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Abstract

Linguistic similarity is multi-faceted. For in-
stance, two words may be similar with re-
spect to semantics, syntax, or morphology in-
ter alia. Continuous word-embeddings have
been shown to capture most of these shades
of similarity to some degree. This work con-
siders guiding word-embeddings with mor-
phologically annotated data, a form of semi-
supervised learning, encouraging the vectors
to encode a word’s morphology, i.e., words
close in the embedded space share morpho-
logical features. We extend the log-bilinear
model to this end and show that indeed our
learned embeddings achieve this, using Ger-
man as a case study.

1 Introduction

Word representation is fundamental for NLP. Re-
cently, continuous word-embeddings have gained
traction as a general-purpose representation frame-
work. While such embeddings have proven them-
selves useful, they typically treat words holistically,
ignoring their internal structure. For morphologi-
cally impoverished languages, i.e., languages with a
low morpheme-per-word ratio such as English, this
is often not a problem. However, for the processing
of morphologically-rich languages exploiting word-
internal structure is necessary.

Word-embeddings are typically trained to pro-
duce representations that capture linguistic similar-
ity. The general idea is that words that are close in
the embedding space should be close in meaning.
A key issue, however, is that meaning is a multi-
faceted concept and thus there are multiple axes,
along which two words can be similar. For example,
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ice and cold are fopically related, ice and fire
are syntactically related as they are both nouns, and
ice and icy are morphologically related as they
are both derived from the same root. In this work,
we are interested in distinguishing between these
various axes and guiding the embeddings such that
similar embeddings are morphologically related.

We augment the log-bilinear model (LBL) of
Mnih and Hinton (2007) with a multi-task objective.
In addition to raw text, our model is trained on a
corpus annotated with morphological tags, encour-
aging the vectors to encode a word’s morphology.
To be concrete, the first task is language modeling—
the traditional use of the LBL—and the second is
akin to unigram morphological tagging. The LBL,
described in section 3, is fundamentally a language
model (LM)—word-embeddings fall out as low di-
mensional representations of context used to pre-
dict the next word. We extend the model to jointly
predict the next morphological tag along with the
next word, encouraging the resulting embeddings
to encode morphology. We present a novel met-
ric and experiments on German as a case study
that demonstrates that our approach produces word-
embeddings that better preserve morphological rela-
tionships.

2 Related Work

Here we discuss the role morphology has played in
language modeling and offer a brief overview of var-
ious approaches to the larger task of computational
morphology.

2.1

Morphological structure has been previously inte-
grated into LMs. Most notably, Bilmes and Kirch-
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ARTICLE ADJECTIVE NoOUN
ART.DEF.NOM.SG.FEM | ADJ.NOM.SG.FEM | N.NOM.SG.FEM
die groBte Stadt
the biggest city

Table 1: A sample German phrase in TIGER (Brants
et al., 2004) annotation with an accompanying En-
glish translation. Each word is annotated with a com-
plex morphological tag and its corresponding coarse-
grained POS tag. For instance, St adt is annotated with
N.NoM.SG.FEM indicating that it is a noun in the nomi-
native case and also both singular and feminine. Each tag
is composed of meaningful sub-tag units that are shared
across whole tags, e.g., the feature NOM fires on both ad-
jectives and nouns.

hoff (2003) introduced factored LMs, which effec-
tively add tiers, allowing easy incorporation of mor-
phological structure as well as part-of-speech (POS)
tags. More recently, Miiller and Schiitze (2011)
trained a class-based LM using common suffixes—
often indicative of morphology—achieving state-
of-the-art results when interpolated with a Kneser-
Ney LM. In neural probabilistic modeling, Luong
et al. (2013) described a recursive neural network
LM, whose topology was derived from the out-
put of MORFESSOR, an unsupervised morpholog-
ical segmentation tool (Creutz and Lagus, 2005).
Similarly, Qiu et al. (2014) augmented WORD2VEC
(Mikolov et al., 2013) to embed morphs as well as
whole words—also taking advantage of MORFES-
SOR. LMs were tackled by dos Santos and Zadrozny
(2014) with a convolutional neural network with a
k-best max-pooling layer to extract character level
n-grams, efficiently inserting orthographic features
into the LM—use of the vectors in down-stream
POS tagging achieved state-of-the-art results in Por-
tuguese. Finally, most similar to our model, Botha
and Blunsom (2014) introduced the additive log-
bilinear model (LBL++). Best summarized as a neu-
ral factored LM, the LBL++ created separate em-
beddings for each constituent morpheme of a word,
summing them to get a single word-embedding.

2.2 Computational Morphology

Our work is also related to morphological tagging,
which can be thought of as ultra-fine-grained POS
tagging. For morphologically impoverished lan-
guages, such as English, it is natural to consider

1288

a small tag set. For instance, in their univer-
sal POS tagset, Petrov et al. (2011) propose the
coarse tag NOUN to represent all substantives. In
inflectionally-rich languages, like German, consid-
ering other nominal attributes, e.g., case, gender and
number, is also important. An example of an anno-
tated German phrase is found in table 1. This often
leads to a large tag set; e.g., in the morphological tag
set of Haji¢ (2000), English had 137 tags whereas
morphologically-rich Czech had 970 tags!

Clearly, much of the information needed to deter-
mine a word’s morphological tag is encoded in the
word itself. For example, the suffix ed is generally
indicative of the past tense in English. However, dis-
tributional similarity has also been shown to be an
important cue for morphology (Yarowsky and Wi-
centowski, 2000; Schone and Jurafsky, 2001). Much
as contextual signatures are reliably exploited ap-
proximations to the semantics of the lexicon (Har-
ris, 1954)—you shall know the meaning of the word
by the company it keeps (Firth, 1957)—they can be
similarly exploited for morphological analysis. This
is not an unexpected result—in German, e.g., we
would expect nouns that follow an adjective in the
genitive case to also be in the genitive case them-
selves. Much of what our model is designed to ac-
complish is the isolation of the components of the
contextual signature that are indeed predictive of
morphology.

3 Log-Bilinear Model

The LBL is a generalization of the well-known log-
linear model. The key difference lies in how it
deals with features—instead of making use of hand-
crafted features, the LBL /earns the features along
with the weights. In the language modeling setting,
we define the following model,

def

p(w | B) & exp (sg(w, h))

> €xp (sg(w’, b))’

ey

where w is a word, h is a history and sy is an energy
function. Following the notation of Mnih and Teh
(2012), in the LBL we define

n—1 T
so(w, h) £ (Z Cﬂ’m) Gw +bw, (2
i=1



where n — 1 is history length and the parameters 6
consist of C', a matrix of context specific weights, R,
the context word-embeddings, @, the target word-
embeddings, and b, a bias term. Note that a sub-
scripted matrix indicates a vector, e.g., q,, indicates
the target word-embedding for word w and ry, is the
embedding for the ith word in the history. The gra-
dient, as in all energy-based models, takes the form
of the difference between two expectations (LeCun
et al., 2006).

4 Morph-LBL

We propose a multi-task objective that jointly pre-
dicts the next word w and its morphological tag ¢
given a history h. Thus we are interested in a joint
probability distribution defined as

n—1

p(w,t | h) x exp((F1S + 3 Corn) qu + bu),

i=1

3)

where f; is a hand-crafted feature vector for a mor-

phological tag ¢ and S is an additional weight ma-
trix. Upon inspection, we see that

p(t | w,h) x exp(ftSqu). (G

Hence given a fixed embedding ¢,, for word w, we
can interpret S as the weights of a conditional log-
linear model used to predict the tag ¢.

Morphological tags lend themselves to easy fea-
turization. As shown in table 1, the morpholog-
ical tag ADI.NOM.SG.FEM decomposes into sub-
tag units ADJ, NOM, SG and FEM. Our model in-
cludes a binary feature for each sub-tag unit in the
tag set and only those present in a given tag fire;
e.g., FapsNowm.Sc.Fem 1S @ vector with exactly four
non-zero components.

4.1 Semi-Supervised Learning

In the fully supervised case, the method we proposed
above requires a corpus annotated with morpholog-
ical tags to train. This conflicts with a key use case
of word-embeddings—they allow the easy incorpo-
ration of large, unannotated corpora into supervised
tasks (Turian et al., 2010). To resolve this, we train
our model on a partially annotated corpus. The key
idea here is that we only need a partial set of la-
beled data to steer the embeddings to ensure they
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Figure 1: Projections of our 100 dimensional embeddings
onto R2 through t-SNE (Van der Maaten and Hinton,
2008). Each word is given a distinct color determined
by its morphological tag. We see clear clusters reflect-
ing morphological tags and coarse-grained POS—verbs
are in various shades of green, adjectives in blue, adverbs
in grey and nouns in red and orange. Moreover, we see
similarity across coarse-grained POS tags, e.g., the gen-
itive adjective sozialen lives near the genitive noun
Friedens, reflecting the fact that “sozialen Friedens”
‘social peace’ is a frequently used German phrase.

capture morphological properties of the words. We
marginalize out the tags for the subset of the data
for which we do not have annotation.

5 Evaluation

In our evaluation, we attempt to intrinsically deter-
mine whether it is indeed true that words similar in
the embedding space are morphologically related.
Qualitative evaluation, shown in figure 1, indicates
that this is the case.

5.1 MorphoDist

We introduce a new evaluation metric for
morphologically-driven embeddings to quanti-
tatively score models. Roughly, the question we
want to evaluate is: are words that are similar in
the embedded space also morphologically related?
Given a word w and its embedding ¢, let M,
be the set of morphological tags associated with w
represented by bit vectors. This is a set because
words may have several morphological parses. Our



measure is then defined below,

def

MORPHODIST(w) Z min  dp, (M, My ),
Moaw ;M1

w! €Ly

where m,, € My, my € My, dp is the Ham-
ming distance and IC,, is a set of words close to w in
the embedding space. We are given some freedom
in choosing the set KC,,—in our experiments we take
K to be the k-nearest neighbors (k-NN) in the em-
bedded space using cosine distance. We report per-
formance under this evaluation metric for various k.
Note that MORPHODIST can be viewed as a soft ver-
sion of k-NN—we measure not just whether a word
has the same morphological tag as its neighbors, but
rather has a similar morphological tag.

Metrics similar to MORPHODIST have been ap-
plied in the speech recognition community. For ex-
ample, Levin et al. (2013) had a similar motivation
for their evaluation of fixed-length acoustic embed-
dings that preserve linguistic similarity.

6 Experiments and Results

To show the potential of our approach, we chose to
perform a case study on German, a morphologically-
rich language. We conducted experiments on the
TIGER corpus of newspaper German (Brants et al.,
2004). To the best of our knowledge, no previ-
ous word-embedding techniques have attempted to
incorporate morphological tags into embeddings in
a supervised fashion. We note again that there
has been recent work on incorporating morpholog-
ical segmentations into embeddings—generally in a
pipelined approach using a segmenter, e.g., MOR-
FESSOR, as a preprocessing step, but we distinguish
our model through its use of a different view on mor-
phology.

We opted to compare Morph-LBL with two
fully unsupervised models: the original LBL and
WORD2VEC (code.google.com/p/word2vec/,
Mikolov et al. (2013)). All models were trained on
the first 200k words of the train split of the TIGER
corpus; Morph-LBL was given the correct morpho-
logical annotation for the first 100k words. The
LBL and Morph-LBL models were implemented in
Python using THEANO (Bastien et al., 2012). All
vectors had dimensionality 200. We used the Skip-
Gram model of the WORD2VEC toolkit with con-
text n = 5. We initialized parameters of LBL
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Morph-LBL | LBL | WORD2VEC
All Types 81.5% 22.1% 10.2%
No Tags 44.8% 15.3% 14.8%

Table 2: We examined to what extent the individual em-
beddings store morphological information. To quantify
this, we treated the problem as supervised multi-way
classification with the embedding as the input and the
morphological tag as the output to predict. Note that “All
Types” refers to all types in the training corpus and “No
Tags” refers to the subset of types, whose morphological
tag was not seen by Morph-LBL at training time.

and Morph-LBL randomly and trained them using
stochastic gradient descent (Robbins and Monro,
1951). We used a history size of n = 4.

6.1 Experiment 1: Morphological Content

We first investigated whether the embeddings
learned by Morph-LBL do indeed encode morpho-
logical information. For each word, we selected
the most frequently occurring morphological tag for
that word (ties were broken randomly). We then
treated the problem of labeling a word-embedding
with its most frequent morphological tag as a multi-
way classification problem. We trained a k nearest
neighbors classifier where k£ was optimized on de-
velopment data. We used the scikit-learn li-
brary (Pedregosa et al., 2011) on all types in the vo-
cabulary with 10-fold cross-validation, holding out
10% of the data for testing at each fold and an addi-
tional 10% of training as a development set. The
results displayed in table 2 are broken down by
whether MorphLLBL observed the morphological tag
at training time or not. We see that embeddings from
Morph-LBL do store the proper morphological anal-
ysis at a much higher rate than both the vanilla LBL
and WORD2VEC.

Word-embeddings, however, are often trained on
massive amounts of unlabeled data. To this end,
we also explored on how WORD2VEC itself encodes
morphology, when trained on an order of magnitude
more data. Using the same experimental setup as
above, we trained WORD2VEC on the union of the
TIGER German corpus and German section of Eu-
roparl (Koehn, 2005) for a total of ~ 45 million to-
kens. Looking only at those types found in TIGER,
we found that the k-NN classifier predicted the cor-
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Figure 2: Results for the MORPHODIST measure for k €
{5,10, 25,50}. Lower MORPHODIST values are better—
they indicate that the nearest neighbors of each word are
closer morphologically.

rect tag with ~ 22% accuracy (not shown in the ta-
ble).

6.2 Experiment 2: MORPHODIST

We also evaluated the three types of embeddings us-
ing the MORPHODIST metric introduced in section
5.1. This metric roughly tells us how similar each
word is to its neighbors, where distance is measured
in the Hamming distance between morphological
tags. We only evaluated on words that MorphLBL
did not observe at training time to get a fair idea of
how well our model has managed to encode mor-
phology purely from the contextual signature. Fig-
ure 2 reports results for & € {5, 10, 25,50} nearest
neighbors. We see that the values of k studied do
not affect the metric—the closest 5 words are about
as similar as the closest 50 words. We see again that
the Morph-LBL embeddings generally encode mor-
phology better than the baselines.

6.3 Discussion

The superior performance of Morph-LBL over both
the original LBL. and WORD2VEC under both eval-
uation metrics is not surprising as we provide our
model with annotated data at training time. That the
LBL outperforms WORD2VEC is also not surpris-
ing. The LBL looks at a local history thus making it
more amenable to learning syntactically-aware em-
beddings than WORD2VEC, whose skip-grams often
look at non-local context.
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What is of interest, however, is Morph-LBL’s
ability to robustly maintain morphological relation-
ships only making use of the distributional signature,
without word-internal features. This result shows
that in large corpora, a large portion of morphol-
ogy can be extracted through contextual similarity.

7 Conclusion and Future Work

We described a new model, Morph-LBL, for
the semi-supervised induction of morphologically
guided embeddings. The combination of morpho-
logically annotated data with raw text allows us to
train embeddings that preserve morphological rela-
tionships among words. Our model handily outper-
formed two baselines trained on the same corpus.

While contextual signatures provide a strong cue
for morphological proximity, orthographic features
are also requisite for a strong model. Consider the
words 1loving and eat ing. Both are likely to oc-
cur after i s/are and thus their local contextual sig-
natures are likely to be similar. However, perhaps an
equally strong signal is that the two words end in the
same substring ing. Future work will handle such
integration of character-level features.

We are interested in the application of our em-
beddings to morphological tagging and other tasks.
Word-embeddings have proven themselves as useful
features in a variety of tasks in the NLP pipeline.
Morphologically-driven embeddings have the po-
tential to leverage raw text in a way state-of-the-
art morphological taggers cannot, improving tag-
ging performance downstream.

Acknowledgements

This material is based upon work supported by
a Fulbright fellowship awarded to the first author
by the German-American Fulbright Commission
and the National Science Foundation under Grant
No. 1423276. The second author was supported
by Deutsche Forschungsgemeinschaft (grant DFG
SCHU 2246/10-1). We thank Thomas Miiller for
several insightful discussions on morphological tag-
ging and Jason Eisner for discussions about exper-
imental design. Finally, we thank the anonymous
reviewers for their many helpful comments.



References

Frédéric Bastien, Pascal Lamblin, Razvan Pascanu,
James Bergstra, Ian J. Goodfellow, Arnaud Berg-
eron, Nicolas Bouchard, and Yoshua Bengio. 2012.
Theano: new features and speed improvements. Deep
Learning and Unsupervised Feature Learning NIPS
2012 Workshop.

Jeff A Bilmes and Katrin Kirchhoff. 2003. Factored
language models and generalized parallel backoff. In
HLT-NAACL.

Jan A. Botha and Phil Blunsom. 2014. Compositional
Morphology for Word Representations and Language
Modelling. In ICML.

Sabine Brants, Stefanie Dipper, Peter Eisenberg, Sil-
via Hansen-Schirra, Esther Konig, Wolfgang Lezius,
Christian Rohrer, George Smith, and Hans Uszkor-
eit. 2004. TIGER: Linguistic interpretation of a Ger-
man corpus. Research on Language and Computation,
2(4):597-620.

Mathias Creutz and Krista Lagus. 2005. Unsupervised
Morpheme Segmentation and Morphology Induction
from Text Corpora using Morfessor. Publications in
Computer and Information Science, Report A, 81.

Cicero Nogueira dos Santos and Bianca Zadrozny. 2014.
Learning character-level representations for part-of-
speech tagging. In ICML.

John Rupert Firth. 1957.  Papers in linguistics,
1934-1951. Oxford University Press.

Jan Haji¢. 2000. Morphological tagging: Data vs. dictio-
naries. In HLT-NAACL.

Zellig Harris. 1954. Distributional Structure. Word.

Philipp Koehn. 2005. Europarl: A parallel corpus for sta-
tistical machine translation. In MT Summit, volume 5,
pages 79-86.

Yann LeCun, Sumit Chopra, Raia Hadsell, M Ranzato,
and F Huang. 2006. A Tutorial on Energy-based
Learning. Predicting Structured Data.

Keith Levin, Katharine Henry, Aren Jansen, and Karen
Livescu. 2013. Fixed-dimensional acoustic embed-
dings of variable-length segments in low-resource set-
tings. In Automatic Speech Recognition and Under-
standing (ASRU), pages 410-415. IEEE.

Minh-Thang Luong, Richard Socher, and C Manning.
2013. Better word representations with recursive neu-
ral networks for morphology. In CoNLL, volume 104.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey
Dean. 2013. Efficient estimation of word represen-
tations in vector space. In ICRL.

Andriy Mnih and Geoffrey Hinton. 2007. Three new
graphical models for statistical language modelling. In
ICML.

1292

Andriy Mnih and Yee Whye Teh. 2012. A fast and sim-
ple algorithm for training neural probabilistic language
models. In ICML.

Thomas Miiller and Hinrich Schiitze. 2011. Improved
modeling of out-of-vocabularly words using morpho-
logical classes. In ACL.

Fabian Pedregosa, Gaél Varoquaux, Alexandre Gram-
fort, Vincent Michel, Bertrand Thirion, Olivier Grisel,
Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vin-
cent Dubourg, et al. 2011. Scikit-learn: Machine
learning in Python. The Journal of Machine Learning
Research, 12:2825-2830.

Slav Petrov, Dipanjan Das, and Ryan McDonald. 2011.
A universal part-of-speech tagset. In LREC.

Siyu Qiu, Qing Cui, Jiang Bian, Bin Gao, and Tie-Yan
Liu. 2014. Co-learning of word representations and
morpheme representations. In COLING.

Herbert Robbins and Sutton Monro. 1951. A Stochastic
Approximation Method. The Annals of Mathematical
Statistics, pages 400—-407.

Patrick Schone and Daniel Jurafsky. 2001. Knowledge-
free induction of inflectional morphologies. In ACL.
Joseph Turian, Lev Ratinov, and Yoshua Bengio. 2010.
Word representations: A simple and general method

for semi-supervised learning. In ACL.

Laurens Van der Maaten and Geoffrey Hinton. 2008.
Visualizing Data using t-SNE. Journal of Machine
Learning Research, 9(2579-2605):85.

David Yarowsky and Richard Wicentowski. 2000. Min-
imally supervised morphological analysis by multi-
modal alignment. In ACL.



