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Abstract

Natural language processing (NLP) annota-
tion projects employ guidelines to maximize
inter-annotator agreement (IAA), and models
are estimated assuming that there is one single
ground truth. However, not all disagreement is
noise, and in fact some of it may contain valu-
able linguistic information. We integrate such
information in the training of a cost-sensitive
dependency parser. We introduce five differ-
ent factorizations of IAA and the correspond-
ing loss functions, and evaluate these across
six different languages. We obtain robust im-
provements across the board using a factoriza-
tion that considers dependency labels and di-
rectionality. The best method-dataset combi-
nation reaches an average overall error reduc-
tion of 6.4% in labeled attachment score.

1 Introduction

Typically, NLP annotation projects employ guide-
lines to maximize inter-annotator agreement. Pos-
sible inconsistencies are resolved by adjudication,
and models are induced assuming there is one sin-
gle ground truth. However, there exist linguistically
hard cases where there is no clear answer (Zeman,
2010; Manning, 2011), and incorporating such dis-
agreements into the training of a model has proven
helpful for POS tagging (Plank et al., 2014a; Plank
et al., 2014b).

Inter-annotator agreement (IAA) is straight-
forward to calculate for POS, but not for depen-
dency trees. There is no well-established standard
for computing agreement on trees (Skjerholt, 2014).
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For a dependency tree, annotators can disagree in
attachment, labeling, or both. We implement dif-
ferent strategies, i.e., factorizations (§2), to capture
disagreement on specific syntactic phenomena.

Our hypothesis is that a dependency parser can be
informed of disagreements to regularize over anno-
tators’ biases. Testing our hypothesis requires the
availability of doubly-annotated data, and involves
two steps: 1) how to factorize attachment or labeling
disagreements; and ii) how to inform the parser of
them during learning (§3).

2 Factorizations

Assume a sample of sentences annotated by annota-
tors A1 and Ao. With such a sample we can estimate
probabilities of the two annotators’ disagreeing on
the annotation of a word or span, relative to some de-
pendency tree factorization. We factorize disagree-
ment on dependency tree annotations relative to four
properties of the annotated dependency edges: the
POS of the dependent, the POS of the head, the la-
bel of the edge and the direction (left or right) of
the head with regards to the dependent. This section
describes the different factorizations.

We present five factorizations, depicted in Fig-
ure 1. With artificial root notes, all words in a depen-
dency tree have one incoming edge. This means that
in our sample, any word w; has two (headld, label)
annotations, i.e., (h1,l;) and (hg,ls) given by A;
and A,, respectively, with POS(-) being a function
from word indices to POS. The five factorizations
are as follows:
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Figure 1: Factorizations: a) LABEL, b) LABELD; c)
CHILDPOSD, d) HEADPOS and ¢) HEADPOSD. Red and
green depict different choices by annotators A; and As.

a) LABEL: disagreement over label pairs, regard-
less of attachment (hq,h2). That s, (h1,11) and
(ha, l2) count as disagreement, iff [; # [s.

b) LABELD, same as LABEL, but incorporating
edge direction. That is, (hy,l;) and (hg,l2)
count as disagreement, for any j, k € hy, ho,
iffhj <1< hk orlp 7él2.

¢) CHILDPOSD, i.e., disagreement on attachment
direction given POS(z). That is, for POS(z),
(h1,11) and (hg,l2) count as disagreement, iff
hj <1 < hg.

d) HEADPOS: disagreement on head POS. That
is, (h1,11) and (hg,l2) count as disagreement,
iff POS(h1)#POS(hs).

e) HEADPOSD, i.e., HEADPOS, plus direction.
That is, (h1,1) and (hg,[2) count as disagree-
ment, iff POS(h1)#POS(h2) or hj < i < hy.

Each factorization yields a symmetric confusion ma-
trix. In our Norwegian data (§4), for instance, for
LABEL there are 834 words that have been labeled
as ATR (attribute) by both annotators, while there
are 44 cases where one annotator has given the ATR
label and the other has given the ADV (adverbial)
label. For LABELD, there are 968 words that have
been labeled as ADV where both annotators agree
on the head being on the left side of the word,
whereas there are 9 cases where the annotators agree
on ADV label but not on the direction of the head.
These 9 cases count as disagreements for LABELD
but not for LABEL.
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lang train test [ p
NO 13.7k/209k  5.8k/96.7k 29 19
EN 3.6k/70k  71.0k/20.3k 30 44
DA 4.2k/74k  11.2k/23.4k 31 25
CA 39k/73k  1.7k/34.4k 27 11
HR 3.1k/79k  1.3k/35.5k 26 27
FI 9.1k/123k  3.9k/54.4k 45 12

Table 1: Data statistics: number of sentences/tokens, de-
pendency labels I, POS tags p for NO (Norwegian), EN
(English), DA (Danish), CA (Catalan), Croatian (HR)
and Finnish (FI); t=canonical test split available.

3 Cost-sensitive updates

We use the cost-sensitive perceptron classifier, fol-
lowing Plank et al. (2014a), but extend it to
transition-based dependency parsing, where the pre-
dicted values are transitions (Goldberg and Nivre,
2012). Given a gold y; and predicted label g; (POS
tags or transitions), the loss is weighted by (9, y;):

L (93, 9i) = (Ui, yi) max(0, —y;w - X;)

Whenever a transition has been wrongly predicted,
we retrieve the predicted edge and compare it to the
gold dependency to calculate y. y(y;, y;) is then the
inverse of the confusion probability estimated from
our sample of doubly-annotated data. For example,
using the factorization LABEL, if the parser predicts
w; to be SUBJECT and the gold annotation is OB-
JECT, the confusion probability is the number of
times one annotator said SUBJECT while the other
said OBJECT out of the times one annotator said one
of them. In LABELD, A; and A5 can disagree even
if both say the grammatical function of some word
w; is SUBJECT, namely if one says the subject is left
of w;, and the other says it is right of w;. The con-
fusion probability is then the count of disagreements
over the total number of cases where both annotators
said a word was SUBJECT.

In our baseline model, v(;, y;) = 1. The values
for our cost-sensitive systems (LABEL, LABELD,
CHILDPosD, HEADPOS, HEADPOSD) are never
above 1, which means that we are selectively under-
fitting the parser for specific syntactic phenomena.
In other words, we use the doubly-annotated data to
regularize our model, hopefully preventing overfit-
ting to annotators’ biases.



4 Data

We use six treebanks (Buch-Kromann et al., 2003;
Buch-Kromann et al., 2007; Arias et al., 2014; Sol-
berg et al., 2014; Agi¢ and Merkler, 2013; Haveri-
nen et al., 2010) for which we could get a sample
of doubly-annotated data. All these treebanks are
directly developed as dependency treebanks, instead
of being converted from constituent treebanks. Ta-
ble 1 gives overview statistics of the treebanks, Ta-
ble 2 lists the sizes of the doubly-annotated samples,
as well as F1 scores between annotators and « val-
ues (Skjerholt, 2014). The doubly-annotated sam-
ples are solely used to estimate confusion probabili-
ties, and not for training or testing. When a treebank
had no canonical train/test split, we took the final
30% for testing.

between annotator:

lang sents tokens LAS UAS LA «plain
NO 400 53k 9470 96.47 96.62  0.984
EN 264 55k 88.44 93.83 9195 0925
DA 162 2.4k 9043 96.12 9240  0.957
CA 63 1.3k 9448 9826 9564 0978
HR 100 2.4k 78.89 89.16 84.07 0.939
FI 400 5.1k 8345 88.77 89.83  0.950

Table 2: Statistics of the doubly-annotated data.

S Experiments

In our experiments, we use redshi ft,1 a
transition-based arc-eager dependency parser that
implements the dynamic oracle (Goldberg and
Nivre, 2012) with averaged perceptron training. We
modified the parser? to read confusion matrices and
weigh the updates with the respective v. We com-
pare the five (§2) factorized systems to a baseline
system that does not take confusion probabilities
into account, i.e., standard redshift. Through-
out the experiments, we fix the number of iterations
to 5, and we use pseudo-projectivization (Nivre and
Nilsson, 2005).> The parser does not include mor-
phological features, which lowers performance for
morphological rich languages like FI. We report la-
beled attachment scores (LAS) incl. punctuation.
"https://github.com/sylloglsm/redshift
>The modified code, as well as the confusion matrices for all
factorizations, is available at https://bitbucket.org/

lowlands/iaa-parsing
315-33% of the sentences contain non-projectivities.
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We use bootstrap sampling in all our experiments
in order to get more reliable results. This method
allows abstracting away from biases—in sampling
and annotation—of training and test splits. We
use two complementary evaluation methods: cross-
validation within the training data, and learning
curves against the test set. We calculate significance
using the approximate randomization test (Noreen,
1989) with 10k iterations.

Cross-validation In this setup, we perform 50
runs of 5-fold cross validation on bootstrap-based
samples of the training data. This allows us to gauge
the effect of our factorization without committing to
a certain test set. We report on the average of the
total of 250 runs.

Learning curve To calculate the learning curves,
we train the parser on increasing amounts of train-
ing data, bootstrap-sampled in steps of 10%, and
evaluate against the test set. Each 10% increment
is repeated k£ = 50 times. We finally report average
overall error reduction over the baseline.

6 Results

Cross-validation The results for cross-validation
are shown in Table 3. For 5 out of the 6 languages
we get significant improvements over the baseline
with some factorization. We obtain improvements
on all treebanks using LABELD, and on five out of
six using CHILDPOSD. For CA, with the smallest
doubly-annotated sample, results are not as consis-
tent across the two evaluation methods.

Learning curve Table 4 summarizes the overall
average error reduction over the 10-step bootstrap-
based learning curve (with 50 runs at each step).
We get consistent improvements for languages for
which we have a sample of 100+ sentences (Ta-
ble 2). Again, the most robust factorization is LA-
BELD. Figure 2 shows the learning curves for the
system with the highest error reduction (NO with
CHILDPOSD).

Additional studies In order to evaluate whether
our results are meaningful and not just artifacts
of random regularization, we performed a sanity
check for the best performing system and factoriza-
tion (i.e., NO with CHILDPOSD factorization). We



BASELINE | CHILDPOSD LABEL LABELD HEADPOS HEADPOSD
NO 90.98 92.67+ 91.16 91.34 92.08x% 90.48
EN 81.72 83.48x% 80.35 83.05x% 85.89x% 85.91x«
DA 80.56 83.67* 82.90x% 82.47x« 83.23x 84.11x«
CA 83.78 83.26 84.21x« 83.79 82.84 82.61
HR 76.94 78.07 78.22 77.52 79.49* 78.71*
FI 66.19 66.74 64.88 67.18 65.63 65.27

Table 3: Crossvalidation results (in LAS incl. punctuation).

Gray: below baseline. Best factorization per language in

boldface. Significance at p < 0.01 (computed over runs and wrt baseline) is indicated by * .
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Figure 2: Bootstrap learning curve (k=50) for NO with
CHILDPOSD. Black: LAS, green: UAS; solid line: base-
line; dashed line: IAA-weighted model.

‘ CHILDPOSD LABEL LABELD HEADPOS HEADPoOSD
NO 6.4% 0.6% 0.7% 3.3% 1.2%
EN 2.0% 2.6% 2.9% 5.3% 3.8%
DA 0.7% 1.6% 1.0% 2.0% 1.0%
CA 2.0% -0.1% -0.1% -2.9% -2.8%
HR -0.2% 0.3% 0.7% 0.1% 0.1%
FI 04%  -0.4% 0.1% -0.1% -0.70%

Table 4: Overall avg. error red. across learning curves.

shuffled the confusion matrix and ran the bootstrap
learning curve with k¥ = 50 repetitions, for five dif-
ferent shufflings. The mean over the five runs for the
overall average error reductions is negative (-0.38%,
compared to the 2.4% mean for the original, non-
shuffled version). We thus conclude that our factor-
izations capture linguistically plausible information
rather than random noise.

7 Related Work

Plank et al. (2014a) propose IAA-weighted cost-
sensitive learning for POS tagging. We extend their
line of work to dependency parsing.

A single sentence can have more than one plausi-
ble dependency annotation. Some researchers have
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proposed evaluation metrics that do not penalize dis-
agreements (Schwartz et al., 2011; Tsarfaty et al.,
2011), while others have argued that we should in-
stead ensure the consistency of treebanks (Dickin-
son, 2010; Manning, 2011; McDonald et al., 2013).
Others have claimed that because of these ambigu-
ities, only downstream evaluations are meaningful
(Elming et al., 2013).

Syntactic annotation disagreement has typically
been studied in the context of treebank develop-
ment. Haverinen et al. (2012), for example, ana-
lyze annotator disagreement for Finnish dependency
syntax, and compare it against parser performance.
Skjerholt (2014) use doubly-annotated data to eval-
uate various agreement metrics. Our paper differs
from both lines of research in that we leverage dis-
agreements from doubly-annotated data to obtain
more robust models. While we agree that evaluation
metrics should probably reflect disagreements, we
show that our learning algorithms can indeed bene-
fit from information about disagreement, also using
standard performance metrics.

8 Conclusions

We have evaluated five different factorizations on six
treebanks to evaluate the impact of IAA-weighted
learning for dependency parsing, obtaining promis-
ing results. The findings support our hypothesis that
annotator disagreement is informative for parsing.
The LABELD factorization—which takes both la-
beling and word order into account—is the overall
most robust factorization across all languages. How-
ever, the best factorization for each language varies.
This variation can be a result of the morphosyntax of
the language, but also of the dependency annotation
formalisms, annotation method, training corpus and
size of the doubly-annotated sample.
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