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Abstract

A major opportunity for NLP to have a real-
world impact is in helping educators score stu-
dent writing, particularly content-based writ-
ing (i.e., the task of automated short answer
scoring). A major challenge in this enterprise
is that scored responses to a particular ques-
tion (i.e., labeled data) are valuable for mod-
eling but limited in quantity. Additional in-
formation from the scoring guidelines for hu-
mans, such as exemplars for each score level
and descriptions of key concepts, can also
be used. Here, we explore methods for in-
tegrating scoring guidelines and labeled re-
sponses, and we find that stacked generaliza-
tion (Wolpert, 1992) improves performance,
especially for small training sets.

1 Introduction

Educational applications of NLP have considerable
potential for real-world impact, particularly in help-
ing to score responses to assessments, which could
allow educators to focus more on instruction.

We focus on the task of analyzing short, content-
focused responses from an assessment of read-
ing comprehension, following previous work on
short answer scoring (Leacock and Chodorow, 2003;
Mohler et al., 2011; Dzikovska et al., 2013). This
task is typically defined as a text regression or clas-
sification problem: we label student responses that
consist of one or more sentences with scores on an

∗Work done when Keisuke Sakaguchi was an intern at ETS.
Michael Heilman is now a data scientist at Civis Analytics.

ordinal scale (e.g. correct, partially correct, or in-
correct; 1–5 score range, etc.). Importantly, in ad-
dition to the student response itself, we may also
have available other information such as reference
answers or descriptions of key concepts from the
scoring guidelines for human scorers. Such informa-
tion can be cheap to acquire since it is often gener-
ated as part of the assessment development process.

Generally speaking, most work on short answer
scoring takes one of the following approaches:
• A response-based approach uses detailed fea-

tures extracted from the student response itself
(e.g., word n-grams, etc.) and learns a scoring
function from human-scored responses.
• A reference-based approach compares the stu-

dent response to reference texts, such as ex-
emplars for each score level, or specifications
of required content from the assessment’s scor-
ing guidelines. Various text similarity methods
(Agirre et al., 2013) can be used.

These two approaches can, of course, be com-
bined. However, to our knowledge, the issues of
how to combine the approaches and when that is
likely to be useful have not been thoroughly studied.

A challenge in combining the approaches is that
the response-based approach produces a large set of
sparse features (e.g., word n-gram indicators), while
the reference-based approach produces a small set of
continuous features (e.g., similarity scores between
the response and exemplars for different score lev-
els). A simple combination method is to train a
model on the union of the feature sets (§3.3). How-
ever, the dense reference features may be lost among
the many sparse response features.
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Therefore, we apply stacked generalization (i.e.
stacking) (Wolpert, 1992; Sakkis et al., 2001; Tor-
res Martins et al., 2008) to build an ensemble of the
response- and reference-based approaches. To our
knowledge, there is little if any research investigat-
ing the value of stacking for NLP applications such
as automated scoring.1

The contributions of this paper are as follows:
(1) we investigate various reference-based features
for short answer scoring, (2) we apply stacking
(Wolpert, 1992) in order to combine the reference-
and response-based methods, and (3) we demon-
strate that the stacked combination outperforms
other models, especially for small training sets.

2 Task and Dataset

We conduct our experiments on short-answer ques-
tions that are developed under the Reading for Un-
derstanding (RfU) assessment framework. This
framework is designed to measure the reading com-
prehension skills of students from grades 6 through
9 by attempting to assess whether the reader has
formed a coherent mental model consistent with the
text discourse. A more detailed description is pro-
vided by Sabatini and O’Reilly (2013).

We use 4 short-answer questions based on two
different reading passages. The first passage is a
1300-word short story. A single question (“Q1”
hereafter) asks the reader to read the story and write
a 5–7 sentence synopsis in her own words that in-
cludes all the main characters and action from the
story but does not include any opinions or infor-
mation from outside the story. The second passage
is a 700-word article that describes the experiences
of European immigrants in the late 19th and early
20th centuries. There are 3 questions associated
with this passage: two that ask the reader to summa-
rize one section each in the article (“Q2” and “Q4”)
and a third that asks to summarize the entire article
(“Q3”). These 3 questions ask the reader to restrict
his or her responses to 1–2 sentences each.

Each question includes the following:

1Some applications have used stacking but not analyzed
its value. For example, many participants used stacking in
the ASAP2 competition http://http://www.kaggle.
com/c/asap-sas. Also, Heilman and Madnani (2013) used
stacking for Task 7 of SemEval 2013.

• scored responses: short responses written by
students, scored on a 0 to 4 scale for the first
question, and 0 to 3 for the other 3.
• exemplars: one or two exemplar responses for

each score level, and
• key concepts: several (≤ 10) sentences briefly

expressing key concepts in a correct answer.

The data for each question is split into a training
and testing sets. For each question, we have about
2,000 scored student responses.

Following previous work on automatic scoring
(Shermis and Burstein, 2013), we evaluate perfor-
mance using the quadratically weighted κ (Cohen,
1968) between human and machine scores (rounded
and trimmed to the range of the training scores).

3 Models for Short Answer Scoring

Next, we describe our implementations of the
response- and reference-based scoring methods. All
models use support vector regression (SVR) (Smola
and Schölkopf, 2004), with the complexity parame-
ter tuned by cross-validation on the training data.2

3.1 Response-based
Our implementation of the response-based scoring
approach (“resp” in §4) uses SVR to estimate a
model to predicts human scores for text responses.
Various sparse binary indicators of linguistic fea-
tures are used:
• binned response length (e.g. the length-7

feature fires when the character contains 128-
255 characters.)
• word n-grams from n = 1 to 2
• character n-grams from n = 2 to 5, which

is more robust than word n-gram regarding
spelling errors in student responses
• syntactic dependencies in the form of Parent-

Label-Child (e.g. boy-det-the for “the
boy”)
• semantic roles in the form of PropBank3 style

(e.g. say.01-A0-boy for “(the) boy said”)
2We used the implementation of SVR in scikit-learn (Pe-

dregosa et al., 2011) via SKLL (https://github.com/
EducationalTestingService/skll) version 0.27.0.
Other than the complexity parameter, we used the defaults.

3http://verbs.colorado.edu/˜mpalmer/
projects/ace.html
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The syntactic and semantic features were extracted
using the ClearNLP parser.4 We used the default
models and options for the parser. We treat this
model as a strong baseline to which we will add
reference-based features.

3.2 Reference-based

Our implementation of the reference-based ap-
proach (“ref” in §4) uses SVR to estimate a model
to predict human scores from various measures of
the similarity between the response and information
from the scoring guidelines provided to the human
scorers. Specifically, we use the following infor-
mation from §2: (a) sentences expressing key con-
cepts that should be present in correct responses, and
(b) small sets of exemplar responses for each score
level. For each type of reference, we use the follow-
ing similarity metrics:

• BLEU: the BLEU machine translation metric
(Papineni et al., 2002), with the student response
as the translation hypothesis. When using BLEU
to compare the student response to the (much
shorter) sentences containing key concepts, we
ignore the brevity penalty.
• word2vec cosine: the cosine similarity between

the averages of the word2vec vectors (Mikolov
et al., 2013) of content words in the response and
reference texts (e.g., exemplar), respectively.5,6

• word2vec alignment: the alignment method be-
low with word2vec word similarities.
• WordNet alignment: the alignment method be-

low with the Wu and Palmer (1994) WordNet
(Miller, 1995) similarity score.

The WordNet and word2vec alignment metrics
are computed as follows, where S is a student re-
sponse, R is one of a set of reference texts, Ws and
Wr are content words in S and R, respectively, and
Sim(Ws,Wr) is the word similarity function:

4http://www.clearnlp.com, v2.0.2
5The word2vec model was trained on the English Wikipedia

as of June 2012, using gensim (http://radimrehurek.
com/gensim/) with 100 dimensions, a context window of 5,
a minimum count of 5 for vocabulary items, and the default
skip-gram architecture.

6We define content words as ones whose POS tags begin
with “N” (nouns), “V” (verbs), “J” (adjectives), or “R” (ad-
verbs).

SVR #1

Sparse Features
(response-based)

Char n-gram
Word n-gram
Response length
Dependency
Semantic role

Dense Features
(reference-based)

BLEU
w2v cosine
w2v align
WordNet align

SVR #2

predicted score

Figure 1: Stacking model for short answer scoring

1
len(S)

∑
Ws

max
Wr∈R

Sim(Ws,Wr) (1)

When R is one of a set of reference texts (e.g.,
one of multiple exemplars available for a given score
point), we use the maximum similarity over avail-
able values of R. In our data, there are multiple ex-
emplars per score point, but only one text (usually, a
single sentence) per key concept. In other words, we
select the most similar exemplar response for each
score level.

3.3 Simple Model Combination
One obvious way to combine the response- and
reference-based models is to simply train a single
model that uses both the sparse features of the stu-
dent response and the dense, real-valued similarity
features. Our experiments (§4) include such a model
as a strong baseline, using SVR to estimate feature
weights.

3.4 Model Combination with Stacking
In preliminary experiments with the training data,
we observed no gains for the simple combination
model over the component models. One poten-
tial challenge of combining the two scoring ap-
proaches is that the weights for the dense, reference-
based features may be difficult to properly esti-
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mate due to regularization7 and the large number
of sparse, mostly irrelevant linguistic features from
the response-based approach. In fact, the reference-
based sparse features constitute almost 90% of the
entire feature set, while the response-based dense
features constitute the remaining 10%.

This leads us to explore stacking (Wolpert, 1992),
an ensemble technique where a top-layer model
makes predictions based on predictions from lower-
layer models. Here, we train a lower-layer model to
aggregate the sparse response-based features into a
single “response-based prediction” feature, and then
train an upper-layer SVR model that includes that
feature along with all of the reference-based fea-
tures. Figure 1 shows the details.8

For training our stacking model, we first train the
response-based regression model (SVR #1 in Fig-
ure 1), and then train the reference-based regression
model (SVR #2) with an additional prediction fea-
ture value from the response-based model. Specifi-
cally, the lower-layer model concentrates sparse and
binary features into a single continuous value, which
accords with reference-based dense features in the
upper-layer model. In training the lower-layer SVR
on the training data, computing the response-based
prediction feature (i.e., output of the lower-layer
SVR) from the sparse features is similar to k-fold
cross-validation (k = 10 here): the prediction fea-
ture values are computed for each fold by response-
based SVR models trained on the remaining folds.
In training the upper-layer SVR on the testing data,
this prediction feature is computed by a single model
trained on the entire training set.

4 Experiments

This section describes two experiments: an evalu-
ation of reference-based similarity metrics, and an
evaluation of methods for combining the reference-
and response-based features by stacking. As
mentioned in §2, we evaluate performance using

7Another possible combination approach would be to use
the combination method from §3.3 but apply less regularization
to the reference-based features, or, equivalently, scale them by
a large constant. We only briefly explored this through training
set cross-validation. The stacking approach seemed to perform
at least as well in general.

8It would also be possible to also make a lower-layer model
for the reference-based features, though doing this did not show
benefits in preliminary experiments.

Q1 Q2 Q3 Q4
BLEU .72 .45 .60 .52
word2vec cosine .75 .45 .61 .52
word2vec alignment .76 .47 .61 .51
WordNet alignment .73 .49 .59 .51
All (“ref”) .78 .52 .66 .59
length .68 .42 .59 .51
response-based (“resp”) .82 .72 .75 .74

Table 1: Training set cross-validation performance
of reference-based models, in quadratically weighted
κ, with baselines for comparison. The response-based
(“resp”) model is a stronger baseline as described in §3.3.
Note that each reference-based model includes the length
bin features for a fair comparison to “resp”.

quadratically weighted κ between the human and
predicted scores.

4.1 Similarity Metrics

We first evaluate the similarity metrics from §3.2 us-
ing 10-fold cross-validation on the training data. We
evaluated SVR models for each metric individually
as well as a model combining all features from all
metrics. In all models, we included the response
length bin features (§3.1) as a proxy for response-
based features. We compare to the response-based
model (§3.1) and to a model consisting of only the
response length bin feature.

The results are shown in Table 1. Each simi-
larity metric by itself does not always improve the
performance remarkably from the baseline (i.e., the
response length bin features). However, when we
incorporate all the similarity features, we obtained
substantial gain in all 4 questions. In the subsequent
model combination experiment, therefore, we used
all similarity features to represent the reference-
based approach because it outperformed the other
similarity models.

4.2 Model Combination

Next, we tested models that use both response-
and reference-based features on a held-out test set,
which contains 400 responses per question. We
evaluated the response-based (“resp”, §3.1) and
reference-based (“ref”, §3.2) individual models as
well as the two combination methods (“ref+resp”,
§3.3 and “ref+resp stacking”, §3.4). We also eval-
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Figure 2: Test set results for various models trained on differently sized random samples of the training data. Each
point represents an average over 20 runs, except for the rightmost points for each question, which correspond to
training on the full training set. Note that the “resp” and “ref+resp” lines mostly overlap.

uated models trained on differently sized subsets of
the training data. For each subset size, we averaged
over 20 samples. The results are in Figure 2.

The performance of all models increased as train-
ing data grew, though there were diminishing returns
(note the logarithmic scale). Also, the models with
response-based features outperform those with just
reference-based features, as observed previously by
Heilman and Madnani (2013).

Most importantly, while all models with response-
based features perform about the same with 1,000
training examples or higher, the stacked model
tended to outperform the other models for cases
where the number of training examples was very
limited.9 This indicates that stacking enables learn-
ing better feature weights than a simple combination
when the feature set contains a mixture of sparse as
well as dense features, particularly for smaller data
sizes.

5 Conclusion

In this paper, we explored methods for using dif-
ferent sources of information for automatically scor-
ing short, content-based assessment responses. We

9We are not aware of an appropriate significance test for ex-
periments where subsets of the training data are used. How-
ever, the benefits of stacking seem unlikely to be due to chance.
For all 4 items, stacking outperformed the non-stacking combi-
nation for 18 or more of the 20 200-response training subsets
(note that under a binomial test, this would be significant with
p < 0.001). Also, for the 100-response training subsets, stack-
ing was better for 16 or more of the 20 subsets (p < 0.01).

combined a response-based method that uses sparse
features (e.g., word and character n-grams) with a
reference-based method that uses a small number of
features for the similarity between the response and
information from the scoring guidelines (exemplars
and key concepts).

On four reading comprehension assessment ques-
tions, we found that a combined model using stack-
ing outperformed a non-stacked combination, par-
ticularly for the most practically relevant cases
where training data was limited. We believe that
such an approach may be useful for dealing with di-
verse feature sets in other automated scoring tasks
as well as other NLP tasks.

As future work, it might be interesting to explore a
more sophisticated model where the regression mod-
els in different layers are trained simultaneously by
back-propagating the error of the upper-layer, as in
neural networks.
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André Filipe Torres Martins, Dipanjan Das, Noah A.
Smith, and Eric P. Xing. 2008. Stacking dependency
parsers. In Proceedings of the 2008 Conference on
Empirical Methods in Natural Language Processing,
pages 157–166, Honolulu, Hawaii, October.

David H. Wolpert. 1992. Stacked generalization. Neural
Networks, 5(2):241 – 259.

Zhibiao Wu and Martha Palmer. 1994. Verbs semantics
and lexical selection. In Proceedings of the 32Nd An-
nual Meeting on Association for Computational Lin-
guistics, ACL ’94, pages 133–138, Stroudsburg, PA,
USA. Association for Computational Linguistics.

1054


