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Abstract

Methods of deep neural networks (DNNs)
have recently demonstrated superior perfor-
mance on a number of natural language pro-
cessing tasks. However, in most previous
work, the models are learned based on ei-
ther unsupervised objectives, which does not
directly optimize the desired task, or single-
task supervised objectives, which often suf-
fer from insufficient training data. We de-
velop a multi-task DNN for learning represen-
tations across multiple tasks, not only leverag-
ing large amounts of cross-task data, but also
benefiting from a regularization effect that
leads to more general representations to help
tasks in new domains. Our multi-task DNN
approach combines tasks of multiple-domain
classification (for query classification) and in-
formation retrieval (ranking for web search),
and demonstrates significant gains over strong
baselines in a comprehensive set of domain
adaptation.

1 Introduction

Recent advances in deep neural networks (DNNs)
have demonstrated the importance of learning
vector-space representations of text, e.g., words and
sentences, for a number of natural language process-
ing tasks. For example, the study reported in (Col-
lobert et al., 2011) demonstrated significant accu-
racy gains in tagging, named entity recognition, and
semantic role labeling when using vector space word

∗This research was conducted during the author’s internship at
Microsoft Research.

representations learned from large corpora. Fur-
ther, since these representations are usually in a low-
dimensional vector space, they result in more com-
pact models than those built from surface-form fea-
tures. A recent successful example is the parser by
(Chen and Manning, 2014), which is not only accu-
rate but also fast.

However, existing vector-space representation
learning methods are far from optimal. Most pre-
vious methods are based on unsupervised objectives
such as word prediction for training (Mikolov et al.,
2013c; Pennington et al., 2014). Other methods use
supervised training objectives on a single task, e.g.
(Socher et al., 2013), and thus are often constrained
by limited amounts of training data. Motivated by
the success of multi-task learning (Caruana, 1997),
we propose in this paper a multi-task DNN approach
for representation learning that leverages supervised
data from many tasks. In addition to the benefit of
having more data for training, the use of multi-task
also profits from a regularization effect, i.e., reduc-
ing overfitting to a specific task, thus making the
learned representations universal across tasks.

Our contributions are of two-folds: First, we pro-
pose a multi-task deep neural network for represen-
tation learning, in particular focusing on semantic
classification (query classification) and semantic in-
formation retrieval (ranking for web search) tasks.
Our model learns to map arbitrary text queries and
documents into semantic vector representations in
a low dimensional latent space. While the general
concept of multi-task neural nets is not new, our
model is novel in that it successfully combines tasks
as disparate as operations necessary for classifica-
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tion or ranking.
Second, we demonstrate strong results on query

classification and web search. Our multi-task rep-
resentation learning consistently outperforms state-
of-the-art baselines. Meanwhile, we show that our
model is not only compact but it also enables ag-
ile deployment into new domains. This is because
the learned representations allow domain adaptation
with substantially fewer in-domain labels.

2 Multi-Task Representation Learning

2.1 Preliminaries

Our multi-task model combines classification and
ranking tasks. For concreteness, throughout this pa-
per we will use query classification as the classifica-
tion task and web search as the ranking task. These
are important tasks in commercial search engines:

Query Classification: Given a search query Q,
the model classifies in the binary fashion as to
whether it belongs to one of the domains of inter-
est. For example, if the query Q is “Denver sushi”,
the classifier should decide that it belongs to the
“Restaurant” domain. Accurate query classification
enables a richer personalized user experience, since
the search engine can tailor the interface and results.
It is however challenging because queries tend to be
short (Shen et al., 2006). Surface-form word fea-
tures that are common in traditional document clas-
sification problems tend to be too sparse for query
classification, so representation learning is a promis-
ing solution. In this study, we classify queries into
four domains of interest: (“Restaurant”, “Hotel”,
“Flight”, “Nightlife”). Note that one query can be-
long to multiple domains. Therefore, a set of bi-
nary classifiers are built, one for each domain, to
perform the classification. We frame the problem
as four binary classification tasks. Thus, for do-
main Ct, our goal is binary classification based on
P (Ct| Q) (Ct = {0, 1} ). For each domain t, we
assume supervised data (Q, yt = {0, 1} with yt as
binary labels.1

Web Search: Given a search queryQ and a docu-
ment list L, the model ranks documents in the order

1One could frame the problem as a a single multi-class clas-
sification task, but our formulation is more practical as it al-
lows adding new domains without retraining existing classi-
fiers. This will be relevant in domain adaptation (§3.3).

of relevance. For example, if the queryQ is ”Denver
sushi”, model returns a list of documents that satis-
fies such information need. Formally, we estimate
P (D1|Q), P (D2|Q), . . . for each document Dn and
rank according to these probabilities. We assume
that supervised data exist; I.e., there is at least one
relevant document Dn for each query Q.

2.2 The Proposed Multi-Task DNN Model
Briefly, our proposed model maps any arbi-
trary queries Q or documents D into fixed low-
dimensional vector representations using DNNs.
These vectors can then be used to perform query
classification or web search. In contrast to exist-
ing representation learning methods which employ
either unsupervised or single-task supervised objec-
tives, our model learns these representations using
multi-task objectives.

The architecture of our multi-task DNN model
is shown in Figure 1. The lower layers are shared
across different tasks, whereas the top layers repre-
sent task-specific outputs. Importantly, the input X
(either a query or document), initially represented as
a bag of words, is mapped to a vector (l2) of dimen-
sion 300. This is the shared semantic representation
that is trained by our multi-task objectives. In the
following, we elaborate the model in detail:

Word Hash Layer (l1): Traditionally, each word
is represented by a one-hot word vector, where the
dimensionality of the vector is the vocabulary size.
However, due to the large size of vocabulary in real-
world tasks, it is very expensive to learn such kind
of models. To alleviate this problem, we adopt the
word hashing method (Huang et al., 2013). We
map a one-hot word vector, with an extremely high
dimensionality, into a limited letter-trigram space
(e.g., with the dimensionality as low as 50k). For
example, word cat is hashed as the bag of letter tri-
gram {#-c-a, c-a-t, a-t-#}, where # is a boundary
symbol. Word hashing complements the one-hot
vector representation in two aspects: 1) out of vo-
cabulary words can be represented by letter-trigram
vectors; 2) spelling variations of the same word can
be mapped to the points that are close to each other
in the letter-trigram space.

Semantic-Representation Layer (l2): This is a
shared representation learned across different tasks.
this layer maps the letter-trigram inputs into a 300-
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Figure 1: Architecture of the Multi-task Deep Neural Network (DNN) for Representation Learning:
The lower layers are shared across all tasks, while top layers are task-specific. The inputX (either a query or
document, with vocabulary size 500k) is first represented as a bag of words, then hashed into letter 3-grams
l1. Non-linear projection W1 generates the shared semantic representation, a vector l2 (dimension 300) that
is trained to capture the essential characteristics of queries and documents. Finally, for each task, additional
non-linear projections W t

2 generate task-specific representations l3 (dimension 128), followed by operations
necessary for classification or ranking.

dimensional vector by

l2 = f(W1 · l1) (1)

where f(·) is the tanh nonlinear activation f(z) =
1−e−2z

1+e−2z . This 50k-by-300 matrix W1 is responsible
for generating the cross-task semantic representation
for arbitrary text inputs (e.g., Q or D).

Task-Specific Representation (l3): For each
task, a nonlinear transformation maps the 300-
dimension semantic representation l2 into the 128-
dimension task-specific representation by

l3 = f(Wt
2 · l2) (2)

where, t denotes different tasks (query classification
or web search).

Query Classification Output: Suppose QC1 ≡
l3 = f(Wt=C1

2 · l2) is the 128-dimension task-
specific representation for a query Q. The proba-
bility that Q belongs to class C1 is predicted by a
logistic regression, with sigmoid g(z) = 1

1+e−z :

P (C1|Q) = g(Wt=C1
3 ·QC1) (3)

Web Search Output: For the web search
task, both the query Q and the document D are
mapped into 128-dimension task-specific represen-
tations QSq and DSd . Then, the relevance score is

Algorithm 1: Training a Multi-task DNN
Initialize model Θ : {W1,Wt

2,W
t
3} randomly

for iteration in 0...∞ do
1. Pick a task t randomly
2. Pick sample(s) from task t

(Q, yt = {0, 1}) for query classification
(Q,L) for web search

3. Compute loss: L(Θ)
L(Θ)=Eq. 5 for query classification
L(Θ)=Eq. 6 for web search

4. Compute gradient: ∇(Θ)
5. Update model: Θ = Θ− ε∇(Θ)

end
The task t is one of the query classification tasks or web search
task, as shown in Figure 1. For query classification, each train-
ing sample includes one query and its category label. For web
search, each training sample includes query and document list.

computed by cosine similarity as:

R(Q,D) = cos(QSq , DSd) =
QSq ·DSd

||QSq ||||DSd || (4)

2.3 The Training Procedure
In order to learn the parameters of our model, we use
mini-batch-based stochastic gradient descent (SGD)
as shown in Algorithm 1. In each iteration, a task t
is selected randomly, and the model is updated ac-
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cording to the task-specific objective. This approx-
imately optimizes the sum of all multi-task objec-
tives. For query classification of class Ct, we use
the cross-entropy loss as the objective:
−{yt lnP (Ct|Q)+(1−yt) ln(1−P (Ct|Q))} (5)

where yt = {0, 1} is the label and the loss is
summed over all samples in the mini-batch (1024
samples in experiments).

The objective for web search used in this paper
follows the pair-wise learning-to-rank paradigm out-
lined in (Burges et al., 2005). Given a query Q, we
obtain a list of documents L that includes a clicked
document D+ (positive sample), and J randomly-
sampled non-clicked documents {D−j }j=1,.,J . We
then minimize the negative log likelihood of the
clicked document (defined in Eq. 7) given queries
across the training data

− log
∏

(Q,D+)

P (D+|Q) (6)

where the probability of a given document D+ is
computed

P (D+|Q) =
exp(γR(Q,D+))∑

D′∈L exp(γR(Q,D′))
(7)

here, γ is a tuning factor determined on held-out
data.
Additional training details: (1) Model parameters
are initialized with uniform distribution in the range
(−√

6/(fanin + fanout),
√

6/(fanin + fanout))
(Montavon et al., 2012). Empirically, we have
not observed better performance by initialization
with layer-wise pre-training. (2) Moment methods
and AdaGrad training (Duchi et al., 2011) speed
up the convergence speed but gave similar results
as plain SGD. The SGD learning rate is fixed at
ε = 0.1/1024. (3) We run Algorithm 1 for 800K
iterations, taking 13 hours on an NVidia K20 GPU.

2.4 An Alternative View of the Multi-Task
Model

Our proposed multi-task DNN (Figure 1) can be
viewed as a combination of a standard DNN for clas-
sification and a Deep Structured Semantic Model
(DSSM) for ranking, shown in Figure 2. Other ways
to merge the models are possible. Figure 3 shows
an alternative multi-task architecture, where only the
query part is shared among all tasks and the DSSM
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Figure 2: A DNN model for classification and a
DSSM model (Huang et al., 2013) for ranking.

retains independent parameters for computing the
document representations. This is more similar to
the original DSSM. We have attempted training this
model using Algorithm 1, but it achieves good re-
sults on query classification at the expense of web
search. This is likely due to unbalanced updates (i.e.
parameters for queries are updated more often than
that of documents), and implying that the amount of
sharing is an important design choice in multi-task
models.

500k

Q

50k

300

QC1 QC2 QSq

500k

D

50k

300

DSd

3

Figure 3: An alternative multi-task architecture.
Compared with Figure 1, only the query part is
shared across tasks here.

3 Experimental Evaluation

3.1 Data Sets and Evaluation Metrics
We employ large-scale, real data sets in our eval-
uation. See Table 1 for statistics. The test data for
query classification were sampled from one-year log
files of a commercial search engine with labels (yes
or no) judged by humans. The test data for web
search contains 12,071 English queries, where each
query-document pair has a relevance label manually
annotated on a 5-level relevance scale: bad, fair,
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Task
Query Classification Web

Restaurant Hotel Flight Nightlife Search
Training 1,585K 2,131K 1,880K 1,214K 4,084K queries & click-through documents

Test 3,074 6,307 6,199 298 12,071 queries / 897,770 documents

Table 1: Statistics of the data sets used in the experiments.

good, excellent and perfect. The evaluation metric
for query classification is the Area under of Receiver
Operating Characteristic (ROC) curve (AUC) score
(Bradley, 1997). For web search, we employ the
Normalized Discounted Cumulative Gain (NDCG)
(Järvelin and Kekäläinen, 2000).

3.2 Results on Accuracy
First, we evaluate whether our model can robustly
improve performance, measured as accuracy across
multiple tasks.

Table 2 summarizes the AUC scores for query
classification, comparing the following classifiers:
• SVM-Word: a SVM model2 with unigram, bi-

gram and trigram surface-form word features.

• SVM-Letter: a SVM model with letter trigram
features (i.e. l1 in Figure 1 as input to SVM).

• DNN: single-task deep neural net (Figure 2).

• MT-DNN: our multi-task proposal (Figure 1).
The results show that the proposed MT-DNN per-

forms best in all four domains. Further, we observe:

1. MT-DNN outperforms DNN, indicating the
usefulness of the multi-task objective (that in-
cludes web search) over the single-task objec-
tive of query classification.

2. Both DNN and MT-DNN outperform SVM-
Letter, which initially uses the same input fea-
tures (l1). This indicates the importance of
learning a semantic representation l2 on top of
these letter trigrams.

3. Both DNN and MT-DNN outperform a strong
SVM-Word baseline, which has a large feature
set that consists of 3 billion features.

Table 3 summarizes the NDCG results on web
search, comparing the following models:
2In this paper, we use the liblinear to build SVM
classifiers and optimize the corresponding parame-
ter C by using 5-fold cross-validation in training data.
http://www.csie.ntu.edu.tw/ cjlin/liblinear/

System
Query Classification

Restaurant Hotel Flight Nightlife
SVM-Word 90.91 75.82 91.17 91.27
SVM-Letter 88.75 69.65 85.51 87.71
DNN 97.38 76.81 95.58 93.24
MT-DNN 97.57 78.56 96.21 94.20

Table 2: Query Classification AUC results.

• Popular baselines in the web search literature,
e.g. BM25, Language Model, PLSA

• DSSM: single-task ranking model (Figure 2)

• MT-DNN: our multi-task proposal (Figure 1)

Again, we observe that MT-DNN performs best. For
example, MT-DNN achieves NDCG@1=0.334, out-
performing the current state-of-the-art single-task
DSSM (0.327) and the classic methods like PLSA
(0.308) and BM25 (0.305). This is a statistically sig-
nificant improvement (p < 0.05) over DSSM and
other baselines.

To recap, our MT-DNN robustly outperforms
strong baselines across all web search and query
classification tasks. Further, due to the use of larger
training data (from different domains) and the reg-
ularization effort as we discussed in Section 1, we
confirm the advantage of multi-task models over
than single-task ones.3

3.3 Results on Model Compactness and
Domain Adaptation

Important criteria for building practical systems are
agility of deployment and small memory footprint
and fast run-time. Our model satisfies both with
3We have also trained SVM using Word2Vec (Mikolov et al.,
2013b; Mikolov et al., 2013a) features. Unfortunately, the re-
sults are poor at 60-70 AUC, indicating the sub-optimality of
unsupervised representation learning objectives for actual pre-
diction tasks. We optimized the Word2Vec features in the SVM
baseline by scaling and normalizing as well, but did not ob-
serve much improvement.
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Models NDCG@1 NDCG@3 NDCG@10
TF-IDF model (BM25) 0.305 0.328 0.388
Unigram Language Model (Zhai and Lafferty, 2001) 0.304 0.327 0.385
PLSA(Topic=100) (Hofmann, 1999; Gao et al., 2011) 0.305 0.335 0.402
PLSA(Topic=500) (Hofmann, 1999; Gao et al., 2011) 0.308 0.337 0.402
Latent Dirichlet Allocation (Topic=100) (Blei et al., 2003) 0.308 0.339 0.403
Latent Dirichlet Allocation (Topic=500) (Blei et al., 2003) 0.310 0.339 0.405
Bilingual Topic Model (Gao et al., 2011) 0.316 0.344 0.410
Word based Machine Translation model (Gao et al., 2010) 0.315 0.342 0.411
DSSM, J=50 (Figure 2, (Huang et al., 2013)) 0.327 0.359 0.432
MT-DNN (Proposed, Figure 3) 0.334* 0.363 0.434

Table 3: Web Search NDCG results. Here, * indicates statistical significance improvement compared to the
best baseline (DSSM) measured by t-test at p-value of 0.05.
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Figure 4: Domain Adaption in Query Classification: Comparison of features using SVM classifiers. The
X-axis indicates the amount of labeled samples used in training the SVM. Intuitively, the three feature
representations correspond to different layers in Figure 1. SemanticRepresentation is the l2 layer trained
by MT-DNN. Word3gram is input X and Letter3gram is word hash layer (l1), both not trained/adapted.
Generally, SemanticRepresentation performs best for small training labels, indicating its usefulness in
domain adaptation. Note that the numbers -3.0, -2.0, -1.0 and 0.0 in x-axis denote 0.1, 1, 10 and 100 percent
training data in each domain, respectively.
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Figure 5: Domain Adaptation in Query Classification. Comparison of different DNNs.

high model compactness. The key to the compact-
ness is the aggressive compression from the 500k-
dimensional bag-of-words input to 300-dimensional
semantic representation l2. This significantly re-
duces the memory/run-time requirements compared
to systems that rely on surface-form features. The
most expensive portion of the model is storage of the
50k-by-300 W1 and its matrix multiplication with
l1, which is sparse: this is trivial on modern hard-
ware. Our multi-task DNN takes < 150KB in mem-
ory whereas e.g. SVM-Word takes about 200MB.

Compactness is particularly important for query
classification, since one may desire to add new do-
mains after discovering new needs from the query
logs of an operational system. On the other hand, it
is prohibitively expensive to collect labeled training
data for new domains. Very often, we only have very
small training data or even no training data.

To evaluate the models using the above crite-
ria, we perform domain adaptation experiments on
query classification using the following procedure:
(1) Select one query classification task t∗. Train MT-
DNN on the remaining tasks (including Web Search

task) to obtain a semantic representation (l2); (2)
Given a fixed l2, train an SVM on the training data
t∗, using varying amounts of labels; (3) Evaluate the
AUC on the test data of t∗

We compare three SVM classifiers trained us-
ing different feature representations: (1) Semanti-
cRepresentation uses the l2 features generated ac-
cording to the above procedure. (2) Word3gram
uses unigram, bigram and trigram word features.
(3) Letter3gram uses letter-trigrams. Note that
Word3gram and Letter3gram correspond to SVM-
Word and SVM-Letter respectively in Table 2.

The AUC results for different amounts of t∗ train-
ing data are shown in Figure 4. In the Hotel, Flight
and Restaurant domains, we observe that our seman-
tic representation dominated the other two feature
representations (Word3gram and Letter3gram) in
all cases except the extremely large-data regime
(more than 1 million training samples in domain t∗).
Given sufficient labels, SVM is able to train well on
Word3gram sparse features, but for most cases Se-
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manticRepresentation is recommended.4

In a further experiment, we compare the follow-
ing two DNNs using the same domain adaptation
procedure: (1) DNN1: DNN where W1 is ran-
domly initialized and parameters W1,W2,Wt∗

3 are
trained on varying amounts of data in t∗; (2) DNN2:
DNN where W1 is obtained from other tasks (i.e.
SemanticRepresentation) and fixed, while param-
eters W2,Wt∗

3 are trained on varying amounts of
data in t∗. The purpose is to see whether shared se-
mantic representation is useful even under a DNN
architecture. Figure 5 show the AUC results of
DNN1 vs. DNN2 (the results SVM denotes the
same system as SemanticRepresentation in Figure
4, plotted here for reference). We observe that when
the training data is extremely large (millions of sam-
ples), one does best by training all parameters from
scratch (DNN1). Otherwise, one is better off using
a shared semantic representation trained by multi-
task objectives. Comparing DNN2 and SVM with
SemanticRepresentation, we note that SVM works
best for training data of several thousand samples;
DNN2 works best in the medium data range.

4 Related Work

There is a large body of work on representation
learning for natural language processing, sometimes
using different terminologies for similar concepts;
e.g., feature generation, dimensionality reduction,
and vector space models. The main motivation is
similar: to abstract away from surface forms in
words, sentences, or documents, in order to alle-
viate sparsity and approximate semantics. Tradi-
tional techniques include LSA (Deerwester et al.,
1990), ESA (Gabrilovich and Markovitch, 2007),
PCA (Karhunen, 1998), and non-linear kernel vari-
ants (Schölkopf et al., 1998). Recently, learning-
based approaches inspired by neural networks, es-
pecially DNNs, have gained in prominence, due to
their favorable performance (Huang et al., 2013; Ba-
roni et al., 2014; Milajevs et al., 2014).

Popular methods for learning word representa-
tions include (Collobert et al., 2011; Mikolov et al.,
2013c; Mnih and Kavukcuoglu, 2013; Pennington
et al., 2014): all are based on unsupervised objec-

4The trends differ slightly in the Nightlife domain. We believe
this may be due to data bias on test data (only 298 samples).

tives of predicting words or word frequencies from
raw text. End-to-end neural network models for spe-
cific tasks (e.g. parsing) often use these word repre-
sentations as initialization, which are then iteratively
improved by optimizing a supervised objective (e.g.
parsing accuracy). A selection of successful appli-
cations of this approach include sequence labeling
(Turian et al., 2010), parsing (Chen and Manning,
2014), sentiment (Socher et al., 2013), question an-
swering (Iyyer et al., 2014) and translation modeling
(Gao et al., 2014a).

Our model takes queries and documents as in-
put, so it learns sentence/document representations.
This is currently an open research question, the chal-
lenge being how to properly model semantic com-
positionality of words in vector space (Huang et al.,
2013; M. Baroni and Zamparelli, 2013; Socher et
al., 2013). While we adopt a bag-of-words approach
for practical reasons (memory and run-time), our
multi-task framework is extensible to other meth-
ods for sentence/document representations, such as
those based on convolutional networks (Kalchbren-
ner et al., 2014; Shen et al., 2014; Gao et al., 2014b),
parse tree structure (Irsoy and Cardie, 2014), and
run-time inference (Le and Mikolov, 2014).

The synergy between multi-task learning and neu-
ral nets is quite natural; the general idea dates back
to (Caruana, 1997). The main challenge is in design-
ing the tasks and the network structure. For exam-
ple, (Collobert et al., 2011) defined part-of-speech
tagging, chunking, and named entity recognition as
multiple tasks in a single sequence labeler; (Bordes
et al., 2012) defined multiple data sources as tasks
in their relation extraction system. While concep-
tually similar, our model is novel in that it com-
bines tasks as disparate as classification and rank-
ing. Further, considering that multi-task models of-
ten exhibit mixed results (i.e. gains in some tasks but
degradation in others), our accuracy improvements
across all tasks is a very satisfactory result.

5 Conclusion

In this work, we propose a robust and practical rep-
resentation learning algorithm based on multi-task
objectives. Our multi-task DNN model success-
fully combines tasks as disparate as classification
and ranking, and the experimental results demon-
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strate that the model consistently outperforms strong
baselines in various query classification and web
search tasks. Meanwhile, we demonstrated com-
pactness of the model and the utility of the learned
query/document representation for domain adapta-
tion.

Our model can be viewed as a general method for
learning semantic representations beyond the word
level. Beyond query classification and web search,
we believe there are many other knowledge sources
(e.g. sentiment, paraphrase) that can be incorporated
either as classification or ranking tasks. A compre-
hensive exploration will be pursued as future work.
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