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Abstract

User-generated passwords tend to be memo-
rable, but not secure. A random, computer-
generated 60-bit string is much more secure.
However, users cannot memorize random 60-
bit strings. In this paper, we investigate meth-
ods for converting arbitrary bit strings into En-
glish word sequences (both prose and poetry),
and we study their memorability and other
properties.

1 Introduction

Passwords chosen by users (e.g., “Scarlet%2”) are
easy to remember, but not secure (Florencio and
Herley, 2007). A more secure method is to use a
system-assigned 60-bit random password, such as
0010100010100...00101001. However, this string is
hard to memorize. In this paper, we convert such
strings into English phrases, in order to improve
their memorability, using natural language process-
ing to select fluent passphrases.

Our methods are inspired by an XKCD cartoon1

that proposes to convert a randomly-chosen 44-bit
password into a short, nonsensical sequence of En-
glish words. The proposed system divides the 44-bit
password into four 11-bit chunks, and each chunk
provides an index into a 2048-word English dictio-
nary. XKCD’s example passphrase is correct horse
battery staple:

1http://xkcd.com/936

44-bit password English phrase
--------------- --------------
10101101010 -> correct
10010110101 -> horse
01010101010 -> battery
10110101101 -> staple

The four-word sequence is nonsense, but it is easier
to memorize than the 44-bit string, and XKCD hy-
pothesizes that users can improve memorability by
building an image or story around the four words.

In this paper, we investigate other methods for
converting a system-generated bit string into a mem-
orable sequence of English words. Our methods pro-
duce whole sentences, e.g.

Fox news networks are seeking
views from downtown streets.

as well as short poems, e.g.

Diversity inside replied,
Soprano finally reside.

We also move to 60-bit passwords, for better secu-
rity. One source claims:

As of 2011, available commercial prod-
ucts claim the ability to test up to
2,800,000,000 passwords a second on a
standard desktop computer using a high-
end graphics processor.2

If this is correct, a 44-bit password would take one
hour to crack, while a 60-bit password would take
11.3 years.

Our concrete task is as follows:
2http://en.wikipedia.org/wiki/Password cracking
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Method Name Average
Number
of Words

Average
Number of
Characters

AVG LM
Score

Capacity Sample Passwords

XKCD 4 31.2 -62.42 1
fees wesley inmate decentralization
photo bros nan plain
embarrass debating gaskell jennie

First Letter
Mnemonic

15 87.7 -61.20 2 · 1051

It makes me think of union pacific resource
said it looks like most commercial networks .
Some companies keep their windows rolled
down so you don’t feel connected to any
community .
Contains extreme violence and it was a matter
of not only its second straight loss .

All Letter
Method

11.8 70.8 -58.83 3 · 1056

Parking and utilities have been searching for a
third straight road win .
It was the same girl and now a law professor in
the former east german town .
I know a man who said he was chief of staffs
in a real and deep conversation .

Frequency
Method

9.7 55.5 -52.88 6 · 1014

Fox news networks are seeking views from
downtown streets .
The review found a silver tree through
documents and artifacts .
These big questions are bothering me a bit
stronger .

Poetry 7.2 52.7 -73.15 106

Joanna kissing verified
soprano finally reside
Diversity inside replied
retreats or colors justified
Surprise celebrity without
the dragging allison throughout

Table 1: Comparison of methods that convert system-assigned 60-bit strings into English word sequences. Average
word lengths range from 4 (XKCD) to 15 (First Letter Mnemonic). Average character lengths include spaces. LM
score refers to the log probability assigned by a 5-gram English language model trained on the Gigaword corpus.
Capacity tells how many English word sequences are available for an individual 60-bit input string.
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• Input: A random, system-generated 60-bit
password.

• Output: An English word sequence with two
properties:

– It is memorable.
– We can deterministically recover the orig-

inal input 60-bit string from it.

This implies that we map 260 distinct bit strings
into 260 distinct English sequences. If a user memo-
rizes the English word sequence supplied to them,
then they have effectively memorized the 60-bit
string.

2 Password Generation Methods

We now describe our baseline password generation
method, followed by four novel methods. In Sec-
tion 3 we experimentally test their memorability.

2.1 XKCD Baseline

Our baseline is a version of XKCD. Instead of a
2048-word dictionary, we use a 32,7868-word dic-
tionary. We assign each word a distinct 15-bit code.

At runtime, we take a system-assigned 60-bit
code and split it into four 15-bit sequences. We then
substitute each 15-bit segment with its correspond-
ing word. By doing this, we convert a random 60-bit
code into a 4-word password.

The first row of Table 1 shows three sample
XKCD passwords, along with other information,
such as the average number of characters (including
spaces).

2.2 First Letter Mnemonic

XKCD passwords are short but nonsensical, so we
now look into methods that instead create longer but
fluent English sentences. We might think to guaran-
tee fluency by selecting sentences from an already-
existing text corpus, but no corpus is large enough to
contain 260 (∼ 1018) distinct sentences. Therefore,
we must be able to synthesize new English strings.

In our first sentence generation method (First Let-
ter Mnemonic), we store our input 60-bit code in the
first letters of each word. We divide the 60-bit code
into 4-bit sections, e.g., ‘0100-1101-1101-...’. Every
4-bit sequence type corresponds to an English letter

Bit
Sequence

Mapped
Character

Bit
Sequence

Mapped
Character

0000 e 1000 r,x
0001 t 1001 d,j
0010 a 1010 l,k
0011 o 1011 c,v
0100 i 1100 u,b
0101 n 1101 m,p
0110 s,z 1110 w,y
0111 h,q 1111 f,g

Table 2: Mapping function between 4-bit sequences and
English letters in the First Letter Mnemonic method.

or two, per Table 2. We build a word-confusion net-
work (or “sausage lattice”) by replacing each 4-bit
code with all English words that start with a corre-
sponding letter, e.g.:
0100 1101 1111 ... 0011
---- ---- ---- ----
income my frog ... octopus
is miner feast ... of
inner priest gratuitous ... oregon
... ... ... ...

This yields about 1074 paths, some good (is my
frog. . . ) and some bad (income miner feast. . . ).
To select the most fluent path, we train a 5-gram
language model with the SRILM toolkit (Stolcke,
2002) on the English Gigaword corpus.3 SRILM
also includes functionality for extracting the best
path from a confusion network.

Table 1 shows sample sentences generated by the
method. Perhaps surprisingly, even though the sen-
tences are much longer than XKCD (15 words ver-
sus 4 words), the n-gram language model (LM)
score is a bit better. The sentences are locally flu-
ent, but not perfectly grammatical.

We can easily reconstruct the original 60-bit code
by extracting the first letter of each word and apply-
ing the Table 2 mapping in reverse.

2.3 All Letter Method

Most of the characters in the previous methods seem
“wasted”, as only the word-initial letters bear in-
formation relevant to reconstructing the original 60-

3https://catalog.ldc.upenn.edu/LDC2011T07
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Bit Sequence Mapped Characters
0 e, o, i, h, r, c, u, f, g, b, v, x ,q
1 t, a, n, s, d, l, m, w, y, p, k, j, z

Table 3: Mapping function between bits and English
characters in the All Letter Method.

bit string. Our next technique (All Letter Method)
non-deterministically translates every bit into an En-
glish letter, per Table 3. Additionally, we non-
deterministically introduce a space (or not) between
each pair of letters.

This yields 4 · 1084 possible output strings per in-
put, 3 ·1056 of which consist of legal English words.
From those 3 · 1056 strings, we choose the one that
yields the best word 5-gram score.

It is not immediately clear how to process a letter-
based lattice with a word-based language model. We
solve this search problem by casting it as one of ma-
chine translation from bit-strings to English. We cre-
ate a phrase translation table by pairing each English
word with a corresponding “bit phrase”, using Ta-
ble 3 in reverse. Sample entries include:

din ||| 1 0 1
through ||| 1 0 0 0 0 0 0
yields ||| 1 0 0 1 1 1

We then use the Moses machine translation toolkit
(Koehn et al., 2007) to search for the 1-best transla-
tion of our input 60-bit string, using the phrase table
and a 5-gram English LM, disallowing re-ordering.

Table 1 shows that these sentences are shorter
than the mnemonic method (11.8 words versus 15
words), without losing fluency.

Given a generated English sequence, we can de-
terministically reconstruct the original 60-bit input
string, using the above phrase table in reverse.

2.4 Frequency Method

Sentence passwords from the previous method con-
tain 70.8 characters on average (including spaces).
Classic studies by Shannon (1951) and others esti-
mate that printed English may ultimately be com-
pressible to about one bit per character. This im-
plies we might be able to produce shorter output (60
characters, including space) while maintaining nor-
mal English fluency.

Our next technique (Frequency Method) modifies
the phrase table by assigning short bit codes to fre-
quent words, and long bit codes to infrequent words.
For example:

din ||| 0 1 1 0 1 0 1 0 0
through ||| 1 1 1 1
yields ||| 0 1 0 1 1 1 0 1

Note that the word din is now mapped to a 9-bit
sequence rather than a 3-bit sequence. More pre-
cisely, we map each word to a random bit sequence
of length bmax(1,−α × log P(word) + β)c. By
changing variables α and β we can vary between
smooth but long sentences (α = 1 and β = 0) to
XKCD-style phrases (α = 0 and β = 15).

Table 1 shows example sentences we obtain with
α = 2.5 and β = −2.5, yielding sentences of 9.7
words on average.

2.5 Poetry
In ancient times, people recorded long, historical
epics using poetry, to enhance memorability. We fol-
low this idea by turning each system-assigned 60-bit
string into a short, distinct English poem. Our for-
mat is the rhyming iambic tetrameter couplet:

• The poem contains two lines of eight syllables
each.

• Lines are in iambic meter, i.e., their syllables
have the stress pattern 01010101, where 0 rep-
resents an unstressed syllable, and 1 represents
a stressed syllable. We also allow 01010100, to
allow a line to end in a word like Angela.

• The two lines end in a pair of rhyming words.
Words rhyme if their phoneme sequences
match from the final stressed vowel onwards.
We obtain stress patterns and phoneme se-
quences from the CMU pronunciation dictio-
nary.4

Monosyllabic words cause trouble, because their
stress often depends on context (Greene et al., 2010).
For example, eighth is stressed in eighth street, but
not in eighth avenue. This makes it hard to guar-
antee that automatically-generated lines will scan as
intended. We therefore eject all monosyllabic words

4http://www.speech.cs.cmu.edu/cgi-bin/cmudict
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from the vocabulary, except for six unstressed ones
(a, an, and, the, of, or).

Here is a sample poem password:

The le-gen-da-ry Ja-pan-ese
↓ ↑ ↓ ↑ ↓ ↑ ↓ ↑
Sub-si-di-ar-ies ov-er-seas
↓ ↑ ↓ ↑ ↓ ↑ ↓ ↑

Meter and rhyme constraints make it difficult to
use the Moses machine translation toolkit to search
for fluent output, as we did above; the decoder state
must be augmented with additional short- and long-
distance information (Genzel et al., 2010).

Instead, we build a large finite-state acceptor
(FSA) with a path for each legal poem. In each path,
the second line of the poem is reversed, so that we
can enforce rhyming locally.

The details of our FSA construction are as fol-
lows. First, we create a finite-state transducer (FST)
that maps each input English word onto four se-
quences that capture its essential properties, e.g.:

create -> 0 1
create -> 0 1 EY-T
create -> 1r 0r
create -> EY-T 1r 0r

Here, EY-T represents the rhyme-class of words
like create and debate. The r indicates a stress pat-
tern in the right-to-left direction.

We then compose this FST with an FSA that only
accepts sequences of the form:
0 1 0 1 0 1 0 1 X X 1r 0r 1r 0r 1r 0r 1r 0r

where X and X are identical rhyme classes (e.g., EY-
T and EY-T).

It remains to map an arbitrary 60-bit string onto
a path in the FSA. Let k be the integer representa-
tion of the 60-bit string. If the FSA contains exactly
260 paths, we can easily select the kth path using
the following method. At each node N of the FSA,
we store the total number of paths from N to the
final state—this takes linear time if we visit states
in reverse topological order. We then traverse the
FSA deterministically from the start state, using k to
guide the path selection.

Our FSA actually contains 279 paths, far more
than the required 260. We can say that the informa-
tion capacity of the English rhyming iambic tetram-
eter couplet is 79 bits! Some are very good:

Sophisticated potentates
misrepresenting Emirates.

The supervisor notified
the transportation nationwide.

Afghanistan, Afghanistan,
Afghanistan, and Pakistan.

while others are very bad:
The shirley emmy plebiscite
complete suppressed unlike invite

The shirley emmy plebiscite
complaints suppressed unlike invite

The shirley emmy plebiscite
complaint suppressed unlike invite

Fortunately, because our FSA contains over a mil-
lion times the required 260 paths, we can avoid these
bad outputs. For any particular 60-bit string, we
have a million poems to choose from, and we out-
put only the best one.

More precisely, given a 60-bit input string k, we
extract not only the kth FSA path, but also the
k + i · 260 paths, with i ranging from 1 to 999,999.
We explicitly list out these paths, reversing the sec-
ond half of each, and score them with our 5-gram
LM. We output the poem with the 1-best LM score.
Table 1 shows sample outputs.

To reconstruct the original 60-bit string k, we first
find the FSA path corresponding to the user-recalled
English string (with second half reversed). We use
depth-first search to find this path. Once we have the
path, it is easy to determine which numbered path
it is, lexicographically speaking, using the node-
labeling scheme above to recover k.

3 Experiments

We designed two experiments to compare our meth-
ods.

The first experiment tests the memorability of
passwords. We asked participants to memorize a
password from a randomly selected method5 and re-
call it two days later. To give more options to users,

5In all experiments, we omit the First Letter Mnemonic, due
to its low performance in early tests.
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Method Participants Recalls Correct
Recalls

XKCD 16 12 58.3%
All Letter
Method

15 9 33.3%

Frequency
Method

15 10 40.0%

Poetry 16 13 61.5%

Table 4: Memorability of passwords generated by our
methods. “Recalls” indicates how many participants re-
turned to type their memorized English sequences, and
“Correct Recalls” tells how many sequences were accu-
rately remembered.

Method Name User preference
XKCD 5%

All Letter Method 39%
Frequency Method 37%

Poetry 19%

Table 5: User preferences among passwords generated by
our methods.

we let them select from the 10-best passwords ac-
cording to the LM score for a given 60-bit code.
Note that this flexibility is not available for XKCD,
which produces only one password per code.

62 users participated in this experiment, 44 re-
turned to recall the password, and 22 successfully
recalled the complete password. Table 4 shows that
the Poetry and XKCD methods yield passwords that
are easiest to remember.

In the second experiment, we present a separate
set of users with passwords from each of the four
methods. We ask which they would prefer to use,
without requiring any memorization. Table 5 shows
that users prefer sentences over poetry, and poetry
over XKCD.

4 Analysis

Table 4 shows that the Poetry and XKCD methods
yield passwords that are easiest to memorize. Com-
plete sentences generated by the All Letter and Fre-
quency Methods are harder to memorize. At the
same time Table 5 shows that people like the sen-
tences better than XKCD, so it seems that they over-
estimate their ability to memorize a sentence of 10-
12 words. Here are typical mistakes (S = system-

generated, R = as recalled by user):

(S) Still looking for ruben sierra could
be in central michigan

(R) I am still looking for ruben sierra
in central michigan

(S) That we were required to go to
college more than action movies

(R) We are required to go to
college more than action movies

(S) No dressing allowed under canon law
in the youth group

(R) No dresses allowed under canon law
for youth groups

Users remember the gist of a sentence very well,
but have trouble reproducing the exact wording.
Post-experiment interview reveal this to be partly
an effect of overconfidence. Users put little mental
work into memorizing sentences, beyond choosing
among the 10-best alternatives presented to them.
By contrast, they put much more work into mem-
orizing an XKCD phrase, actively building a mental
image or story to connect the four otherwise unre-
lated words.

5 Future Directions

Actually, we can often automatically determine that
a user-recalled sequence is wrong. For example,
when we go to reconstruct the 60-bit input string
from a user-recalled sequence, we may find that we
get a 62-bit string instead. We can then automati-
cally prod the user into trying again, but we find that
this is not effective in practice. An intriguing di-
rection is to do automatic error-correction, i.e., take
the user-recalled sequence and find the closest match
among the 260 English sequences producible by the
method. Of course, it is a challenge to do this with
1-best outputs of an MT system that uses heuristic
beam search, and we must also ensure that security
is maintained.

We may also investigate new ways to re-rank n-
best lists. Language model scoring is a good start,
but we may prefer vivid, concrete, or other types
of words, or we may use text data associated with
the user (papers, emails) for secure yet personalized
password generation.
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6 Related Work

Gasser (1975), Crawford and Aycock (2008), and
Shay et al. (2012) describe systems that produce
meaningless but pronounceable passwords, such as
“tufritvi” . However, their systems can only assign
∼ 230 distinct passwords.

Jeyaraman and Topkara (2005) suggest generat-
ing a random sequence of characters, and finding
a mnemonic for it in a text corpus. A limited cor-
pus means they again have a small space of system-
assigned passwords. We propose a similar method in
Section 2.2, but we automatically synthesize a new
mnemonic word sequence.

Kurzban (1985) and Shay et al. (2012) use a
method similar to XKCD with small dictionaries.
This leads to longer nonsense sequences that can be
difficult to remember.

7 Conclusion

We introduced several methods for generating se-
cure passwords in the form of English word se-
quences. We learned that long sentences are seem-
ingly easy to remember, but actually hard to repro-
duce, and we also learned that our poetry method
produced relatively short, memorable passwords
that are liked by users.
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