈ {1 . . . T}
2. Iterate until convergence:

E-step update each qij in closed form, based
on Equation 5.

M-step: content Update θ in closed form
from Equations 6 and 7.

M-step: structure Update β,η, and c by ap-
plying L-BFGS to the noise-contrastive
estimation objective in Equation 8.

Table 1: Expectation-maximization estimation procedure

Obtaining estimates for β and η is more challeng-
ing, as it would seem to involve computing the par-
tition function Z(η,β;G), which sums over all pos-
sible labeling of each network G(t). The number of
such labelings is exponential in the number of edges
in the network. West et al. (2014) show that for an
objective function involving features on triads and
dyads, it is NP-hard to find even the single optimal
labeling.

We therefore apply noise-contrastive estimation
(NCE; Gutmann and Hyvärinen, 2012), which
transforms the problem of estimating the density
P (y) into a classification problem: distinguishing
the observed graph labelings y(t) from randomly-
generated “noise” labelings ỹ(t) ∼ Pn, where Pn

is a noise distribution. NCE introduces an addi-
tional parameter c for the partition function, so that
logP (y;β,η, c) = logP 0(y;β,η)+c, with P 0(y)
representing the unnormalized probability of y. We
can then obtain the NCE objective by writingD = 1
for the case that y is drawn from the data distribu-
tion and D = 0 for the case that y is drawn from the
noise distribution,

JNCE(η,β, c)

=
∑

t

logP (D = 1 | y(t);η,β, c)

− logP (D = 0 | ỹ(t);η,β, c), (8)

where we draw exactly one noise instance ỹ for each
true labeling y(t).

Because we are working in an unsupervised set-
ting, we do not observe y(t), so we cannot directly
compute the log probability in Equation 8. Instead,

we compute the expectations of the relevant log
probabilities, under the distribution Q(y),

EQ[logP 0(y;β,η)] =∑
〈i,j〉∈G

∑
y

qij(y)η>f(y, i, j,G)

+
∑

k:〈i,j,k〉∈T (G)

∑
y,y′,y′′

qij(y)qjk(y′)qik(y′′)βy,y′,y′′ .

(9)

We define the noise distribution Pn by sampling
edge labels yij from their empirical distribution un-
der Q(y). The expectation Eq[logPn(y)] is there-
fore simply the negative entropy of this empirical
distribution, multiplied by the number of edges inG.
We then plug in these expected log-probabilities to
the noise-contrastive estimation objective function,
and take derivatives with respect to the parameters
β, η, and c. In each iteration of the M-step, we
optimize these parameters using L-BFGS (Liu and
Nocedal, 1989).

4 Identifying address terms in dialogue

The model described in the previous sections is ap-
plied in a study of the social meaning of address
terms — terms for addressing individual people —
which include:

Names such as Barack, Barack Hussein Obama.

Titles such as Ms., Dr., Private, Reverend. Titles
can be used for address either by preceding a
name (e.g., Colonel Kurtz), or in isolation (e.g.,
Yes, Colonel.).

Placeholder names such as dude (Kiesling, 2004),
bro, brother, sweetie, cousin, and asshole.
These terms can be used for address only in iso-
lation (for example, in the address cousin Sue,
the term cousin would be considered a title).

Because address terms connote varying levels of
formality and familiarity, they play a critical role
in establishing and maintaining social relationships.
However, we find no prior work on automatically
identifying address terms in dialogue transcripts.
There are several subtasks: (1) distinguishing ad-
dresses from mentions of other individuals, (2) iden-
tifying a lexicon of titles, which either precede name
addresses or can be used in isolation, (3) identifying
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Text: I ’m not Mr. Lebowski ; you ’re Mr. Lebowski .
POS: PRP VBP RB NNP NNP : PRP VBP NNP NNP .
Address: O O O B-ADDR L-ADDR O O O B-ADDR L-ADDR O

Figure 1: Automatic re-annotation of dialogue data for address term sequences

Feature Description

Lexical The word to be tagged, and its
two predecessors and successors,
wi−2:i+2.

POS The part-of-speech of the token to
be tagged, and the POS tags of its
two predecessors and successors.

Case The case (lower, upper, or title) of
the word to be tagged, and its two
predessors and successors.

Constituency
parse

First non-NNP ancestor node of
the word wi in the constituent
parse tree, and all leaf node sib-
lings in the tree.

Dependency
parse

All dependency relations involv-
ing wi.

Location Distance of wi from the start and
the end of the sentence or turn.

Punctuation All punctuation symbols occur-
ring before and after wi.

Second person
pronoun

All forms of the second person
pronoun within the sentence.

Table 2: Features used to identify address spans

a lexicon of placeholder names, which can only be
used in isolation. We now present a tagging-based
approach for performing each of these subtasks.

We build an automatically-labeled dataset from
the corpus of movie dialogues provided by Danescu-
Niculescu-Mizil and Lee (2011); see Section 6 for
more details. This dataset gives the identity of
the speaker and addressee of each line of dialogue.
These identities constitute a minimal form of manual
annotation, but in many settings, such as social me-
dia dialogues, they could be obtained automatically.
We augment this data by obtaining the first (given)
and last (family) names of each character, which we
mine from the website rottentomatoes.com.
Next, we apply the CoreNLP part-of-speech tag-
ger (Manning et al., 2014) to identify sequences of
the NNP tag, which indicates a proper noun in the
Penn Treebank Tagset (Marcus et al., 1993). For

each NNP tag sequence that contains the name of the
addressee, we label it as an address, using BILOU
notation (Ratinov and Roth, 2009): Beginning,
Inside, and Last term of address segments; Outside
and Unit-length sequences. An example of this tag-
ging scheme is shown in Figure 1.

Next, we train a classifier (Support Vector Ma-
chine with a linear kernel) on this automatically la-
beled data, using the features shown in Table 2. For
simplicity, we do not perform structured prediction,
which might offer further improvements in accuracy.
This classifier provides an initial, partial solution
to the first problem, distinguishing second-person
addresses from references to other individuals (for
name references only). On heldout data, the clas-
sifier’s macro-averaged F-measure is 83%, and its
micro-averaged F-measure is 98.7%. Class-by-class
breakdowns are shown in Table 3.

4.1 Address term lexicons

To our surprise, we were unable to find manually-
labeled lexicons for either titles or placeholder
names. We therefore employ a semi-automated ap-
proach to construct address term lexicons, bootstrap-
ping from the address term tagger to build candidate
lists, which we then manually filter.

Titles To induce a lexicon of titles, we consider
terms that are frequently labeled with the tag B-
ADDR across a variety of dialogues, performing a
binomial test to obtain a list of terms whose fre-
quency of being labeled as B-ADDR is significantly
higher than chance. Of these 34 candidate terms, we
manually filter out 17, which are mainly common
first names, such as John; such names are frequently
labeled as B-ADDR across movies. After this man-
ual filtering, we obtain the following titles: agent,
aunt, captain, colonel, commander, cousin, deputy,
detective, dr, herr, inspector, judge, lord, master,
mayor, miss, mister, miz, monsieur, mr, mrs, ms, pro-
fessor, queen, reverend, sergeant, uncle.
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Placeholder names To induce a lexicon of place-
holder names, we remove the CURRENT-WORD fea-
ture from the model, and re-run the tagger on all
dialogue data. We then focus on terms which are
frequently labeled U-ADDR, indicating that they
are the sole token in the address (e.g., I’m/O per-
fectly/O calm/O, dude/U-ADDR.) We again per-
form a binomial test to obtain a list of terms whose
frequency of being labeled U-ADDR is significantly
higher than chance. We manually filter out 41 terms
from a list of 96 possible placeholder terms obtained
in the previous step. Most terms eliminated were
plural forms of placeholder names, such as fellas
and dudes; these are indeed address terms, but be-
cause they are plural, they cannot refer to a single
individual, as required by our model. Other false
positives were fillers, such as uh and um, which
were ocassionally labeled as I-ADDR by our tag-
ger. After manual filtering, we obtain the following
placeholder names: asshole, babe, baby, boss, boy,
bro, bud, buddy, cocksucker, convict, cousin, cow-
boy, cunt, dad, darling, dear, detective, doll, dude,
dummy, father, fella, gal, ho, hon, honey, kid, lad,
lady, lover, ma, madam, madame, man, mate, mis-
ter, mon, moron, motherfucker, pal, papa, partner,
peanut, pet, pilgrim, pop, president, punk, shithead,
sir, sire, son, sonny, sport, sucker, sugar, sweetheart,
sweetie, tiger.

4.2 Address term tokens
When constructing the content vectors xi→j and
xi←j , we run the address span tagger described
above, and include counts for the following types of
address spans:

• the bare first name, last name, and complete
name of individual j;

• any element in the title lexicon if labeled as B-
ADDR by the tagger;

• any element in the title or placeholder lexicon,
if labeled as U-ADDR by the tagger.

5 Address terms in a model of formality

Address terms play a key role in setting the formality
of a social interaction. However, understanding this
role is challenging. While some address terms, like
Ms and Sir, are frequent, there is a long tail of rare

Class F-measure Total Instances

I-ADDR 0.58 53
B-ADDR 0.800 483
U-ADDR 0.987 1864
L-ADDR 0.813 535
O-ADDR 0.993 35975

Table 3: Breakdown of f-measure and number of in-
stances by class in the test set.

terms whose meaning is more difficult to ascertain
from data, such as admiral, dude, and player. More-
over, the precise social meaning of address terms can
be context-dependent: for example, the term com-
rade may be formal in some contexts, but jokingly
informal in others.

Both problems can be ameliorated by adding so-
cial network structure. We treat Y = V as indicating
formality and Y = T as indicating informality. (The
notation invokes the concept of T/V systems from
politeness theory (Brown, 1987), where T refers to
the informal Latin second-person pronoun tu, and V

refers to the formal second-person pronoun vos.)
While formality relations are clearly asymmetric

in many settings, for simplicity we assume symmet-
ric relations: each pair of individuals is either on for-
mal or informal terms with each other. We therefore
add the constraints that θ←V = θ→V and θ←T = θ→T .
In this model, we have a soft expectation that triads
will obey transitivity: for example, if i and j have
an informal relationship, and j and k have an in-
formal relationship, then i and k are more likely to
have an informal relationship. After rotation, there
are four possible triads, TTT, TTV, TVV, and VVV.
The weights estimated for these triads will indicate
whether our prior expectations are validated. We
also consider a single pairwise feature template, a
metric from Adamic and Adar (2003) that sums over
the mutual friends of i and j, assigning more weight
to mutual friends who themselves have a small num-
ber of friends:

AA(i, j) =
∑

k∈Γ(i)∩k∈Γ(j)

1
log #|Γ(k)| , (10)

where Γ(i) is the set of friends of node i. (We
also tried simply counting the number of mu-
tual friends, but the Adamic-Adar metric performs
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slightly better.) This feature appears in the vector
f(yij , i, j, G), as defined in Equation 3.

6 Application to movie dialogues

We apply the ideas in this paper to a dataset
of movie dialogues (Danescu-Niculescu-Mizil and
Lee, 2011), including roughly 300,000 conversa-
tional turns between 10,000 pairs of characters in
617 movies. This dataset is chosen because it not
only provides the script of each movie, but also indi-
cates which characters are in dialogue in each line.
We evaluate on quantitative measures of predictive
likelihood (a token-level evaluation) and coherence
of the induced address term clusters (a type-level
evaluation). In addition, we describe in detail the
inferred signed social networks on two films.

We evaluate the effects of three groups of fea-
tures: address terms, mutual friends (using the
Adamic-Adar metric), and triads. We include ad-
dress terms in all evaluations, and test whether the
network features improve performance. Ablating
both network features is equivalent to clustering
dyads by the counts of address terms, but all eval-
uations were performed by ablating components of
the full model. We also tried ablating the text fea-
tures, clustering edges using only the mutual friends
and triad features, but we found that the resulting
clusters were incoherent, with no discernible rela-
tionship to the address terms.

6.1 Predictive log-likelihood

To compute the predictive log-likelihood of the ad-
dress terms, we hold out a randomly-selected 10%
of films. On these films, we use the first 50%
of address terms to estimate the dyad-label beliefs
qij(y). We then evaluate the expected log-likelihood
of the second 50% of address terms, computed as∑

y qij(y)
∑

n logP (xn | θy) for each dyad. This
is comparable to standard techniques for computing
the held-out log-likelihood of topic models (Wallach
et al., 2009).

As shown in Table 4, the full model substantially
outperforms the ablated alternatives. This indicates
that the signed triad features contribute meaningful
information towards the understanding of address
terms in dialogue.

Address
terms

Mutual
friends

Signed
triads

Log-likelihood

X -2133.28
X X -2018.21
X X -1884.02
X X X -1582.43

Table 4: Predictive log-likelihoods.

V-cluster T-cluster

sir FIRSTNAME

mr+LASTNAME man
mr+FIRSTNAME baby
mr honey
miss+LASTNAME darling
son sweetheart
mister+FIRSTNAME buddy
mrs sweetie
mrs+LASTNAME hon
FIRSTNAME+LASTNAME dude

Table 5: The ten strongest address terms for each cluster,
sorted by likelihood ratio.

6.2 Cluster coherence

Next, we consider the model inferences that re-
sult when applying the EM procedure to the entire
dataset. Table 5 presents the top address terms for
each cluster, according to likelihood ratio. The clus-
ter shown on the left emphasizes full names, titles,
and formal address, while the cluster on the right in-
cludes the given name and informal address terms
such as man, baby, and dude. We therefore use the
labels “V-cluster” and “T-cluster”, referring to the
formal and informal clusters, respectively.

We perform a quantitative evaluation of this clus-
tering through an intrusion task (Chang et al., 2009).
Specifically, we show individual raters three terms,
selected so that two terms are from the same clus-
ter, and the third term is from the other cluster; we
then ask them to identify which term is least like
the other two. Five raters were each given a list of
forty triples, with the order randomized. Of the forty
triples, twenty were from our full model, and twenty
were from a text-only clustering model. The raters
agreed with our full model in 73% percent of cases,
and agreed with the text-only model in 52% percent

1622



t

tt

+1.23

v

tt

-1.05

v

vt

-6.48

v

vv

+3.73

Figure 2: Estimated triad feature weights

of cases. By Fisher’s exact test, this difference is
statistically significant at p < 0.01. Both results are
significantly greater than chance agreement (33%)
by a binomial test, p < 0.001.

6.3 Network feature weights
Figure 2 shows the feature weights for each of the
four possible triads. Triads with homogeneous signs
are preferred, particularly TTT (all informal); het-
erogeneous triads are dispreferred, particularly TTV,
which is when two individuals have a formal rela-
tionship despite having a mutual informal tie. Less
dispreferred is TVV, when a pair of friends have an
informal relationship despite both having a formal
relationship with a third person; consider, for exam-
ple, the situation of two students and their professor.
In addition, the informal sign is preferred when the
dyad has a high score on the Adamic-Adar metric,
and dispreferred otherwise. This coheres with the
intuition that highly-embedded edges are likely to
be informal, with many shared friends.

6.4 Qualitative results
Analysis of individual movies suggests that the in-
duced tie signs are meaningful and coherent. For
example, the film “Star Wars” is a space opera, in
which the protagonists Luke, Han, and Leia attempt
to defeat an evil empire led by Darth Vader. The in-
duced signed social network is shown in Figure 3.
The V-edges seem reasonable: C-3PO is a robotic
servant, and Blue Leader is Luke’s military com-
mander (BLUE LEADER: Forget it, son. LUKE: Yes,
sir, but I can get him...). In contrast, the character
pairs with T-edges all have informal relationships:
the lesser-known character Biggs is Luke’s more ex-
perienced friend (BIGGS: That’s no battle, kid).

The animated film “South Park: Bigger, Longer
& Uncut” centers on three children: Stan, Cartman,
and Kyle; it also involves their parents, teachers, and
friends, as well as a number of political and religious
figures. The induced social network is shown in Fig-

BEN

BLUE
LEADER

HAN

LUKE

C-3PO

LEIA

BIGGS

Figure 3: Induced signed social network from the film
Star Wars. Blue solid edges are in the V-cluster, red
dashed edges are in the T-cluster.

ure 4. The children and their associates mostly have
T-edges, except for the edge to Gregory, a British
character with few speaking turns. This part of the
network also has a higher clustering coefficient, as
the main characters share friends such as Chef and
The Mole. The left side of the diagram centers on
Kyle’s mother, who has more formal relationships
with a variety of authority figures.

7 Related work

Recent work has explored the application of signed
social network models to social media. Leskovec
et al. (2010b) find three social media datasets from
which they are able to identify edge polarity; this en-
ables them to compare the frequency of signed triads
against baseline expectations, and to build a classi-
fier to predict edge labels (Leskovec et al., 2010a).
However, in many of the most popular social media
platforms, such as Twitter and Facebook, there is no
metadata describing edge labels. We are also inter-
ested in new applications of signed social network
analysis to datasets outside the realm of social me-
dia, such as literary texts (Moretti, 2005; Elson et al.,
2010; Agarwal et al., 2013) and movie scripts, but in
such corpora, edge labels are not easily available.

In many datasets, it is possible to obtain the tex-
tual content exchanged between members of the net-
work, and this content can provide a signal for net-
work structure. For example, Hassan et al. (2012)
characterize the sign of each network edge in terms
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Figure 4: Induced signed social network from the film
South Park: Bigger, Longer & Uncut. Blue solid edges
are in the V-cluster, red dashed edges are in the T-cluster.

of the sentiment expressed across it, finding that
the resulting networks cohere with the predictions
of structural balance theory; similar results are ob-
tained by West et al. (2014), who are thereby able
to predict the signs of unlabeled ties. Both papers
leverage the relatively mature technology of senti-
ment analysis, and are restricted to edge labels that
reflect sentiment. The unsupervised approach pre-
sented here could in principle be applied to lexicons
of sentiment terms, rather than address terms, but we
leave this for future work.

The issue of address formality in English was con-
sidered by Faruqui and Padó (2011), who show that
annotators can label the formality of the second per-
son pronoun with agreement of 70%. They use these
annotations to train a supervised classifier, obtain-
ing comparable accuracy. If no labeled data is avail-
able, annotations can be projected from languages
where the T/V distinction is marked in the mor-
phology of the second person pronoun, such as Ger-
man (Faruqui and Padó, 2012). Our work shows that
it is possible to detect formality without labeled data
or parallel text, by leveraging regularities across net-
work structures; however, this requires the assump-
tion that the level of formality for a pair of individu-
als is constant over time. The combination of our
unsupervised approach with annotation projection
might yield models that attain higher performance
while capturing change in formality over time.

More broadly, a number of recent papers have
proposed to detect various types of social relation-
ships from linguistic content. Of particular interest
are power relationships, which can be induced from
n-gram features (Bramsen et al., 2011; Prabhakaran
et al., 2012) and from coordination, where one par-
ticipant’s linguistic style is asymmetrically affected
by the other (Danescu-Niculescu-Mizil et al., 2012).
Danescu-Niculescu-Mizil et al. (2013) describe an
approach to recognizing politeness in text, lexical
and syntactic features motivated by politeness the-
ory. Anand et al. (2011) detect “rebuttals” in argu-
mentative dialogues, and Hasan and Ng (2013) em-
ploy extra-linguistic structural features to improve
the detection of stances in such debates. In all of
these cases, labeled data is used to train supervised
model; our work shows that social structural regu-
larities are powerful enough to support accurate in-
duction of social relationships (and their linguistic
correlates) without labeled data.

8 Conclusion

This paper represents a step towards unifying the-
oretical models of signed social network structures
with linguistic accounts of the expression of social
relationships in dialogue. By fusing these two phe-
nomena into a joint probabilistic model, we can in-
duce edge types with robust linguistic signatures and
coherent structural properties. We demonstrate the
effectiveness of this approach on movie dialogues,
where it induces symmetric T/V networks and their
linguistic signatures without supervision. Future
work should evaluate the capability of this approach
to induce asymmetric signed networks, the utility
of partial or distant supervision, and applications to
non-fictional dialogues.
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