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Abstract

Developing a system that can automatically
respond to a user’s utterance has recently be-
come a topic of research in natural language
processing. However, most works on the topic
take into account only a single preceding ut-
terance to generate a response. Recent works
demonstrate that the application of statisti-
cal machine translation (SMT) techniques to-
wards monolingual dialogue setting, in which
a response is treated as a translation of a stim-
ulus, has a great potential, and we exploit the
approach to tackle the context-dependent re-
sponse generation task. We attempt to extract
relevant and significant information from the
wider contextual scope of the conversation,
and incorporate it into the SMT techniques.
We also discuss the advantages and limitations
of this approach through our experimental re-
sults.

1 Introduction

Various approaches have been applied to the re-
sponse generation task, each with its own merits
and drawbacks. While one of the main concerns on
the topic has been the semantic relevance of the re-
sponse, it has mostly been discussed in terms of a
limited conversational scope, mostly a single utter-
ance. This provides us with a room for research on a
wider scope of conversation, which reflects not only
a single preceding utterance, but the overall context
of the current conversation.

SMT-based data-driven approach to the response
generation task was recently introduced by Ritter
et al. (2011). They demonstrated that it was

better-suited for response generation than some of
the previous approaches, including information re-
trieval approach. We exploit this model to address
the above-mentioned problem of reflecting a wider
scope of conversation.

We present a context-dependent model where we
attempt to generate more semantically relevant and
diverse responses by adding the semantically impor-
tant words from previous utterances to the most re-
cent one. By doing so, we hope not only to diversify
the responses, but also to be able to take semantics
from broader scope of the conversation into account.

2 Response Generation using SMT

2.1 Overview

Ritter et al. (2011) remarked that stimulus-response
pairs in the same language often have a strong struc-
tural resemblance, as shown in the example conver-
sation below, that may be exploited in SMT plat-
forms. In the usual SMT setting, a string f in a
source language is translated into a string e in a
target language according to probability distribution
p(e|f ) (Brown et al., 1993). Ritter et al. applied the
SMT techniques to monolingual conversation set-
ting, and treated the response as the translation of
the stimulus.

Stimulus: What is your hobby?
Response: My hobby is hiking.

2.2 Challenges

Although the application of SMT to the response
generation task demonstrates potentials, it has a few
drawbacks due to its nature.
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First, the lengths of the source and target utter-
ances are not correlated in the conversational setting,
and there is hardly any general tendency towards the
relative length of the utterances, as shown in the ex-
ample conversation below. SMT usually works on
the data in which the ratio between the lengths of
the source and target utterances stays relatively con-
stant (Och and Ney, 2000). However, conversational
setting, in which such constant ratio is absent, jeop-
ardizes the functionality of the usual SMT models
to make alignments. Although it is highly proba-
ble that some of the semantic elements in the source
utterance are reflected in the target utterance, it is
rarely on a one-to-one basis.

A: Is something going on today? (S1)
B: Of course, it’s dad’s birthday. (S2)
A (most recent stimulus) : What?! (S3)
B (target) : Oh, you didn’t know? (S4)
Second, it cannot take into account what was pre-

viously discussed in the conversation. Unless the
most recent utterance brings a completely new topic,
or it has sufficient information in itself, such prob-
lem is evident.

Both problems regarding the context and the
alignment become more pronounced especially in
cases where the source utterance is short as shown in
the above example. Clearly, no meaningful response
can be derived from the most recent stimulus alone,
and it is highly unclear how the alignments should
be made. Indeed, the response generated by apply-
ing SMT to the most recent stimulus “What?” in this
example is “that,” which only mimics the syntactic
structure but fails to deliver any meaningful content.

3 Context-Dependent Model

3.1 Overview

In order to deal with the issues of context and the
lengths of the utterances without correlation, we
work on building a context-dependent model, in
which we balance the utterance lengths by selecting
contextually important words from the previous part
of the conversation, and adding them to the source
utterance. For example, applying one of our mod-
els to the most recent stimulus (S3) of the previous
example conversation results in the following utter-
ance, where the words in the parenthesis are newly
added:

A: (today birthday) What?!
The rationale behind this approach is that the

topic of a conversation can be characterized by a
number of contextually important words, which pro-
vide semantic information to be reflected in the re-
sponse generation process.

This approach seemingly reduces the grammat-
ical integrity of the source utterance, and it may
seem as if we risk confusing the translation model
and losing grammaticality of the output. However,
grammaticality of the output is handled by the lan-
guage model, and the language model is constructed
upon the target language only, which in our case
corresponds to the target utterances that remain un-
touched. Also, the newly added words are of high
relevance to the topic, so the new source utterance
frequently demonstrates high semantic coherence
both within itself, and in parallel with the target ut-
terance.

The question now is how to determine which
words are contextually important throughout the
conversation. Since finding such contextually im-
portant words is our main concern, we find sim-
ple statistical significance test models more suitable
than conventional methods from discourse model-
ing or dialogue systems (Oh et al., 2002). We ex-
amine two approaches, namely the pair-based ap-
proach, and the token-based approach. The pair-
based approach uses Fisher’s Exact Test (Moore,
2004), which is reported to give more accurate p-
values than χ2 or G2 when the counts are small (Rit-
ter et al., 2011). This approach takes advantage of
the proximity of utterances, and assumes that a ut-
terance whose distance to the source utterance is
shorter is likely to be more contextually related to
the source utterance, i.e. Sn−1 is more likely than
Sn−2 to be semantically relevant to Sn. The token-
based approach considers at the entire conversation,
and selects the words most characteristic of the con-
versation, using the most widely used term weight-
ing algorithm, tf-idf.

3.2 Pair-Based Model
Given a conversation consisting of utterances
S1,...,Sn+1, where Sn is the source utterance and
Sn+1 is the target utterance, we start by computing
the p-value from Fisher’s Exact Test for every pos-
sible word pair between Sn and Sn−1. If the p-value
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is less than the threshold, implying a significant rel-
evance between the words constituting the pair, we
store the words. We then add the stored words to the
source utterance, avoiding duplicates with words al-
ready in the source utterance, until its length is the
same as that of the target utterance. Words are added
in a reversed order of their appearance, i.e., we give
priority to words that appeared in the later part of
the discourse, in light of the previously mentioned
assumption. If, after adding all stored words to the
source utterance, the length of the source utterance
is still less than the length of the target utterance,
we repeat the process with word pairs between Sn−1

and Sn−2, and so forth. This “crawling-up” is nec-
essary because Sn is often short or semantically triv-
ial that further comparison of Sn with other previous
utterances fails to capture the contextually important
words that are continuously discussed in the previ-
ous part of the conversation. The procedure ends
when there are no more pairs whose p-value is less
than the threshold, or the source utterance has the
same length as the target utterance.

Note that, for training, we limit the application
of our model only to the cases where source utter-
ances are shorter than target utterances, since adding
words in the opposite case will exacerbate the diffi-
culty of alignment. In the test setting, however, we
do not know the length of the actual target utterance,
and thus selectively apply our model based on the
absolute length of the source utterance, where the
threshold is set to the average length of the source
utterance throughout the training data. Also, since it
is evident that we are not dealing with grammatically
well-formed utterances whose ordering should mat-
ter, we opt not to use the reordering table (Bisazza
et al., 2011).

3.3 Token-Based Model

The assumption behind the pair-based approach is
that a topic of a conversation is something that con-
tinues to be discussed throughout the conversation,
i.e. something that gets reflected/matched in the
later part of the conversation. Finding collocated
words using significant test does just that. How-
ever, there may be a trade-off here in terms of rep-
resenting the diversity of context; for example, there
may be a characteristic word that is not directly re-
flected/matched in the later part of the conversation.

That provides the motivation for our token-based ap-
proach, using tf-idf.

This approach follows a similar manner of adding
words to the source utterance until its length is equal
to the target utterance, but differs in that it picks con-
textually important words by examining individual
tokens, rather than pairs of words, using tf-idf. For
idf, the total number of documents was set to the
number of conversations in our training data.

Also, instead of crawling up the conversation
from the source utterance, it scans through the entire
conversation and selects characteristic words within
the given scope of the conversation. This is intended
to reflect that there could be words that are highly
relevant to the overall topic of the conversation, yet
not very close to the current source utterance. For
example, in the following conversation, both (S3)
and (S4) lack any element characteristic of the con-
versation that leads to the final response (S5), while
“NBA” or “fans” in (S1) and (S2) is indicative of
the topic of the conversation, and will be relevant to
words like “LeBron” or “dominating” in the target
utterance.

A: Well, the NBA season is near again.(S1)
B: Yeah! So excited for all the NBA fans!(S2)
A: I’m not. (S3)
B (source) : How come? (S4)
A (target) : It’s just gonna be LeBron dominating

again. (S5)
Although we examine the entire conversation,

words that are too far from the source utterance (for
example, 50 utterances apart) will rarely have much
semantic impact to the current topic. Thus, it is nec-
essary to keep the size of the conversation reason-
ably small, and we restrict it to be at most 8 utter-
ances.

4 Experiment

4.1 Setting

We first built our baseline model following the pro-
cedure proposed by Ritter et al. (2011). In accor-
dance with the paper, we also filtered out the phrase
table by Fisher’s Exact Test. We then implemented
our model using Moses (Koehn et al., 2007) toolkit
with KenLM (Heafield, 2011) as the language model
in 5-gram setting. In accordance with the baseline,
we built our training, tuning, and test data set from
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Model A Model B A>B A=B A<B p-value Agreement

Pair
Baseline 287 32 81 4.0e-28 .488
Actual 58 28 314 1.2e-43 .543
Token 175 52 173 0.96 .373

Token Baseline 280 35 85 2.0e-25 .462
Actual 62 35 303 3.2e-39 .529

Table 1: Performances against Each Model

Twitter, except we collected conversations, consist-
ing of a tweet and successive replies, rather than
pairs of tweets. We also restricted each conversa-
tion to have 3 to 8 utterances with only two speakers
taking turns, to make it more likely that the topic of
the conversation is preserved. Although there were
some cases in which the topic deviated, our valida-
tion of the dataset showed that the amount of such
cases was negligible. We ended up having approxi-
mately 1.4M pairs of utterances in the training data,
which constitute 425,547 conversations. The thresh-
old p-value for Fisher’s Exact Test was set to 0.0001,
to well-balance the number of selected words with
the lengths of the utterances.

4.2 Evaluation

One of the challenging aspects of the researches on
conversation is its distinct nature in which there is
an extremely wide range of acceptable candidate re-
sponses to a stimulus, unlike usual bilingual trans-
lation tasks where there are typically pre-set candi-
dates to be referenced with high reliability. Using
the automatic evaluation metrics, we obtained slight
improvements; for example, BLEU score (Papineni
et al., 2002), with the actual responses from Twitter
as the gold standard, increased from 0.82 for base-
line to 0.89 for the pair-based approach. For the
above-mentioned reason, however, we found it du-
bious whether a higher score in these metrics cor-
responds to better responses, and we thus resort to
human manual evaluation as our primary source of
evaluation.

We performed a human evaluation on Amazon
Mechanical Turk (Buhrmester et al., 2011). The
evaluation task consisted of four different sets of
100 questions, each set of which was handled by
10 workers. Each question was a ranking task, and
the workers were shown a part of conversation and
were instructed to rank the responses that followed

Model 1st 2nd 3rd 4th Avg. Rank
Actual .664 .129 .087 .120 1.66

Baseline .092 .232 .271 .406 2.99
Pair .112 .323 .346 .220 2.67

Token .134 .315 .297 .255 2.67

Table 2: Rankings from Human Evaluation

the conversation in consideration of their relevance
to the topic of the conversation. For all questions,
workers were given four responses; the actual re-
sponse from Twitter, one generated by the baseline
model, and two by each of our context-dependent
models.

The order of responses was randomized for each
question. In addition, in order to filter out the work-
ers who do not take the tasks seriously, generating
noise answers, we selected 10 questions that had
obvious answers, and rejected the answers by the
workers who failed to achieve 70% or higher accu-
racy on those questions. As stated in Section 3.1, the
threshold for length of source sentence to determine
whether to add words or not was set to the average
length of source sentences throughout the training
data, which in our case was 10. In roughly half of
400 questions, no words were added to the source
sentence, and 1 to 6 words were added for roughly
25 to 30 questions respectively. Beyond 6 words, the
number of questions begins to decline.

4.3 Results

Table 1 shows how our models performed against
the actual responses, the baseline model, and each
other, in regards to the number of questions for
which our models were ranked higher. Overall, the
table shows that our models were preferred over the
baseline model, but performed poorly against the
actual responses as expected. Yet, it was able to
perform better than the actual responses in roughly

1348



Conversation Response∗ Avg. Rank

A: if youre following today maybe follow me
B: lol ur off to an early start

1: im at the bus stop how was your night 2.1
2: i dont fancy hame pass for 3.6
3: lmao i got my second home 3.2
4: updating haha I get u off too 1.9

A: like you’re talking about the stupidest things ever.
its annoying

B: who is this about

1: the ppl behind you 1.9
2: I want tie you 3.6
3: like I said Im talking seriously are you 2.3
4: one of them is that you 2.9

A: Aww man happy birthday bro!! Lol you know you
gotta die right?

B: What? Lol

1: you gotta damn near die from drinking today 1.2
2: lol yea 3.8
3: thank you man you know me 2.4
4: lol I know I know 2.8

* 1 is the actual response on Twitter, while 2,3 and 4 are responses generated by the baseline, pair-based, token-based
models respectively.

Table 3: Examples of Responses

15% of the questions, especially when the actual re-
sponses were grammatically poor, or irrelevant to
the topic of the conversation. There was no sig-
nificant difference between the performances of our
models. It also shows the p-value and mutual agree-
ment between two models. Using S coefficient
(Bennett et al., 1954) as a measurement of agree-
ment yields the following result. Most of them fall
into “moderate agreement” range of 0.4 to 0.6, ex-
cept Token-based model against Pair-based model is
slightly lower and falls into “fair agreement” range
(Landis and Koch, 1977).

Table 2 shows the distribution of each model over
each ranking and their average rankings. Our mod-
els outperform the baseline model in higher rank-
ings. Table 3 features examples of responses gen-
erated by each model and the actual responses on
Twitter, along with their average ranking in the final
evaluation. In the first conversation, one of our mod-
els was ranked higher than both the baseline model
and the actual response. In other conversations, our
models were ranked higher than the baseline model,
but lower than the actual response. Generally, our
models have a wider range of topic-relevant vocab-
ularies, and sound comparatively coherent than the
baseline model, without too much grammatical vio-
lations.

5 Conclusion and Future Work

As we observed in the experimental results, our
context-dependent model outperformed the baseline

model when examined in a wider scope of conver-
sations. Although its performance against the actual
responses was not as satisfactory, it could outper-
form them when the actual responses diverted from
the topic, or had poor coherence and grammaticality.

Possible applications include chatterbots or con-
versational agents. Most such applications are based
on one-turn conversation, where user says some-
thing, system gives some response, and that is tech-
nically the end of the conversation of current topic,
which will not be referred to in later conversations.
Our work can, for example, provide the system with
possible topics to talk about, especially when the in-
put from the user is short or trivial. Diversity of the
responses is obtained because, even when the system
is given the same input, it will return completely dif-
ferent responses depending on what was previously
talked about, as opposed to the applications where
certain responses can be expected given an input.

An improvement is likely to come from attempt-
ing different methods to extract the core tokens from
the past utterances. We relied on the Fisher’s Ex-
act Test and tf-idf throughout the research, but other
approaches may perform better. Alternatively, we
may try different weighting systems depending on
whether a token is from the same speaker as the cur-
rent utterance or a different speaker, since it would
generally make more sense for a particular speaker
not to repeat him/herself.
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