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Abstract

Response-based learning allows to adapt a sta-
tistical machine translation (SMT) system to
an extrinsic task by extracting supervision sig-
nals from task-specific feedback. In this pa-
per, we elicit response signals for SMT adap-
tation by executing semantic parses of trans-
lated queries against the Freebase database.
The challenge of our work lies in scaling se-
mantic parsers to the lexical diversity of open-
domain databases. We find that parser perfor-
mance on incorrect English sentences, which
is standardly ignored in parser evaluation, is
key in model selection. In our experiments,
the biggest improvements in F1-score for re-
turning the correct answer from a semantic
parse for a translated query are achieved by
selecting a parser that is carefully enhanced by
paraphrases and synonyms.

1 Introduction

In response-based learning for SMT, supervision
signals are extracted from an extrinsic response to
a machine translation, in contrast to using human-
generated reference translations for supervision. We
apply this framework to a scenario in which a se-
mantic parse of a translated database query is exe-
cuted against the Freebase database. We view learn-
ing from such task-specific feedback as adaptation
of SMT parameters to the task of translating open-
domain database queries, thereby grounding SMT in
the task of multilingual database access. The success
criterion for this task is F1-score in returning the cor-
rect answer from a semantic parse of the translated
query, rather than BLEU. Since the semantic parser

provides feedback to the response-based learner and
defines the final evaluation criterion, the challenge
of the presented work lies in scaling the seman-
tic parser to the lexical diversity of open-domain
databases such as Freebase. Riezler et al. (2014)
showed how to use response-based learning to adapt
an SMT system to a semantic parser for the Geo-
query domain. The state-of-the-art in semantic pars-
ing on Geoquery achieves a parsing accuracy of over
82% (see Andreas et al. (2013) for an overview),
while the state-of-the-art in semantic parsing on the
Free917 data (Cai and Yates, 2013) achieves 68.5%
accuracy (Berant and Liang, 2014). This is due to
the lexical variability of Free917 (2,036 word types)
compared to Geoquery (279 word types).

In this paper, we compare different ways of scal-
ing up state-of-the-art semantic parsers for Freebase
by adding synonyms and paraphrases. First, we con-
sider Berant and Liang (2014)’s own extension of
the semantic parser of Berant et al. (2013) by us-
ing paraphrases. Second, we apply WordNet syn-
onyms (Miller, 1995) for selected parts of speech to
the queries in the Free917 dataset. The new pairs of
queries and logical forms are added to the dataset
on which the semantic parsers are retrained. We
find that both techniques of enhancing the lexical
coverage of the semantic parsers result in improved
parsing performance, and that the improvements add
up nicely. However, improved parsing performance
does not correspond to improved F1-score in an-
swer retrieval when using the respective parser in a
response-based learning framework. We show that
in order to produce helpful feedback for response-
based learning, parser performance on incorrect En-
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glish queries needs to be taken into account, which is
standardly ignored in parser evaluation. That is, for
the purpose of parsing translated queries, a parser
should retrieve correct answers for correct English
queries (true positives), and must not retrieve cor-
rect answers for incorrect translations (false posi-
tives). In order to measure false discovery rate, we
prepare a test set of manually verified incorrect En-
glish in addition to a standard test set of original En-
glish queries. We show that if false discovery rate
on incorrect English queries is taken into account in
model selection, the semantic parser that yields best
results for response-based learning in SMT can be
found reliably.

2 Related Work

Our work is most closely related to Riezler et al.
(2014). We extend their application of response-
based learning for SMT to a larger and lexically
more diverse dataset and show how to perform
model selection in the environment from which re-
sponse signals are obtained. In contrast to their
work where a monolingual SMT-based approach
(Andreas et al., 2013) is used as semantic parser, our
work builds on existing parsers for Freebase, with a
focus on exploiting paraphrasing and synonym ex-
tension for scaling semantic parsers to open-domain
database queries.

Response-based learning has been applied in pre-
vious work to semantic parsing itself (Kwiatowski
et al. (2013), Berant et al. (2013), Goldwasser and
Roth (2013), inter alia). In these works, extrinsic re-
sponses in form of correct answers from a database
are used to alleviate the problem of manual data an-
notation in semantic parsing. Saluja et al. (2012) in-
tegrate human binary feedback on the quality of an
SMT system output into a discriminative learner.

Further work on learning from weak supervision
signals has been presented in the machine learning
community, e.g., in form of coactive learning (Shiv-
aswamy and Joachims, 2012), reinforcement learn-
ing (Sutton and Barto, 1998), or online learning with
limited feedback (Cesa-Bianchi and Lugosi, 2006).

3 Response-based Online SMT Learning

We denote by φ(x, y) a joint feature representa-
tion of input sentences x and output translations

Algorithm 1 Response-based Online Learning
repeat

for i = 1, . . . , n do
Receive input string x(i)

Predict translation ŷ
Receive task feedback e(ŷ) ∈ {1, 0}
if e(ŷ) = 1 then

y+ ← ŷ
Store ŷ as reference y(i) for x(i)

Compute y−

else
y− ← ŷ
Receive reference y(i)

Compute y+

end if
w ← w + η(φ(x(i), y+)− φ(x(i), y−))

end for
until Convergence

y ∈ Y (x), and by s(x, y;w) = 〈w, φ(x, y)〉 a lin-
ear scoring function for predicting a translation ŷ.
A response signal is denoted by a binary function
e(y) ∈ {1, 0} that executes a semantic parse against
the database and checks whether it receives the same
answer as the gold standard parse. Furthermore, a
cost function c(y(i), y) = (1−BLEU(y(i), y)) based
on sentence-wise BLEU (Nakov et al., 2012) is used.
Algorithm 1, called “Response-based Online Learn-
ing” in Riezler et al. (2014), is based on contrast-
ing a “positive” translation y+ that receives positive
feedback, has a high model score, and a low cost of
predicting y instead of y(i), with a “negative” trans-
lation y− that leads to negative feedback, has a high
model score, and a high cost:

y+ = arg max
y∈Y (x(i)):e(y)=1

(
s(x(i), y;w)− c(y(i), y)

)
,

y− = arg max
y∈Y (x(i)):e(y)=0

(
s(x(i), y;w) + c(y(i), y)

)
.

The central algorithm operates as follows: The SMT
system predicts translation ŷ, and in case of positive
task feedback, the prediction is accepted and stored
as positive example by setting y+ ← ŷ. In that
case, y− needs to be computed in order to perform
the stochastic gradient descent update of the weight
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vector. If the feedback is negative, the prediction is
treated as y− and y+ needs to be computed for the
update. If either y+ or y− cannot be computed, the
example is skipped.

4 Scaling Semantic Parsing to
Open-domain Database Queries

The main challenge of grounding SMT in seman-
tic parsing for Freebase lies in scaling the seman-
tic parser to the lexical diversity of the open-domain
database. Our baseline system is the parser of Berant
et al. (2013), called SEMPRE. We first consider the
approach presented by Berant and Liang (2014) to
scale the baseline to open-domain database queries:
In their system, called PARASEMPRE, pairs of logi-
cal forms and utterances are generated from a given
query and the database, and the pair whose utterance
best paraphrases the input query is selected. These
new pairs of queries and logical forms are added as
ambiguous labels in training a model from query-
answer pairs.

Following a similar idea of extending parser cov-
erage by paraphrases, we extend the training set with
synonyms from WordNet. This is done by iterat-
ing over the queries in the FREE917 dataset. To
ensure that the replacement is sensible, each sen-
tence is first POS tagged (Toutanova et al., 2003) and
WordNet lookups are restricted to matching POS be-
tween synonym and query words, for nouns, verbs,
adjectives and adverbs. Lastly, in order to limit
the number of retrieved words, a WordNet lookup
is performed by carefully choosing from the first
three synsets which are ordered from most common
to least frequently used sense. Within a synset all
words are taken. The new training queries are ap-
pended to the training portion of FREE917.

5 Model Selection

The most straightforward strategy to perform model
selection for the task of response-based learning for
SMT is to rely on parsing evaluation scores that are
standardly reported in the literature. However, as
we will show experimentally, if precision is taken as
the percentage of correct answers out of instances
for which a parse could be produced, recall as the
percentage of total examples for which a correct an-
swer could be found, and F1 score as their harmonic

mean, the metrics are not appropriate for model se-
lection in our case. This is because for our goal
of learning the language of correct English database
queries from positive and negative parsing feedback,
the semantic parser needs to be able to parse and re-
trieve correct answers for correct database queries,
but it must not do so for incorrect queries.

However, information about incorrect queries is
ignored in the definition of the metrics given above.
In fact, retrieving correct answers for incorrect
database queries hurts response-based learning for
SMT. The problem lies in the incomplete nature of
semantic parsing databases, where terms that are
not parsed into logical forms in one context make
a crucial difference in another context. For exam-
ple in Geoquery, the gold standard queries “Peo-
ple in Boulder?” and “Number of people in Boul-
der?” parse into the same logical form, however,
the queries “Give me the cities in Virginia” and
“Give me the number of cities in Virginia” have dif-
ferent parses and different answers. While in the
first case, for example in German-to-English transla-
tion of database queries, the German “Anzahl” may
be translated incorrectly without consequences, it is
crucial to translate the term into “number” in the
second case. On an example from Free917, the
SMT system translates the German “Steinformatio-
nen” into “kind of stone”, which is incorrect in the
geological context, where it should be “rock forma-
tions”. If during response-based learning, the error
slips through because of an incomplete parse lead-
ing to the correct answer, it might hurt on the test
data. Negative parser feedback for incorrect transla-
tions is thus crucial for learning how to avoid these
cases in response-based SMT.

In order to evaluate parsing performance on in-
correct translations, we need to extend standard
evaluation data of correct English database queries
with evaluation data of incorrect English database
queries. For this purpose, we took translations of
an out-of-domain SMT system that were judged ei-
ther grammatically or semantically incorrect by the
authors to create a dataset of negative examples. On
this dataset, we can define true positives (TP) as cor-
rect English queries that were given a correct an-
swer by the semantic parser, and false positives (FP)
as wrong English queries that obtained the correct
answer. The crucial evaluation metric is the false
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Model #data F1 FDR

S 620 56.8 28.00
P 620 66.54 25.22
P1 3,982 65.38 24.89
P2 6,740 66.92 26.38
P3 8,465 66.15 25.97

Table 1: Parsing F1 scores and False Discovery Rate
(FDR) for SEMPRE (S), PARASEMPRE (P), and exten-
sions of the latter with synonyms from first one (P1),
first two (P2) and first three (P3) synsets, evaluated on
the FREE917 test set of correct database queries for F1
and including the test set of incorrect database queries for
FDR, and trained on #data training queries. Best results
are indicated in bold face.

discovery rate (FDR) (Murphy, 2012), defined as
FP/FP+TP, i.e., as the ratio of false positives out
of all positive answer retrieval events.

6 Experiments

We use a data dump of Freebase1 which was has
been indexed by the Virtuoso SPARQL engine2 as
our knowledge base. The corpus used in the ex-
periments is the FREE917 corpus as assembled by
Cai and Yates (2013) and consists of 614 training
and 276 test queries in English and corresponding
logical forms.3 The dataset of negative examples,
i.e., incorrect English database queries that should
receive incorrect answers, consists of 166 examples
that were judged either grammatically or semanti-
cally incorrect by the authors.

The translation of the English queries in
FREE917 into German, in order to provide a set
of source sentences for SMT, was done by the au-
thors. The SMT framework used is CDEC (Dyer
et al., 2010) with standard dense features and ad-
ditional sparse features as described in Simianer et
al. (2012)4. Training of the baseline SMT system
was performed on the COMMON CRAWL5 (Smith

1http://www.freebase.com/
2http://virtuoso.openlinksw.com/
3Note that we filtered out 33 questions (21 from the training

set and 12 from the test set) because their logical forms only
returned an empty string as an answer.

4https://github.com/pks/cdec-dtrain
5http://www.statmt.org/wmt13/

training-parallel-commoncrawl.tgz

et al., 2013) dataset consisting of 7.5M parallel
English-German segments extracted from the web.
Response-based learning for SMT uses the code de-
scribed in Riezler et al. (2014)6.

For semantic parsing we use the SEMPRE and
PARASEMPRE tools of Berant et al. (2013) and Be-
rant and Liang (2014) which were trained on the
training portion of the FREE917 corpus7. Further
models use the training data enhanced with syn-
onyms from WordNet as described in Section 4. Fol-
lowing Jones et al. (2012), we evaluate semantic
parsers according to precision, defined as the per-
centage of correctly answered examples out of those
for which a parse could be produced, recall, defined
as the percentage of total examples answered cor-
rectly, and F1-score, defined as harmonic mean of
precision and recall. Furthermore, we report false
discovery rate (FDR) on the combined set of 276
correct and 166 incorrect database queries.

Table 1 reports standard parsing evaluation
metrics for the different parsers SEMPRE (S),
PARASEMPRE (P), and extensions of the latter with
synonyms from the first one (P1), first two (P2) and
first three (P3) synsets which are ordered according
to frequency of use of the sense. As shown in the
second column, the size of the training data is in-
creased up to 10 times by using various synonym ex-
tensions. As shown in the third column, PARASEM-
PRE improves F1 by nearly 10 points over SEMPRE.
Another 0.5 points are added by extending the train-
ing data using two synsets. The third column shows
that the system P1 that scored second-worst in terms
of F1 score, scores best under the FDR metric8.

Table 2 shows an evaluation of the use of differ-
ent parsing models to retrieve correct answers from
the FREE917 test set of correct database queries.
The systems are applied to translated queries, but
evaluated in terms of standard parsing metrics. Sta-
tistical significance is measured using an Approxi-
mate Randomization test (Noreen, 1989; Riezler and
Maxwell, 2005). The baseline system is CDEC as de-
scribed above. It never sees the FREE917 data dur-
ing training. As a second baseline method we use
a stochastic (sub)gradient descent variant of RAM-
PION (Gimpel and Smith, 2012). This system is

6https://github.com/pks/rebol
7www-nlp.stanford.edu/software/sempre
8Note that in case of FDR, smaller is better.
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1 CDEC 2 RAMPION 3 REBOL

S 40.0 40.36 42.9212

P 42.92 44.59 45.85
P1 42.92 46.361 48.81

P2 43.81 45.92 47.06
P3 43.36 45.92 47.49

Table 2: Parsing F1 score on FREE917 test set of trans-
lated database queries using different parser models to
provide response for translated queries. Best results are
indicated in bold face. Statistical significance of result
differences at p < 0.05 are indicated by algorithm num-
ber in superscript.

CDEC RAMPION REBOL

F1 0.85 0.29 0.1
FDR -0.21 -0.58 -0.7

Table 3: Spearman correlation between F1 / FDR from
Table 1 and CDEC / RAMPION / REBOL F1 from Table 2.

trained by using the correct English queries in the
FREE917 training data as references. Neither CDEC

nor RAMPION use parser feedback in training. RE-
BOL (Response-based Online Learning) is an im-
plementation of Algorithm 1 described in Section 3.
This algorithm makes use of positive parser feed-
back to convert predicted translation into references,
in addition to using the original English queries as
references. Training for both RAMPION and REBOL

is performed for 10 epochs over the FREE917 train-
ing set, using a constant learning rate η that was
chosen via cross-validation. All methods then pro-
ceed to translate the FREE917 test set. Best results
in Table 2 are obtained by using an extension of
PARASEMPRE with one synset as parser in response-
based learning with REBOL. This parsing system
scored best under the FDR metric in Table 1.

Table 3 shows the Spearman rank correlation
(Siegel and Castellan, 1988) between the F1 / FDR
ranking of semantic parsers from Table 1 and their
contribution to F1 scores in Table 2 for parsing
query translations of CDEC, RAMPION or REBOL.
The system CDEC cannot learn from parser perfor-
mance based on query translations, thus best results
on translated queries correlate positively with good
parsing F1 score per se. RAMPION can implicitly

take advantage of parsers with good FDR score since
learning to move away from translations dissimilar
to the reference is helpful if they do not lead to
correct answers. REBOL can make the best use of
parsers with low FDR score since it can learn to pre-
vent incorrect translations from hurting parsing per-
formance at test time.

7 Conclusion

We presented an adaptation of SMT to translating
open-domain database queries by using feedback of
a semantic parser to guide learning. Our work high-
lights an important aspect that is often overlooked in
parser evaluation, namely that parser model selec-
tion in real-world applications needs to take the pos-
sibility of parsing incorrect language into account.
We found that for our application of response-based
learning for SMT, the key is to learn to prevent
cases where the correct answer is retrieved despite
the translation being incorrect. This can be avoided
by performing model selection on semantic parsers
that parse and retrieve correct answers for correct
database queries, but do not do retrieve correct an-
swers for incorrect queries.

In our experiments, we found that the parser that
contributes most to response-based learning in SMT
is one that is carefully extended by paraphrases and
synonyms. In future work, we would like to investi-
gate additional techniques for paraphrasing and syn-
onym extension. For example, a good fit for our task
of response-based learning for SMT might be Ban-
nard and Callison-Burch (2005)’s approach to para-
phrasing via pivoting on SMT phrase tables.
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